Displaying publications 1 - 20 of 206 in total

Abstract:
Sort:
  1. Abakpa GO, Umoh VJ, Kamaruzaman S, Ibekwe M
    J Sci Food Agric, 2018 Jan;98(1):80-86.
    PMID: 28543177 DOI: 10.1002/jsfa.8441
    BACKGROUND: Some routes of transmission of Escherichia coli O157:H7 to fresh produce include contaminated irrigation water and manure polluted soils. The aim of the present study was to determine the genetic relationships of E. coli O157:H7 isolated from some produce growing region in Nigeria using enterobacterial repetitive intergenic consensus (ERIC) DNA fingerprinting analysis. A total of 440 samples comprising leafy greens, irrigation water, manure and soil were obtained from vegetable producing regions in Kano and Plateau States, Nigeria. Genes coding for the quinolone resistance-determinant (gyrA) and plasmid (pCT) coding for multidrug resistance (MDR) were determined using polymerase chain reaction (PCR) in 16 isolates that showed MDR.

    RESULTS: Cluster analysis of the ERIC-PCR profiles based on band sizes revealed six main clusters from the sixteen isolates analysed. The largest cluster (cluster 3) grouped isolates from vegetables and manure at a similarity coefficient of 0.72.

    CONCLUSION: The present study provides data that support the potential transmission of resistant strains of E. coli O157:H7 from vegetables and environmental sources to humans with potential public health implications, especially in developing countries. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Soil Microbiology*
  2. Abdul Rahman NSN, Abdul Hamid NW, Nadarajah K
    Int J Mol Sci, 2021 Aug 21;22(16).
    PMID: 34445742 DOI: 10.3390/ijms22169036
    Rhizospheric organisms have a unique manner of existence since many factors can influence the shape of the microbiome. As we all know, harnessing the interaction between soil microbes and plants is critical for sustainable agriculture and ecosystems. We can achieve sustainable agricultural practice by incorporating plant-microbiome interaction as a positive technology. The contribution of this interaction has piqued the interest of experts, who plan to do more research using beneficial microorganism in order to accomplish this vision. Plants engage in a wide range of interrelationship with soil microorganism, spanning the entire spectrum of ecological potential which can be mutualistic, commensal, neutral, exploitative, or competitive. Mutualistic microorganism found in plant-associated microbial communities assist their host in a number of ways. Many studies have demonstrated that the soil microbiome may provide significant advantages to the host plant. However, various soil conditions (pH, temperature, oxygen, physics-chemistry and moisture), soil environments (drought, submergence, metal toxicity and salinity), plant types/genotype, and agricultural practices may result in distinct microbial composition and characteristics, as well as its mechanism to promote plant development and defence against all these stressors. In this paper, we provide an in-depth overview of how the above factors are able to affect the soil microbial structure and communities and change above and below ground interactions. Future prospects will also be discussed.
    Matched MeSH terms: Soil Microbiology*
  3. Abdullah NS, Doni F, Chua KO, Mispan MS, Saiman MZ, Mohd Yusuf Y, et al.
    Lett Appl Microbiol, 2022 Dec;75(6):1645-1650.
    PMID: 36073093 DOI: 10.1111/lam.13832
    Microbial-based fertilizer has been widely used as a healthier and better alternative to agrochemical products. However, the effects of biofertilizers on the rhizospheric microbiota has rarely been investigated. Thus, the aim of this study was to investigate the effects of symbiotic fungus Trichoderma asperellum SL2-based inoculant on the soil bacterial population through next generation sequencing using a metabarcoding approach. The treatment plots were treated with T. asperellum SL2 spore suspension, while the control plots were treated with sterilized distilled water. The results showed similar bacterial microbiome profiles in the soil of control and T. asperellum SL2-treated plots. In conclusion, the application of the T. asperellum SL2 inoculant had not exerted a negative impact towards the bacterial population as similar observation was reflected in control plots. Nonetheless, future research should be conducted to investigate the effects of repeated application of T. asperellum SL2 over a longer period on the rice microbiota communities.
    Matched MeSH terms: Soil Microbiology
  4. Abdullah SRS, Al-Baldawi IA, Almansoory AF, Purwanti IF, Al-Sbani NH, Sharuddin SSN
    Chemosphere, 2020 May;247:125932.
    PMID: 32069719 DOI: 10.1016/j.chemosphere.2020.125932
    Due to the increasing importance of diesel and petroleum for industrial development during the last century, petrochemical effluents have significantly contributed to the pollution of aquatic and soil environments. The contamination generated by petroleum hydrocarbons can endanger not only humans but also the environment. Phytoremediation or plant-assisted remediation can be considered one of the best technologies to manage petroleum product-contaminated water and soil. The main advantages of this method are that it is environmentally-friendly, potentially cost-effective and does not require specialised equipment. The scope of this review includes a description of hydrocarbon pollutants from petrochemical industries, their toxicity impacts and methods of treatment and degradation. The major emphasis is on phytodegradation (phytotransformation) and rhizodegradation since these mechanisms are the most favourable alternatives for soil and water reclamation of hydrocarbons using tropical plants. In addressing these issues, this review also covers challenges to retrieve the environment (soil and water) from petroleum contaminations through phytoremediation, and its opportunities to remove or reduce the negative environmental impacts of petroleum contaminations and restore damaged ecosystems with sustainable ways to keep healthy life for the future.
    Matched MeSH terms: Soil Microbiology
  5. Abdullahi S, Haris H, Zarkasi KZ, Amir HG
    J Basic Microbiol, 2021 Apr;61(4):293-304.
    PMID: 33491813 DOI: 10.1002/jobm.202000695
    Enterobacter tabaci 4M9 (CCB-MBL 5004) was reported to have plant growth-promoting and heavy metal tolerance traits. It was able to tolerate more than 300 mg/L Cd, 600 mg/L As, and 500 mg/L Pb and still maintained the ability to produce plant growth-promoting substances under metal stress conditions. To explore the genetic basis of these beneficial traits, the complete genome sequencing of 4M9 was carried out using Pacific Bioscience (PacBio) sequencing technology. The complete genome consisted of one chromosome of 4,654,430 bp with a GC content of 54.6% and one plasmid of 51,135 bp with a GC content of 49.4%. Genome annotation revealed several genes involved in plant growth-promoting traits, including the production of siderophore, indole acetic acid, and 1-aminocyclopropane-1-carboxylate deaminase; solubilization of phosphate and potassium; and nitrogen metabolism. Similarly, genes involved in heavy metals (As, Co, Zn, Cu, Mn, Se, Cd, and Fe) tolerance were detected. These support its potential as a heavy metal-tolerant plant growth-promoting bacterium and a good genetic resource that can be employed to improve phytoremediation efficiency of heavy metal-contaminated soil via biotechnological techniques. This, to the best of our knowledge, is the first report on the complete genome sequence of heavy metal-tolerant plant growth-promoting E. tabaci.
    Matched MeSH terms: Soil Microbiology
  6. Abioye OP, Agamuthu P, Abdul Aziz AR
    Biodegradation, 2012 Apr;23(2):277-86.
    PMID: 21870160 DOI: 10.1007/s10532-011-9506-9
    Soil contamination by hydrocarbons, especially by used lubricating oil, is a growing problem in developing countries, which poses a serious threat to the environment. Phytoremediation of these contaminated soils offers environmental friendly and a cost effective method for their remediation. Hibiscus cannabinus was studied for the remediation of soil contaminated with 2.5 and 1% used lubricating oil and treated with organic wastes [banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] for a period of 90 days under natural conditions. Loss of 86.4 and 91.8% used lubricating oil was recorded in soil contaminated with 2.5 and 1% oil and treated with organic wastes respectively at the end of 90 days. However, 52.5 and 58.9% oil loss was recorded in unamended soil contaminated with 2.5 and 1% oil, respectively. The plant did not accumulate hydrocarbon from the soil but shows appreciable accumulation of Fe and Zn in the root and stem of H. cannabinus at the end of the experiment. The first order kinetic rate of uptake of Fe and Zn in H. cannabinus was higher in organic wastes amendment treatments compared to the unamended treatments, which are extremely low. The results of this study suggest that H. cannabinus has a high potential for remediation of hydrocarbon and heavy metal contaminated soil.
    Matched MeSH terms: Soil Microbiology
  7. Abu Bakar N, Lau BYC, González-Aravena M, Smykla J, Krzewicka B, Karsani SA, et al.
    Microb Ecol, 2023 Dec 07;87(1):11.
    PMID: 38060022 DOI: 10.1007/s00248-023-02311-w
    In understanding stress response mechanisms in fungi, cold stress has received less attention than heat stress. However, cold stress has shown its importance in various research fields. The following study examined the cold stress response of six Pseudogymnoascus spp. isolated from various biogeographical regions through a proteomic approach. In total, 2541 proteins were identified with high confidence. Gene Ontology enrichment analysis showed diversity in the cold stress response pathways for all six Pseudogymnoascus spp. isolates, with metabolic and translation-related processes being prominent in most isolates. 25.6% of the proteins with an increase in relative abundance were increased by more than 3.0-fold. There was no link between the geographical origin of the isolates and the cold stress response of Pseudogymnoascus spp. However, one Antarctic isolate, sp3, showed a distinctive cold stress response profile involving increased flavin/riboflavin biosynthesis and methane metabolism. This Antarctic isolate (sp3) was also the only one that showed decreased phospholipid metabolism in cold stress conditions. This work will improve our understanding of the mechanisms of cold stress response and adaptation in psychrotolerant soil microfungi, with specific attention to the fungal genus Pseudogymnoascus.
    Matched MeSH terms: Soil Microbiology
  8. Agamuthu P, Abioye OP, Aziz AA
    J Hazard Mater, 2010 Jul 15;179(1-3):891-4.
    PMID: 20392562 DOI: 10.1016/j.jhazmat.2010.03.088
    Soil contamination by used lubricating oil from automobiles is a growing concern in many countries, especially in Asian and African continents. Phytoremediation of this polluted soil with non-edible plant like Jatropha curcas offers an environmental friendly and cost-effective method for remediating the polluted soil. In this study, phytoremediation of soil contaminated with 2.5 and 1% (w/w) waste lubricating oil using J. curcas and enhancement with organic wastes [Banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] was undertaken for a period of 180 days under room condition. 56.6% and 67.3% loss of waste lubricating oil was recorded in Jatropha remediated soil without organic amendment for 2.5% and 1% contamination, respectively. However addition of organic waste (BSG) to Jatropha remediation rapidly increases the removal of waste lubricating oil to 89.6% and 96.6% in soil contaminated with 2.5% and 1% oil, respectively. Jatropha root did not accumulate hydrocarbons from the soil, but the number of hydrocarbon utilizing bacteria was high in the rhizosphere of the Jatropha plant, thus suggesting that the mechanism of the oil degradation was via rhizodegradation. These studies have proven that J. curcas with organic amendment has a potential in reclaiming hydrocarbon-contaminated soil.
    Matched MeSH terms: Soil Microbiology
  9. Ahmad J, Marsidi N, Sheikh Abdullah SR, Hasan HA, Othman AR, Ismail N', et al.
    Chemosphere, 2024 Feb;349:140881.
    PMID: 38048826 DOI: 10.1016/j.chemosphere.2023.140881
    Treatment of petroleum-contaminated soil to a less toxic medium via physical and chemical treatment is too costly and requires posttreatment. This review focuses on the employment of phytoremediation and mycoremediation technologies in cleaning hydrocarbon-contaminated soil which is currently rare. It is considered environmentally beneficial and possibly cost-effective as it implements the synergistic interaction between plants and biosurfactant producing mycorrhiza to degrade hydrocarbon contaminants. This review also covers possible sources of hydrocarbon pollution in water and soil, toxicity effects, and current technologies for hydrocarbon removal and degradation. In addition to these problems, this review also discusses the challenges and opportunities of transforming the resultant treated sludge and treating plants into potential by-products for a higher quality of life for future generations.
    Matched MeSH terms: Soil Microbiology
  10. Ahmad L, Hung TL, Mat Akhir NA, Mohamed R, Nathan S, Firdaus-Raih M
    BMC Microbiol, 2015;15:270.
    PMID: 26597807 DOI: 10.1186/s12866-015-0604-4
    There are still numerous protein subfamilies within families and superfamilies that do not yet have conclusive empirical experimental evidence providing a specific function. These proteins persist in databases with the annotation of a specific 'putative' function made by association with discernible features in the protein sequence.
    Matched MeSH terms: Soil Microbiology
  11. Ahmad MF, Abdullah H, Hassan MN, Jamaludin MI, Sivam A, Komatsu K, et al.
    Int J Mol Sci, 2023 Jan 03;24(1).
    PMID: 36614337 DOI: 10.3390/ijms24010872
    Soil ecosystems are home to a diverse range of microorganisms, but they are only partially understood because no single-cell sequencing or whole-community sequencing provides a complete picture of these complex communities. Using one of such metagenomics approaches, we succeeded in monitoring the microbial diversity and stress-response gene in the soil samples. This study aims to test whether known differences in taxonomic diversity and composition are reflected in functional gene profiles by implementing whole gene sequencing (WGS) metagenomic analysis of geographically dispersed soils from two distinct pristine forests. The study was commenced by sequencing three rainforest soil samples and three peat swamp soil samples. Soil richness effects were assessed by exploring the changes in specific functional gene abundances to elucidate physiological constraints acting on different soil systems and identify variance in functional pathways relevant to soil biogeochemical cycling. Proteobacteria shows abundances of microbial diversity for 52.15% in Royal Belum Reserved Forest and 48.28% in Raja Musa; 177 out of 1,391,841 and 449 out of 3,586,577 protein coding represent acidic stress-response genes for Royal Belum and Raja Musa, respectively. Raja Musa indicates pH 2.5, which is extremely acidic. The analysis of the taxonomic community showed that Royal Belum soils are dominated by bacteria (98% in Sungai Kooi (SK), 98% in Sungai Papan (SP), and 98% in Sungai Ruok (SR), Archaea (0.9% in SK, 0.9% in SP, and 1% in SR), and the remaining were classed under Eukaryota and viruses. Likewise, the soils of Raja Muda Musa are also dominated by bacteria (95% in Raja Musa 1 (RM1), 98% in Raja Musa 2 (RM2), and 96% in Raja Musa 3 (RM3)), followed by Archaea (4% in RM1, 1% in RM2, and 3% in RM3), and the remaining were classed under Eukaryota and viruses. This study revealed that RBFR (Royal Belum Foresr Reserve) and RMFR (Raja Musa Forest Reserve) metagenomes contained abundant stress-related genes assigned to various stress-response pathways, many of which did not show any difference among samples from both sites. Our findings indicate that the structure and functional potential of the microbial community will be altered by future environmental potential as the first glimpse of both the taxonomic and functional composition of soil microbial communities.
    Matched MeSH terms: Soil Microbiology
  12. Ahmed A, Al-Mekhlafi HM, Surin J
    PMID: 21706930
    We reviewed the epidemiology of STH in Malaysia from the 1970s to 2009. High prevalence rates persist among the rural Aborigines, estate workers and in urban slums and squatter areas. Trichuris trichiura is the most prevalent helminth in Malaysia ranging from 2.1% to 98.2%. Ascaris lumbricoides follows closely with a prevalence rate of 4.6-86.7%, while hookworm is the least prevalent (0-37.0%). A countrywide control program with special emphasis on school-based intervention is highly recommended among aboriginal people.
    Matched MeSH terms: Soil Microbiology*
  13. Akhtar N, Ilyas N, Yasmin H, Sayyed RZ, Hasnain Z, A Elsayed E, et al.
    Molecules, 2021 Mar 12;26(6).
    PMID: 33809305 DOI: 10.3390/molecules26061569
    Plant growth-promoting rhizobacteria (PGPR) mediate heavy metal tolerance and improve phytoextraction potential in plants. The present research was conducted to find the potential of bacterial strains in improving the growth and phytoextraction abilities of Brassica nigra (L.) K. Koch. in chromium contaminated soil. In this study, a total of 15 bacterial strains were isolated from heavy metal polluted soil and were screened for their heavy metal tolerance and plant growth promotion potential. The most efficient strain was identified by 16S rRNA gene sequencing and was identified as Bacillus cereus. The isolate also showed the potential to solubilize phosphate and synthesize siderophore, phytohormones (indole acetic acid, cytokinin, and abscisic acid), and osmolyte (proline and sugar) in chromium (Cr+3) supplemented medium. The results of the present study showed that chromium stress has negative effects on seed germination and plant growth in B. nigra while inoculation of B. cereus improved plant growth and reduced chromium toxicity. The increase in seed germination percentage, shoot length, and root length was 28.07%, 35.86%, 19.11% while the fresh and dry biomass of the plant increased by 48.00% and 62.16%, respectively, as compared to the uninoculated/control plants. The photosynthetic pigments were also improved by bacterial inoculation as compared to untreated stress-exposed plants, i.e., increase in chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoid was d 25.94%, 10.65%, 20.35%, and 44.30%, respectively. Bacterial inoculation also resulted in osmotic adjustment (proline 8.76% and sugar 28.71%) and maintained the membrane stability (51.39%) which was also indicated by reduced malondialdehyde content (59.53% decrease). The antioxidant enzyme activities were also improved to 35.90% (superoxide dismutase), 59.61% (peroxide), and 33.33% (catalase) in inoculated stress-exposed plants as compared to the control plants. B. cereus inoculation also improved the uptake, bioaccumulation, and translocation of Cr in the plant. Data showed that B. cereus also increased Cr content in the root (2.71-fold) and shoot (4.01-fold), its bioaccumulation (2.71-fold in root and 4.03-fold in the shoot) and translocation (40%) was also high in B. nigra. The data revealed that B. cereus is a multifarious PGPR that efficiently tolerates heavy metal ions (Cr+3) and it can be used to enhance the growth and phytoextraction potential of B. nigra in heavy metal contaminated soil.
    Matched MeSH terms: Soil Microbiology
  14. Akita H, Kimura ZI, Yusoff MZM, Nakashima N, Hoshino T
    BMC Res Notes, 2017 Jul 06;10(1):249.
    PMID: 28683814 DOI: 10.1186/s13104-017-2565-1
    OBJECTIVE: A lignin-degrading bacterium, Burkholderia sp. CCA53, was previously isolated from leaf soil. The purpose of this study was to determine phenotypic and biochemical features of Burkholderia sp. CCA53.

    RESULTS: Multilocus sequence typing (MLST) analysis based on fragments of the atpD, gltD, gyrB, lepA, recA and trpB gene sequences was performed to identify Burkholderia sp. CCA53. The MLST analysis revealed that Burkholderia sp. CCA53 was tightly clustered with B. multivorans ATCC BAA-247T. The quinone and cellular fatty acid profiles, carbon source utilization, growth temperature and pH were consistent with the characteristics of B. multivorans species. Burkholderia sp. CCA53 was therefore identified as B. multivorans CCA53.

    Matched MeSH terms: Soil Microbiology*
  15. Al-Mekhlafi MS, Atiya AS, Lim YA, Mahdy AK, Ariffin WA, Abdullah HC, et al.
    PMID: 18613540
    Despite great development in socioeconomic status throughout 50 years of independence, Malaysia is still plagued with soil-transmitted helminthiases (STH). STH continue to have a significant impact on public health particularly in rural communities. In order to determine the prevalence of STH among rural Orang Asli children and to investigate the possible risk factors affecting the pattern of this prevalence, fecal samples were collected from 292 Orang Asli primary schoolchildren (145 males and 147 females) age 7-12 years, from Pos Betau, Kuala Lipis, Pahang. The samples were examined by Kato-Katz and Harada Mori techniques. Socioeconomic data were collected using pre-tested questionnaires. The overall prevalence of ascariasis, trichuriasis, and hookworm infections were 67.8, 95.5 and 13.4%, respectively. Twenty-nine point eight percent of the children had heavy trichuriasis, while 22.3% had heavy ascariasis. Sixty-seven point seven percent of the children had mixed infections. Age > 10 years (p = 0.016), no toilet in the house (p = 0.012), working mother (p = 0.040), low household income (p = 0.033), and large family size (p = 0.028) were identified as risk factors for ascariasis. Logistic regression confirmed low income, no toilet in the house and working mother as significant risk factors for ascariasis. The prevalence of STH is still very high in rural Malaysian communities. STH may also contribute to other health problems such as micronutrient deficiencies, protein-energy malnutrition and poor educational achievement. Public health personnel need to reassess current control measures and identify innovative and integrated ways in order to reduce STH significantly in rural communities.
    Matched MeSH terms: Soil Microbiology*
  16. Alexander AD, Evans LB, Baker MF, Baker HJ, Ellison D, Marriapan M
    Appl Microbiol, 1975 Jan;29(1):30-3.
    PMID: 1110490
    Pathogenic leptospiras (1,424) isolated from natural waters and wet soils in Malaysia comprised 29 different serovars (synonym serotypes). All except two of the serovars had been found previously in Malaysia. The exceptional serovars were werrasingha, an Autumnalis serogroup member originally isolated in Ceylon, and a new serovar designated evansi. Serovar evansi had serological affinities with serovar ranarum which was isolated from the kidney of a frog in Iowa. The large variety of serovars found in jungle areas was consistent with similar previous findings of diverse serovar infections in troops who had operated in Malaysian jungles.
    Matched MeSH terms: Soil Microbiology
  17. Ali MS, Ganasen M, Rahman RN, Chor AL, Salleh AB, Basri M
    Protein J, 2013 Apr;32(4):317-25.
    PMID: 23645400 DOI: 10.1007/s10930-013-9488-z
    A new strain of psychrophilic bacteria (designated strain AMS8) from Antarctic soil was screened for extracellular lipolytic activity and further analyzed using molecular approach. Analysis of 16S rDNA showed that strain AMS8 was similar to Pseudomonas sp. A lipase gene named lipAMS8 was successfully isolated from strain AMS8, cloned, sequenced and overexpressed in Escherichia coli. Sequence analysis revealed that lipAMS8 consist of 1,431 bp nucleotides that encoded a polypeptide consisting of 476 amino acids. It lacked an N-terminal signal peptide and contained a glycine- and aspartate-rich nonapeptide sequence at the C-terminus, which are known to be the characteristics of repeats-in-toxin bacterial lipases. Furthermore, the substrate binding site of lipAMS8 was identified as S(207), D(255) and H(313), based on homology modeling and multiple sequence alignment. Crude lipase exhibited maximum activity at 20 °C and retained almost 50 % of its activity at 10 °C. The molecular weight of lipAMS8 was estimated to be 50 kDa via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal expression level was attained using the recombinant plasmid pET32b/BL21(DE3) expressed at 15 °C for 8 h, induced by 0.1 mM isopropyl β-D thiogalactoside (IPTG) at E. coli growth optimal density of 0.5.
    Matched MeSH terms: Soil Microbiology
  18. An J, Nam J, Kim B, Lee HS, Kim BH, Chang IS
    Bioresour Technol, 2015 Aug;190:175-81.
    PMID: 25941759 DOI: 10.1016/j.biortech.2015.04.071
    The effect of two different anode-embedding orientations, lengthwise- and widthwise-embedded anodes was explored, on the performance of sediment microbial fuel cells (SMFCs) using a chessboard anode. The maximum current densities and power densities in SMFCs having lengthwise-embedded anodes (SLA1-SLA10) varied from 38.2mA/m(2) to 121mA/m(2) and from 5.5mW/m(2) to 20mW/m(2). In comparison, the maximum current densities and maximum power densities in SMFCs having anodes widthwise-embedded between 0cm to 8cm (SWA2-SWA5) increased from 82mA/m(2) to 140mA/m(2) and from 14.7mW/m(2) to 31.1mW/m(2) as the anode depth became deeper. Although there was a difference in the performance among SWA5-SWA10, it was considered negligible. Hence, it is concluded that it is important to embed anodes widthwise at the specific anode depths, in order to improve of SMFC performance. Chessboard anode used in this work could be a good option for the determination of optimal anode depths.
    Matched MeSH terms: Soil Microbiology*
  19. Anyika C, Abdul Majid Z, Ibrahim Z, Zakaria MP, Yahya A
    Environ Sci Pollut Res Int, 2015 Mar;22(5):3314-41.
    PMID: 25345923 DOI: 10.1007/s11356-014-3719-5
    Amending polycyclic aromatic hydrocarbon (PAH)-contaminated soils with biochar may be cheaper and environmentally friendly than other forms of organic materials. This has led to numerous studies on the use of biochar to either bind or stimulate the microbial degradation of organic compounds in soils. However, very little or no attention have been paid to the fact that biochars can give simultaneous impact on PAH fate processes, such as volatilization, sorption and biodegradation. In this review, we raised and considered the following questions: How does biochar affect microbes and microbial activities in the soil? What are the effects of adding biochar on sorption of PAHs? What are the effects of adding biochar on degradation of PAHs? What are the factors that we can manipulate in the laboratory to enhance the capability of biochars to degrade PAHs? A triphasic concept of how biochar can give simultaneous impact on PAH fate processes in soils was proposed, which involves rapid PAH sorption into biochar, subsequent desorption and modification of soil physicochemical properties by biochar, which in turn stimulates microbial degradation of the desorbed PAHs. It is anticipated that biochar can give simultaneous impact on PAH fate processes in soils.
    Matched MeSH terms: Soil Microbiology
  20. Aqeel M, Ran J, Hu W, Irshad MK, Dong L, Akram MA, et al.
    Chemosphere, 2023 Mar;318:137924.
    PMID: 36682633 DOI: 10.1016/j.chemosphere.2023.137924
    Ecosystem functions directly depend upon biophysical as well as biogeochemical reactions occurring at the soil-microbe-plant interface. Environment is considered as a major driver of any ecosystem and for the distributions of living organisms. Any changes in climate may potentially alter the composition of communities i.e., plants, soil microbes and the interactions between them. Since the impacts of global climate change are not short-term, it is indispensable to appraise its effects on different life forms including soil-microbe-plant interactions. This article highlights the crucial role that microbial communities play in interacting with plants under environmental disturbances, especially thermal and water stress. We reviewed that in response to the environmental changes, actions and reactions of plants and microbes vary markedly within an ecosystem. Changes in environment and climate like warming, CO2 elevation, and moisture deficiency impact plant and microbial performance, their diversity and ultimately community structure. Plant and soil feedbacks also affect interacting species and modify community composition. The interactive relationship between plants and soil microbes is critically important for structuring terrestrial ecosystems. The anticipated climate change is aggravating the living conditions for soil microbes and plants. The environmental insecurity and complications are not short-term and limited to any particular type of organism. We have appraised effects of climate change on the soil inhabiting microbes and plants in a broader prospect. This article highlights the unique qualities of tripartite interaction between plant-soil-microbe under climate change.
    Matched MeSH terms: Soil Microbiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links