Displaying publications 1 - 20 of 590 in total

Abstract:
Sort:
  1. Anisuzzaman, S.M., Krishnaiah, D., Bono, A., Lahin, F.A., Suali, E., Zuyyin, I.A.Z.
    MyJurnal
    In this study, simulation and optimisation of the purification of bioethanol from an azeotropic mixture was done using the Aspen HYSYS and the Response Surface Methodology (RSM), respectively, to achieve an acceptable bioethanol content with minimal energy use. The objective of this study is to develop the simulation process of bioethanol production from a fermentation effluent. Additionally, the effects of parameters such as solvent temperature, number of entrainer feed stage, mass flow rate and third components of the process for production of bioethanol were studied. As bioethanol is a product of biofuel production, the main challenge facing bioethanol production is the separation of high purity ethanol. However, the separation of ethanol and water can be achieved with the addition of a suitable solvent such as 1,3-butylene glycol (13C4Diol), mixture 13C4Diol and ethylene glycol (EGlycol) and mixture 13C4Diol and glycol ethyl ether (DEG) in the extractive distillation process. For the 13C4Diol mixture, the temperature of entrainer is 90oC with 1500 kg/hr of entrainer rate, while the number of entrainer feed stage is one. The optimum conditions for mixture 13C4Diol and EGlycol require a temperature of entrainer of 90.77oC with an entrainer rate of 1500 kg/hr, while the number of entrainer feed stage is one. Lastly, for optimum conditions for the mixture 13C4Diol and DEG, the temperature of entrainer should be 90oC with an entrainer rate of 1564.04 kg/hr, while the number of entrainer feed stage is one. This study shows that process simulation and optimisation can enhance the removal of water from an azeotropic mixture.
    Matched MeSH terms: Solvents
  2. Rehman K, Zulfakar MH
    Drug Dev Ind Pharm, 2014 Apr;40(4):433-40.
    PMID: 23937582 DOI: 10.3109/03639045.2013.828219
    Transdermal drug delivery systems are a constant source of interest because of the benefits that they afford in overcoming many drawbacks associated with other modes of drug delivery (i.e. oral, intravenous). Because of the impermeable nature of the skin, designing a suitable drug delivery vehicle that penetrates the skin barrier is challenging. Gels are semisolid formulations, which have an external solvent phase, may be hydrophobic or hydrophilic in nature, and are immobilized within the spaces of a three-dimensional network structure. Gels have a broad range of applications in food, cosmetics, biotechnology, pharmatechnology, etc. Typically, gels can be distinguished according to the nature of the liquid phase, for example, organogels (oleogels) contain an organic solvent, and hydrogels contain water. Recent studies have reported other types of gels for dermal drug application, such as proniosomal gels, emulgels, bigels and aerogels. This review aims to introduce the latest trends in transdermal drug delivery via traditional hydrogels and organogels and to provide insight into the latest gel types (proniosomal gels, emulgels, bigels and aerogels) as well as recent technologies for topical and transdermal drug delivery.
    Matched MeSH terms: Solvents/chemistry
  3. Rizwan M, Yahya R, Hassan A, Yar M, Abd Halim AA, Rageh Al-Maleki A, et al.
    J Mater Sci Mater Med, 2019 Jun 11;30(6):72.
    PMID: 31187295 DOI: 10.1007/s10856-019-6273-3
    The success of wound healing depends upon the proper growth of vascular system in time in the damaged tissues. Poor blood supply to wounded tissues or tissue engineered grafts leads to the failure of wound healing or rejection of grafts. In present paper, we report the synthesis of novel organosoluble and pro-angiogenic chitosan derivative (CSD) by the reaction of chitosan with 1,3-dimethylbarbituric acid and triethylorthoformate (TEOF). The synthesized material was characterized by FTIR and 13C-NMR to confirm the incorporated functional groups and new covalent connectivities. Biodegradability of the synthesized chitosan derivative was tested in the presence of lysozyme and was found to be comparable with CS. The cytotoxicity and apoptosis effect of new derivative was determined against gastric adenocarcinoma (AGS) cells and was found to be non-toxic. The CSD was found to be soluble in majority of organic solvents. It was blended with polycaprolactone (PCL) to form composite scaffolds. From an ex ovo CAM assay, it was noted that CSD stimulated the angiogenesis.
    Matched MeSH terms: Solvents
  4. Amid M, Manap Y, Zohdi NK
    Molecules, 2014 May 22;19(5):6635-50.
    PMID: 24858097 DOI: 10.3390/molecules19056635
    The purification of thermo-acidic amylase enzyme from red pitaya (Hylocereus polyrhizus) peel for the first time was investigated using a novel aqueous two-phase system (ATPS) consisting of a thermo-separating copolymer and an organic solvent. The effectiveness of different parameters such as molecular weight of the thermo-separating ethylene oxide-propylene oxide (EOPO) copolymer and type and concentration of organic solvent on the partitioning behavior of amylase was investigated. In addition, the effects of phase components, volume ratio (VR), pH and crude load of purification factor and yield of amylase were evaluated to achieve the optimum partition conditions of the enzyme. In the novel ATPS method, the enzyme was satisfactorily partitioned into the polymer-rich top phase in the system composed of 30% (w/w) EOPO 2500 and 15% (w/w) 2-propanol, at a volume ratio of 1.94 and with a crude load scale of 25% (w/w) at pH 5.0. Recovery and recycling of components was also measured in each successive step of the ATPS process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 96.6% and copolymer was also recovered and recycled at a rate above 97%, making the method was more economical than the traditional ATPS method.
    Matched MeSH terms: Solvents
  5. Niu Jy Jy, You Xz Xz, Duan Cy Cy, Fun Hk Hk, Zhou Zy Zy
    Inorg Chem, 1996 Jul 03;35(14):4211-4217.
    PMID: 11666630
    A solvated complex of alpha-H(4)SiW(12)O(40).4HMPA.2H(2)O composed the heteropolytungstate alpha-H(4)SiW(12)O(40) and the organic substrate hexamethylphosphoramide (HMPA) has been synthesised, purified, and characterized. The electronic spectra (lambda = 220-500 nm) as well as the (1)H NMR spectra for the title compound dissolved in CD(3)CN establish that this complex dissociates into free SiW(12)O(40)(4)(-) and HMPA moieties in solution unless the organic substrate HMPA is present in very high concentrations. The solid reflectance electronic spectra and IR spectra indicate that there is interaction between the alpha-H(4)SiW(12)O(40) and the organic substrate. The complex has no photosensitivity under irradiation of sunlight, but under the near-UV light result in a charge transfer by oxidation of the HMPA and the reduction of the polyoxometalate. Light yellow polyhedrons of the title compound crystallize from the aqueous solvent of acetonitrile and aqueous solution as the formula of alpha-H(4)SiW(12)O(40).4HMPA.2H(2)O in the monoclinic, space group P2(1). The unit cell has a = 12.791(3) Å, b = 22.103(6) Å, c = 15.532(4) Å, beta = 102.860(10) degrees, and Z = 2. From the bond-valence parameters, it was found that the four hydrogen atoms of the polyoxometalate were combined with the N atoms of the four HMPA respectively. The title compound shows a certain second-order and third-order nonlinear optical response of I(2)(omega) = 0.7I(2)(omega)(KDP) and chi((3)) = 2.63 x 10(-)(11) esu, respectively.
    Matched MeSH terms: Solvents
  6. Liu J, Xuan D, Chai J, Guo D, Huang Y, Liu S, et al.
    ACS Omega, 2020 May 05;5(17):10011-10020.
    PMID: 32391489 DOI: 10.1021/acsomega.0c00365
    A mild and effective synthesis of resorcinol-furfural (RF) thermosetting resin was proposed with ethanol as a distinctive solvent, which, as a usually neglected factor, was shown to not only help form a homogeneous reaction system but also observably reduce the energy barriers between the early intermediates and transition states in addition reactions by explicit solvent effects, drawn from theoretical calculation conclusions. Besides, the para-additions on aromatic rings were more dominant than ortho-additions with the same reactants, which affected the final link types of monomers verified by Fourier transform infrared spectroscopy and two-dimensional nuclear magnetic resonance tests. The prepared resin can be assigned to a relatively fast gel speed and a high residual mass (65.25%) after pyrolysis in a N2 atmosphere by adjusting the molar ratios of F to R, and the curing of that was a complex reaction, with a curing temperature around 149 °C and an activation energy of about 49.11 kJ mol-1 obtained by the Kissinger method.
    Matched MeSH terms: Solvents
  7. Cui J, Yang Z, Xu Y, Tan CP, Zhang W
    Food Res Int, 2023 Dec;174(Pt 2):113653.
    PMID: 37981374 DOI: 10.1016/j.foodres.2023.113653
    Searching for green and ecofriendly solvents to replace classical solvents for industrial scale extraction of coconut oil is of great interest. To explore these possibilities, this study performed comprehensive comparative analyses of lipid profiles and phytosterol compositions in coconut oils obtained by extraction with n-hexane, absolute ethyl alcohol, deep eutectic solvent/n-hexane, dimethyl carbonate (DME) and cyclopentyl methyl ether (CPME) using a foodomics approach. Results indicated that CPME (64.23 g/100 g dry matter) and DME (65.64 g/100 g dry matter) showed comparable capacity for total lipid extraction of total lipids to classical solvents (63.5-65.66 g/100 g dry matter). Considering the phytosterol yield, CPME (644.26 mg/kg) exhibited higher selectivity than other solvents (535.64-622.13 mg/kg). No significant difference was observed in the fatty acid composition of coconut oil by the different solvents assayed. Additionally, total 468 lipid molecules were identified in the samples. For glycerolipid and sphingolipid, the five solvents showed comparable extraction capabilities. However, CPME exhibited higher extraction efficiency of polar lipids (glycerophospholipid and saccharolipid) than other solvents. Overall, these results may be a useful guide for the application of green solvents in industrial production of coconut oil.
    Matched MeSH terms: Solvents
  8. Wang D, Zhang M, Law CL, Zhang L
    Food Chem, 2024 Jan 01;430:136990.
    PMID: 37536067 DOI: 10.1016/j.foodchem.2023.136990
    Using natural deep eutectic solvents (NDES) for green extraction of lentinan from shiitake mushroom is a high-efficiency method. However, empirical and trial-and-error methods commonly used to select suitable NDES are unconvincing and time-consuming. Conductor-like screening model for realistic solvation (COSMO-RS) is helpful for the priori design of NDES by predicting the solubility of biomolecules. In this study, 372 NDES were used to evaluate lentinan dissolution capability via COSMO-RS. The results showed that the solvent formed by carnitine (15 wt%), urea (40.8 wt%), and water (44.2 wt%) exhibited the best performance for the extraction of lentinan. In the extraction stage, an artificial neural network coupled with genetic algorithm (ANN-GA) was developed to optimize the extraction conditions and to analyze their interaction effects on lentinan content. Therefore, COSMO-RS and ANN-GA can be used as powerful tools for solvent screening and extraction process optimization, which can be extended to various bioactive substance extraction.
    Matched MeSH terms: Solvents
  9. Mat Zawawi NZ, Shaari R, Luqman Nordin M, Hayati Hamdan R, Peng TL, Zalati CWSCW
    Vet World, 2020 Mar;13(3):508-514.
    PMID: 32367957 DOI: 10.14202/vetworld.2020.508-514
    Background and Aim: Channa striatus extract, a freshwater snakehead fish known as Haruan, is popular in Southeast Asia for consumption and as a traditional therapeutic remedy for wound healing. C. striatus is also used in osteoarthritic for its anti-inflammatory. The aim of this study was to determine the presence of antibacterial properties of C. striatus extract against oral bacteria and to investigate the cytotoxic activity against Vero cells.

    Materials and Methods: The authors prepared C. striatus extract in chloroform-methanol solvents. Next, the authors took subgingival microbiological samples from 16 cats that had periodontal disease. The authors determined the antibacterial properties of C. striatus extract against the isolated bacteria using the disk diffusion method and a broth microdilution-based resazurin microtiter assay. Finally, the authors used the Vero cell line to evaluate the cytotoxic activity, and they assessed the cell availability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.

    Results: The results showed weak antibacterial activity of C. striatus extract against Pseudomonas spp. and Escherichia coli. In addition, the authors found that minimum inhibition concentration values ranged between 400 and 500 mg/mL, and minimum bactericidal concentration values ranged between 650 and 550 mg/mL. However, the cytotoxic results were promising, showing that C. striatus extract increased the cell viability and growth when it was at a higher concentration. The extract also promotes growth and cell proliferation.

    Conclusion: These findings suggest that C. striatus extract promoted cell proliferation in vitro and could be a plausible therapeutic wound healing alternative for periodontal disease in cats.

    Matched MeSH terms: Solvents
  10. Balan T, Sani MH, Mumtaz Ahmad SH, Suppaiah V, Mohtarrudin N, Zakaria ZA
    J Ethnopharmacol, 2015 Apr 22;164:1-15.
    PMID: 25540923 DOI: 10.1016/j.jep.2014.12.017
    In traditional medicine, the leaves, flowers, barks and roots of Muntingia calabura L. (Muntingiaceae) have been employed as a treatment for various ailments including dyspepsia and to relieve pain caused by gastritis and peptic ulcer disease. The methanolic extract of Muntingia calabura leaves (MEMC) has been proven in the previous study to possess significant antiulcer activity. In this study, we attempted to determine the prophylactic effect of the fractions obtained from MEMC against ethanol-induced gastric lesion in rats and the involvement of antioxidants and anti-inflammatory mediators.
    Matched MeSH terms: Solvents/chemistry
  11. Nasir NLM, Kamsani NE, Mohtarrudin N, Tohid SFM, Zakaria ZA
    Pak J Pharm Sci, 2020 Sep;33(5):2009-2016.
    PMID: 33824108
    Muntingia calabura (M. calabura), locally known as "kerukup siam" or "buah ceri" belongs to the family Muntingiaceae and has been scientifically demonstrated to exert various pharmacological activities. The objectives of the current study are to evaluate the antioxidant activities and to determine the subchronic toxicity of 90 days orally-administered methanol extract of M. calabura (MEMC) in male Sprague Dawley rats. The rats were randomly divided into four groups (n=6). Vehicle control received 8% tween 80 and treatment group received 50, 250 and 500 mg/kg of MEMC orally administered daily for 90 days. Blood collection was carried out to obtain the hematological and biochemical profile of the rats. The organs harvested were subjected to histopathological analysis. For the antioxidant test, the extract was subjected to antioxidant study using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH)- and superoxide anion-radical scavenging activity, total phenolic content (TPC) and phytochemical screening. Results obtained show that no adverse effects were observed during the experimental period. Hematological and biochemical analysis also showed no significant changes in this toxicity study. Besides, antioxidant analyses revealed that MEMC has higher DPPH- and SOD-radical scavenges activity as well as higher TPC value. In conclusion, M. calabura is safe for consumption and possesses beneficial antioxidant effect.
    Matched MeSH terms: Solvents/chemistry
  12. Ramasamy S, Abdul Wahab N, Zainal Abidin N, Manickam S, Zakaria Z
    PLoS One, 2012;7(4):e34793.
    PMID: 22536331 DOI: 10.1371/journal.pone.0034793
    Phyllanthus watsonii Airy Shaw is an endemic plant found in Peninsular Malaysia. Although there are numerous reports on the anti cancer properties of other Phyllanthus species, published information on the cytotoxicity of P. watsonii are very limited. The present study was carried out with bioassay-guided fractionation approach to evaluate the cytotoxicity and apoptosis induction capability of the P. watsonii extracts and fractions on human gynecologic (SKOV-3 and Ca Ski) and colon (HT-29) cancer cells. P. watsonii extracts exhibited strong cytotoxicity on all the cancer cells studied with IC(50) values of ≤ 20.0 µg/mL. Hexane extract of P. watsonii was further subjected to bioassay-guided fractionation and yielded 10 fractions (PW-1→PW-10). PW-4→PW-8 portrayed stronger cytotoxic activity and was further subjected to bioassay-guided fractionation and resulted with 8 sub-fractions (PPWH-1→PPWH-8). PPWH-7 possessed greatest cytotoxicity (IC(50) values ranged from 0.66-0.83 µg/mL) and was selective on the cancer cells studied. LC-MS/MS analysis of PPWH-7 revealed the presence of ellagic acid, geranic acid, glochidone, betulin, phyllanthin and sterol glucoside. Marked morphological changes, ladder-like appearance of DNA and increment in caspase-3 activity indicating apoptosis were clearly observed in both human gynecologic and colon cancer cells treated with P. watsonii especially with PPWH-7. The study also indicated that P. watsonii extracts arrested cell cycle at different growth phases in SKOV-3, Ca Ski and HT-29 cells. Cytotoxic and apoptotic potential of the endemic P. watsonii was investigated for the first time by bioassay-guided approach. These results demonstrated that P. watsonii selectively inhibits the growth of SKOV-3, Ca Ski and HT-29 cells through apoptosis induction and cell cycle modulation. Hence, P. watsonii has the potential to be further exploited for the discovery and development of new anti cancer drugs.
    Matched MeSH terms: Solvents/chemistry
  13. Farah Anis Jasni, Kuan, Yew Cheong, Lockman, Zainovia, Zainuriah Hassan
    MyJurnal
    Thin films of cerium oxide (CeO2) were prepared on silicon (Si) substrate by metal organic decomposition route. 0.25 M of cerium (III) acetylacetonate (acac) was used as starting materials with the addition of methanol and acetic acid as solvents. Oxide conversion of the film by thermal treatment was conducted at temperature ranging from 400 o C to 1000 o C for 15 min in argon ambient. X-ray diffraction (XRD) analysis utilizing Cukα radiation (Model Brukker’s Diffrac Plus ), Filmetrics system measurement, field emission scanning electron microscope (FE-SEM) (Model Zeiss Supra 35VP FE-SEM) and atomic force microscopy (AFM) (Model SII Nanonavi) were employed to characterize the phase formed and morphologies of the film produced.
    Matched MeSH terms: Solvents
  14. Md Yusof AH, Abd Gani SS, Zaidan UH, Halmi MIE, Zainudin BH
    Molecules, 2019 Feb 16;24(4).
    PMID: 30781448 DOI: 10.3390/molecules24040711
    This study investigates the ultrasound-assisted extraction of flavonoids from Malaysian cocoa shell extracts, and optimization using response surface methodology. There are three variables involved in this study, namely: ethanol concentration (70⁻90 v/v %), temperature (45⁻65 °C), and ultrasound irradiation time (30⁻60 min). All of the data were collected and analyzed for variance (ANOVA). The coefficient of determination (R²) and the model was significant in interaction between all variables (98% and p < 0.0001, respectively). In addition, the lack of fit test for the model was not of significance, with p > 0.0684. The ethanol concentration, temperature, and ultrasound irradiation time that yielded the maximum value of the total flavonoid content (TFC; 7.47 mg RE/g dried weight (DW)) was 80%, 55 °C, and 45 min, respectively. The optimum value from the validation of the experimental TFC was 7.23 ± 0.15 mg of rutin, equivalent per gram of extract with ethanol concentration, temperature, and ultrasound irradiation time values of 74.20%, 49.99 °C, and 42.82 min, respectively. While the modelled equation fits the data, the T-test is not significant, suggesting that the experimental values agree with those predicted by the response surface methodology models.
    Matched MeSH terms: Solvents
  15. Jahurul MHA, Shian OK, Sharifudin MS, Hasmadi M, Lee JS, Mansoor AH, et al.
    J Food Sci Technol, 2021 Mar;58(3):902-910.
    PMID: 33678873 DOI: 10.1007/s13197-020-04604-1
    The objective of this study was to optimize the extraction of oil from pre-dried roselle seeds using response surface methodology (RSM). We also determined the oxidative stability of oil extracted from oven and freeze-dried roselle seed in terms of iodine value (IV), free fatty acid (FFA) value, peroxide value (PV), P-anisidine and total oxidation values (TOTOX value). The RSM was designated based on the central composite design with the usage of three optimum parameters ranged from 8 to 16 g of sample weight, 250-350 mL of solvent volume, and 6-8 h of extraction time. The highest oil yielded from roselle seed using the optimization process was 22.11% with the parameters at sample weight of 14.4 g, solvent volume of 329.70 mL, and extraction time of 7.6 h. Besides, the oil extracted from the oven dried roselle seed had the values of 89.04, 2.11, 4.13, 3.76 and 12.03 for IV, FFA, PV, P-anisidine, and TOTOX values, respectively. While for the oil extracted from freeze-dried roselle seed showed IV of 90.31, FFA of 1.64, PV of 2.47, P-anisidine value of 3.48, and TOTOX value of 8.42. PV and TOTOX values showed significant differences whereas; IV, FFA, and P-anisidine values showed no significant differences between the oven and freeze-dried roselle seed oils.
    Matched MeSH terms: Solvents
  16. Amran B. Ab. Majid, Mohd Zahari Abdullah, Zaharuddin Ahmad
    The determination technique for U (238U, 235U, 234U) and Th (232Th, 230Th, 228Th) isotopes using alpha spectrometry was developed. The developed technique involved digestion, dissolution, coprecipitation, solvent extraction and electrodeposition methods. The NBS River Sediment and Rocky Flats Soil Standard Reference Materials were analysed to determine the accuracy of the technique. A good accuracy and high percentage recovery of the carrier (70 - 90%) indicated that the developed technique was suitable for U and Th isotopes determination. The technique was used to determine the U and Th concentration in monazite, xenotime and zircon samples. The results showed that the U and Th total concentrations were in the range of 21.03 to 171.25 Bq/g and 27.48 to 242.87 Bq/g respectively.
    Kaedah penguraian, pemelarutan, pemendakan bersama, ekstraksi pelarut dan pemendapan elektrik telah dikaji dan digunakan untuk mendapatkan suatu teknik yang terbaik dalam penentuan isotop uranium 234U, 235U & 238U) dan torium 228Th, 230Th & 232Th) menggunakan sistem spektrometri alfa. Kepekatan isotop U dan Th dalam bahan rujukan piawai River Sediment dan Rocky Flats Soil (NBS) telah dianalisis untuk menentukan kejituan teknik yang dibangunkan. Kajian ini mendapati kepekatan isotop yang diperolehi adalah menghampiri nilai teraku (sijil) dan peratus perolehan semula pembawa yang besar (70-90%). Ini menunjukkan teknik yang dibangunkan sesuai digunakan untuk penentuan isotop uranium dan torium. Seterusnya teknik yang dibangunkan telah digunakan untuk menentukan kandungan uranium dan torium dalam sampel monazit, xenotim dan zirkon tempatan. Kepekatan jumlah isotop uranium yang diperolehi didapati berada dalam julat 21.03 - 171.25 Bq/g manakala kepekatan jumlah isotop torium pula terletak antara 27.48 - 242.87 Bq/g.
    Matched MeSH terms: Solvents
  17. Rashid JI, Samat N, Yusoff WM
    Pak J Biol Sci, 2013 Sep 15;16(18):933-8.
    PMID: 24502150
    Microbial mannanases have become biotechnologically important in industry but their application is limited due to high production cost. In presents study, the extraction of mannanase from fermented Palm Kernel Cake (PKC) in the Solid State Fermentation (SSF) was optimized. Local isolate of Aspergillus terreus SUK-1 was grown on PKC in (SSF) using column bioreactor. The optimum condition were achieved after two washes of fermented PKC by adding of 10% glycerol (v/v) soaked for 10 h at the room temperature with solvent to ratio, 1:5 (w/v).
    Matched MeSH terms: Solvents/chemistry
  18. Hamsawahini K, Sathishkumar P, Ahamad R, Yusoff AR
    Talanta, 2016 Feb 1;148:101-7.
    PMID: 26653429 DOI: 10.1016/j.talanta.2015.10.044
    An effective electrode was developed based on electromembrane extraction (EME) and square wave voltammetry (SWV) for simultaneous separation, pre-concentration and determination of lead (II) (Pb(II)) ions in complex aqueous samples. Electrochemically reduced graphene oxide-graphite reinforced carbon (ErGO-GRC) was utilized in conjunction with the SWV. Pb(II) ions were extracted from an aqueous sample solution into an acidic acceptor phase (1M HCl) in the lumen of the polyvinylidene fluoride (PVDF) membrane bag by the application of voltage of maximum 6 V across the supported liquid membrane (SLM), consisting of organic solvent and di-(2-ethylhexyl)phosphoric acid (D2EHPA). The parameters affecting the EME were optimized for Pb(II) ions. The optimum EME conditions were found to be 20% D2EHPA in 1-octanol impregnated in the wall of PVDF membrane (PVDF17) as the SLM, extraction time of 20 min, pH of sample solution of 8 and a voltage of 5 V. The PVDF-ErGO-GRC electrode system attained enrichment factors of 40 times and 80% of extraction with relative standard deviations (n=5) of 8.3%. Good linearity ranging from 0.25 to 2 nM with coefficients correlation of 0.999 was obtained. The Pb(II) ions detection limit of PVDF-ErGO-GRC electrode was found to be 0.09 nM. The newly developed single setup electrochemical system was applied to complex aqueous samples such as tap, river and sea water to evaluate the feasibility of the method for applications.
    Matched MeSH terms: Solvents
  19. Kalani M, Yunus R
    Int J Nanomedicine, 2012;7:2165-72.
    PMID: 22619552 DOI: 10.2147/IJN.S29805
    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks.
    Matched MeSH terms: Solvents
  20. Kalani M, Yunus R
    Int J Nanomedicine, 2011;6:1429-42.
    PMID: 21796245 DOI: 10.2147/IJN.S19021
    The review focuses on the application of supercritical fluids as antisolvents in the pharmaceutical field and demonstrates the supercritical antisolvent method in the use of drug encapsulation. The main factors for choosing the solvent and biodegradable polymer to produce fine particles to ensure effective drug delivery are emphasized and the effect of polymer structure on drug encapsulation is illustrated. The review also demonstrates the drug release mechanism and polymeric controlled release system, and discusses the effects of the various conditions in the process, such as pressure, temperature, concentration, chemical compositions (organic solvents, drug, and biodegradable polymer), nozzle geometry, CO(2) flow rate, and the liquid phase flow rate on particle size and its distribution.
    Matched MeSH terms: Solvents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links