Displaying publications 1 - 20 of 73 in total

Abstract:
Sort:
  1. Abdelatti ZAS, Hartbauer M
    Hear Res, 2017 11;355:70-80.
    PMID: 28974384 DOI: 10.1016/j.heares.2017.09.011
    In forest clearings of the Malaysian rainforest, chirping and trilling Mecopoda species often live in sympatry. We investigated whether a phenomenon known as stochastic resonance (SR) improved the ability of individuals to detect a low-frequent signal component typical of chirps when members of the heterospecific trilling species were simultaneously active. This phenomenon may explain the fact that the chirping species upholds entrainment to the conspecific song in the presence of the trill. Therefore, we evaluated the response probability of an ascending auditory neuron (TN-1) in individuals of the chirping Mecopoda species to triple-pulsed 2, 8 and 20 kHz signals that were broadcast 1 dB below the hearing threshold while increasing the intensity of either white noise or a typical triller song. Our results demonstrate the existence of SR over a rather broad range of signal-to-noise ratios (SNRs) of input signals when periodic 2 kHz and 20 kHz signals were presented at the same time as white noise. Using the chirp-specific 2 kHz signal as a stimulus, the maximum TN-1 response probability frequently exceeded the 50% threshold if the trill was broadcast simultaneously. Playback of an 8 kHz signal, a common frequency band component of the trill, yielded a similar result. Nevertheless, using the trill as a masker, the signal-related TN-1 spiking probability was rather variable. The variability on an individual level resulted from correlations between the phase relationship of the signal and syllables of the trill. For the first time, these results demonstrate the existence of SR in acoustically-communicating insects and suggest that the calling song of heterospecifics may facilitate the detection of a subthreshold signal component in certain situations. The results of the simulation of sound propagation in a computer model suggest a wide range of sender-receiver distances in which the triller can help to improve the detection of subthreshold signals in the chirping species.
    Matched MeSH terms: Sound Spectrography
  2. Ahmad Syazrin Muhamad
    MyJurnal
    Sound is one of the source of energy generated by vibration and is carried through the air in a form of pressure waves (Frederick, 1975). This pressure waves consist of pulsation or vibration of molecules of an elastic medium such as gas, liquid and even solid (Gerber, 1974). Due to its nature, sound can be irritating when it is excessive. The excessive amount of sound is called noise. Exposure to noise is common to the workers working at the industry. This can lead to hearing loss. Hearing loss is one of the most common health problems in the industrialized world. Working activities have been related to noise exposure due to increase use of machine that generates sounds. Many workers throughout the world experience hazardous noise exposure which is ≥ 85 decibels (dB) (Seter, 1998). Based on the previous study in the European region, most of the employers had difficulties to compensate workers diagnosed with hearing loss or hearing impairment cause by the working nature. (Rachiotis et al., 2006). According to European Survey on Working Conditions, about 7% of the workers considered that their work affects their health in the form of hearing disorders. Occupational risk factors for hearing loss include occupational noise, whole body vibration, work-related diseases and exposure to chemical. In this report, we specified in the noise exposure level of the workers.
    Matched MeSH terms: Sound
  3. Ahmed Ii JB, Pradhan B, Mansor S, Yusoff ZM, Ekpo SA
    Sensors (Basel), 2019 May 07;19(9).
    PMID: 31067734 DOI: 10.3390/s19092107
    In some parts of tropical Africa, termite mound locations are traditionally used to site groundwater structures mainly in the form of hand-dug wells with high success rates. However, the scientific rationale behind the use of mounds as prospective sites for locating groundwater structures has not been thoroughly investigated. In this paper, locations and structural features of termite mounds were mapped with the aim of determining the aquifer potential beneath termite mounds and comparing the same with adjacent areas, 10 m away. Soil and species sampling, field surveys and laboratory analyses to obtain data on physical, hydraulic and geo-electrical parameters from termite mounds and adjacent control areas followed. The physical and hydraulic measurements demonstrated relatively higher infiltration rates and lower soil water content on mound soils compared with the surrounding areas. To assess the aquifer potential, vertical electrical soundings were conducted on 28 termite mounds sites and adjacent control areas. Three (3) important parameters were assessed to compute potential weights for each Vertical Electrical Sounding (VES) point: Depth to bedrock, aquifer layer resistivity and fresh/fractured bedrock resistivity. These weights were then compared between those of termite mound sites and those from control areas. The result revealed that about 43% of mound sites have greater aquifer potential compared to the surrounding areas, whereas 28.5% of mounds have equal and lower potentials compared with the surrounding areas. The study concludes that termite mounds locations are suitable spots for groundwater prospecting owing to the deeper regolith layer beneath them which suggests that termites either have the ability to locate places with a deeper weathering horizon or are themselves agents of biological weathering. Further studies to check how representative our study area is of other areas with similar termite activities are recommended.
    Matched MeSH terms: Sound
  4. Alhawari ARH, Majeed SF, Saeidi T, Mumtaz S, Alghamdi H, Hindi AT, et al.
    Micromachines (Basel), 2021 Apr 07;12(4).
    PMID: 33917167 DOI: 10.3390/mi12040411
    The increasing needs of free licensed frequency bands like Industrial, Scientific, and Medical (ISM), Wireless Local Area Network (WLAN), and 5G for underwater communications required more bandwidth (BW) with higher data transferring rate. Microwaves produce a higher transferring rate of data, and their associated devices are smaller in comparison with sonar and ultrasonic. Thus, transceivers should have broad BW to cover more of a frequency band, especially from ultra-wideband (UWB) systems, which show potential outcomes. However, previous designs of similar work for underwater communications were very complicated, uneasy to fabricate, and large. Therefore, to overcome these shortcomings, a novel compact elliptical UWB antenna is designed to resonate from 1.3 to 7.2 GHz. It is invented from a polytetrafluoroethylene (PTFE) layer with a dielectric constant of 2.55 mm and a thickness of 0.8 mm. The proposed antenna shows higher gain and radiation efficiency and stability throughout the working band when compared to recent similarly reported designs, even at a smaller size. The characteristics of the functioning antenna are investigated through fluid mediums of fresh-water, seawater, distilled water, and Debye model water. Later, its channel capacity, bit rate error, and data rate are evaluated. The results demonstrated that the antenna offers compact, easier fabrication with better UWB characteristics for underwater 5G communications.
    Matched MeSH terms: Sound
  5. Ali SA, Begum T, Reza MF, Fadzil NA, Mustafar F
    Malays J Med Sci, 2020 Jul;27(4):130-138.
    PMID: 32863752 DOI: 10.21315/mjms2020.27.4.12
    Background: Research on audiovisual post-attentive integration has been carried out using a variety of experimental paradigms and experimental groups but not yet studied in dyslexia. We investigated post-attentive integration and topographic voltage distribution in children with dyslexia by analysing the P300 event-related potential (ERP) component.

    Methods: We used a 128-child ERP net for the ERP experiment. Two types of stimuli were presented as either congruent or incongruent stimuli. Congruent stimuli included a matching auditory sound with an animal image, whereas incongruent stimuli included unmatched animal sounds. A total of 24 age-matched children were recruited in the control (n = 12) and dyslexia (n = 12) groups. Children pressed button '1' or '2' when presented with congruent or incongruent stimuli, respectively. The P300 amplitudes and latencies with topographic voltage distribution were analysed for both groups.

    Results: The dyslexia group evoked significantly higher P300 amplitudes at the T4 area than the control group. No significant differences were found in cases of P300 latency. Moreover, the dyslexia group demonstrated a higher intensity of P300 voltage distribution in the right parietal and left occipital areas than the control group.

    Conclusion: Post-attentive integration for children with dyslexia is higher and that this integration process implicated the parietal and occipital areas.

    Matched MeSH terms: Sound
  6. Ali Z, Elamvazuthi I, Alsulaiman M, Muhammad G
    J Voice, 2016 Nov;30(6):757.e7-757.e19.
    PMID: 26522263 DOI: 10.1016/j.jvoice.2015.08.010
    BACKGROUND AND OBJECTIVE: Automatic voice pathology detection using sustained vowels has been widely explored. Because of the stationary nature of the speech waveform, pathology detection with a sustained vowel is a comparatively easier task than that using a running speech. Some disorder detection systems with running speech have also been developed, although most of them are based on a voice activity detection (VAD), that is, itself a challenging task. Pathology detection with running speech needs more investigation, and systems with good accuracy (ACC) are required. Furthermore, pathology classification systems with running speech have not received any attention from the research community. In this article, automatic pathology detection and classification systems are developed using text-dependent running speech without adding a VAD module.

    METHOD: A set of three psychophysics conditions of hearing (critical band spectral estimation, equal loudness hearing curve, and the intensity loudness power law of hearing) is used to estimate the auditory spectrum. The auditory spectrum and all-pole models of the auditory spectrums are computed and analyzed and used in a Gaussian mixture model for an automatic decision.

    RESULTS: In the experiments using the Massachusetts Eye & Ear Infirmary database, an ACC of 99.56% is obtained for pathology detection, and an ACC of 93.33% is obtained for the pathology classification system. The results of the proposed systems outperform the existing running-speech-based systems.

    DISCUSSION: The developed system can effectively be used in voice pathology detection and classification systems, and the proposed features can visually differentiate between normal and pathological samples.

    Matched MeSH terms: Sound Spectrography
  7. Ang KM, Yeo LY, Hung YM, Tan MK
    Lab Chip, 2016 09 21;16(18):3503-14.
    PMID: 27502324 DOI: 10.1039/c6lc00780e
    The deposition of a thin graphene film atop a chip scale piezoelectric substrate on which surface acoustic waves are excited is observed to enhance its performance for fluid transport and manipulation considerably, which can be exploited to achieve further efficiency gains in these devices. Such gains can then enable complete integration and miniaturization for true portability for a variety of microfluidic applications across drug delivery, biosensing and point-of-care diagnostics, among others, where field-use, point-of-collection or point-of-care functionality is desired. In addition to a first demonstration of vibration-induced molecular transport in graphene films, we show that the coupling of the surface acoustic wave gives rise to antisymmetric Lamb waves in the film which enhance molecular diffusion and hence the flow through the interstitial layers that make up the film. Above a critical input power, the strong substrate vibration displacement can also force the molecules out of the graphene film to form a thin fluid layer, which subsequently destabilizes and breaks up to form a mist of micron dimension aerosol droplets. We provide physical insight into this coupling through a simple numerical model, verified through experiments, and show several-fold improvement in the rate of fluid transport through the film, and up to 55% enhancement in the rate of fluid atomization from the film using this simple method.
    Matched MeSH terms: Sound
  8. Ang KM, Yeo LY, Hung YM, Tan MK
    Nanoscale, 2017 May 18;9(19):6497-6508.
    PMID: 28466906 DOI: 10.1039/c7nr01690e
    We exploit the possibility of enhancing the molecular transport of liquids through graphene films using amplitude modulated surface acoustic waves (SAWs) to demonstrate effective and efficient nanoparticle filtration. The use of the SAW, which is an extremely efficient means for driving microfluidic transport, overcomes the need for the large mechanical pumps required to circumvent the large pressure drops encountered in conventional membranes for nanoparticle filtration. 100% filtration efficiency was obtained for micron-dimension particulates, decreasing to only 95% for the filtration of particles of tens of nanometers in dimension, which is comparable to that achieved with other methods. To circumvent clogging of the film, which is typical with all membrane filters, a backwash operation to flush the nanoparticles is incorporated simply by reversing the SAW-induced flow such that 98% recovery of the initial filtration rate is recovered. Given these efficiencies, together with the low cost and compact size of the chipscale SAW devices, we envisage the possibility of scaling out the process by operating a large number of devices in parallel to achieve typical industrial-scale throughputs with potential benefits in terms of substantially lower capital, operating and maintenance costs.
    Matched MeSH terms: Sound
  9. Aslam MZ, Jeoti V, Karuppanan S, Malik AF, Iqbal A
    Sensors (Basel), 2018 May 24;18(6).
    PMID: 29882929 DOI: 10.3390/s18061687
    A Finite Element Method (FEM) simulation study is conducted, aiming to scrutinize the sensitivity of Sezawa wave mode in a multilayer AlN/SiO₂/Si Surface Acoustic Wave (SAW) sensor to low concentrations of Volatile Organic Compounds (VOCs), that is, trichloromethane, trichloroethylene, carbon tetrachloride and tetrachloroethene. A Complimentary Metal-Oxide Semiconductor (CMOS) compatible AlN/SiO₂/Si based multilayer SAW resonator structure is taken into account for this purpose. In this study, first, the influence of AlN and SiO₂ layers’ thicknesses over phase velocities and electromechanical coupling coefficients (k²) of two SAW modes (i.e., Rayleigh and Sezawa) is analyzed and the optimal thicknesses of AlN and SiO₂ layers are opted for best propagation characteristics. Next, the study is further extended to analyze the mass loading effect on resonance frequencies of SAW modes by coating a thin Polyisobutylene (PIB) polymer film over the AlN surface. Finally, the sensitivity of the two SAW modes is examined for VOCs. This study concluded that the sensitivity of Sezawa wave mode for 1 ppm of selected volatile organic gases is twice that of the Rayleigh wave mode.
    Matched MeSH terms: Sound
  10. Bagherifaez M, Behnia A, Majeed AA, Hwa Kian C
    ScientificWorldJournal, 2014;2014:567619.
    PMID: 25180203 DOI: 10.1155/2014/567619
    Reinforced concrete (RC) box girders are a common structural member for road bridges in modern construction. The hollow cross-section of a box girder is ideal in carrying eccentric loads or torques introduced by skew supports. This study employed acoustic emission (AE) monitoring on multicell RC box girder specimens subjected to laboratory-based torsion loading. Three multicell box girder specimens with different cross-sections were tested. The aim is to acquire AE analysis data indicative for characterizing torsion fracture in the box girders. It was demonstrated through appropriate parametric analysis that the AE technique could be utilized to effectively classify fracture developed in the specimens for describing their mechanical behavior under torsion. AE events localization was presented to illustrate the trend of crack and damage propagation in different stages of fracture. It could be observed that spiral-like patterns of crack were captured through AE damage localization system and damage was quantified successfully in different stages of fracture by using smoothed b-value analysis.
    Matched MeSH terms: Sound*
  11. Barber JR, Kawahara AY
    Biol Lett, 2013 Aug 23;9(4):20130161.
    PMID: 23825084 DOI: 10.1098/rsbl.2013.0161
    Bats and moths have been engaged in aerial warfare for nearly 65 Myr. This arms race has produced a suite of counter-adaptations in moths, including bat-detecting ears. One set of defensive strategies involves the active production of sound; tiger moths' ultrasonic replies to bat attack have been shown to startle bats, warn the predators of bad taste and jam their biosonar. Here, we report that hawkmoths in the Choerocampina produce entirely ultrasonic sounds in response to tactile stimulation and the playback of biosonar attack sequences. Males do so by grating modified scraper scales on the outer surface of the genital valves against the inner margin of the last abdominal tergum. Preliminary data indicate that females also produce ultrasound to touch and playback of echolocation attack, but they do so with an entirely different mechanism. The anti-bat function of these sounds is unknown but might include startling, cross-family acoustic mimicry, warning of unprofitability or physical defence and/or jamming of echolocation. Hawkmoths present a novel and tractable system to study both the function and evolution of anti-bat defences.
    Matched MeSH terms: Sound
  12. Chai HK, Liu KF, Behnia A, Yoshikazu K, Shiotani T
    Materials (Basel), 2016 Apr 16;9(4).
    PMID: 28773416 DOI: 10.3390/ma9040291
    Concrete is the most ubiquitous construction material. Apart from the fresh and early age properties of concrete material, its condition during the structure life span affects the overall structural performance. Therefore, development of techniques such as non-destructive testing which enable the investigation of the material condition, are in great demand. Tomography technique has become an increasingly popular non-destructive evaluation technique for civil engineers to assess the condition of concrete structures. In the present study, this technique is investigated by developing reconstruction procedures utilizing different parameters of elastic waves, namely the travel time, wave amplitude, wave frequency, and Q-value. In the development of algorithms, a ray tracing feature was adopted to take into account the actual non-linear propagation of elastic waves in concrete containing defects. Numerical simulation accompanied by experimental verifications of wave motion were conducted to obtain wave propagation profiles in concrete containing honeycomb as a defect and in assessing the tendon duct filling of pre-stressed concrete (PC) elements. The detection of defects by the developed tomography reconstruction procedures was evaluated and discussed.
    Matched MeSH terms: Sound
  13. Chan JS, Poh PE, Ismadi MP, Yeo LY, Tan MK
    Water Res, 2020 Feb 01;169:115187.
    PMID: 31671294 DOI: 10.1016/j.watres.2019.115187
    There is a pressing need for efficient biological treatment systems for the removal of organic compounds in greywater given the rapid increase in household wastewater produced as a consequence of rapid urbanisation. Moreover, proper treatment of greywater allows its reuse that can significantly reduce the demand for freshwater supplies. Herein, we demonstrate the possibility of enhancing the removal efficiency of solid contaminants from greywater using MHz-order surface acoustic waves (SAWs). A key distinction of the use of these high frequency surface acoustic waves, compared to previous work on its lower frequency (kHz order) bulk ultrasound counterpart for wastewater treatment, is the absence of cavitation, which can inflict considerable damage on bacteria, thus limiting the intensity and duration, and hence the efficiency enhancement, associated with the acoustic exposure. In particular, we show that up to fivefold improvement in the removal efficiency can be obtained, primarily due to the ability of the acoustic pressure field in homogenizing and reducing the size of bacterial clusters in the sample, therefore providing a larger surface area that promotes greater bacteria digestion. Alternatively, the SAW exposure allows the reduction in the treatment duration to achieve a given level of removal efficiency, thus facilitating higher treatment rates and hence processing throughput. Given the low-cost of the miniature chipscale platform, these promising results highlight its possibility for portable greywater treatment for domestic use or for large-scale industrial wastewater processing through massive parallelization.
    Matched MeSH terms: Sound
  14. Chew NSL, Ooi CW, Yeo LY, Tan MK
    Ultrasonics, 2024 Mar;138:107234.
    PMID: 38171227 DOI: 10.1016/j.ultras.2023.107234
    The development of alternative techniques to efficiently inactivate bacterial suspensions is crucial to prevent transmission of waterborne illness, particularly when commonly used techniques such as heating, filtration, chlorination, or ultraviolet treatment are not practical or feasible. We examine the effect of MHz-order acoustic wave irradiation in the form of surface acoustic waves (SAWs) on Gram-positive (Escherichia coli) and Gram-negative (Brevibacillus borstelensis and Staphylococcus aureus) bacteria suspended in water droplets. A significant increase in the relative bacterial load reduction of colony-forming units (up to 74%) can be achieved by either increasing (1) the excitation power, or, (2) the acoustic treatment duration, which we attributed to the effect of the acoustic radiation force exerted on the bacteria. Consequently, by increasing the maximum pressure amplitude via a hybrid modulation scheme involving a combination of amplitude and pulse-width modulation, we observe that the bacterial inactivation efficiency can be further increased by approximately 14%. By combining this scalable acoustic-based bacterial inactivation platform with plasma-activated water, a 100% reduction in E. coli is observed in less than 10 mins, therefore demonstrating the potential of the synergistic effects of MHz-order acoustic irradiation and plasma-activated water as an efficient strategy for water decontamination.
    Matched MeSH terms: Sound
  15. Chin KY, Soelaiman IN, Mohamed IN, Ngah WZ
    Clinics (Sao Paulo), 2012 Aug;67(8):911-6.
    PMID: 22948459
    OBJECTIVES: Variations in sex hormones and the calcium balance can influence bone health in men. The present study aimed to examine the relationship between the calcaneal speed of sound and biochemical determinants of bone mass, such as sex hormones, parathyroid hormones and serum calcium.

    METHODS: Data from 549 subjects from the Malaysian Aging Male Study, which included Malay and Chinese men aged 20 years and older residing in the Klang Valley, were used for analysis. The subjects' calcaneal speed of sound was measured, and their blood was collected for biochemical analysis. Two sets of multiple regression models were generated for the total/bioavailable testosterone and estradiol to avoid multicollinearity.

    RESULTS: The multiple regression results revealed that bioavailable testosterone and serum total calcium were significant predictors of the calcaneal speed of sound in the adjusted model. After adjustment for ethnicity and body mass index, only bioavailable testosterone remained significant; the total serum calcium was marginally insignificant. In a separate model, the total testosterone and sex hormone-binding globulin were significant predictors, whereas the total serum calcium was marginally insignificant. After adjustment for ethnicity and body mass index (BMI), the significance persisted for total testosterone and SHBG. After further adjustment for age, none of the serum biochemical determinants was a significant predictor of the calcaneal speed of sound.

    CONCLUSION: There is a significant age-dependent relationship between the calcaneal speed of sound and total testosterone, bioavailable testosterone and sex hormone-binding globulin in Chinese and Malay men in Malaysia. The relationship between total serum calcium and calcaneal speed of sound is ethnicity-dependent.

    Matched MeSH terms: Sound*
  16. Chong Foong Yen, Lee Onn Wah, Norfazilah Abdol, Rafidah Mazlan
    Jurnal Sains Kesihatan Malaysia, 2018;16(101):179-185.
    MyJurnal
    A speech test that emphasizes on fricatives and affricates with high-frequency components is recommended for testing individuals with high-frequency hearing loss. Validation of the frequency-lowering feature in modern hearing aids are also important. There has been no recorded speech material in Malaysia that focuses on Mandarin fricatives and affricates. Therefore, the objective of this study was to develop a nonsense word test that contains Mandarin sibilant fricatives and affricates. A total of 180 vowel-consonant-vowel (vcv) nonsense syllables were recorded from a female and a male talker. These vcv syllables included six targeted Mandarin fricatives and affricates in three vowel contexts. Perceptual and acoustic analysis were conducted and selected vcv syllables were validated by 24 native Mandarin talkers with normal hearing through identification testing. Hundred and three syllables were rated as having a good or excellent sound quality and free from at least one of the idiosyncrasy elements. The average percentage of correct identification of vcv tokens for the female and male talkers were 85.38% and 82. 73%, respectively. Syllables that received the highest correct identification scores above the group mean were taken as the best exemplars. In total, 29 best exemplars were selected from 180 vcv syllables for the development of the Mandarin fricative-affricate nonsense word test. Future studies should include the development of performance-intensity function for individuals with normal hearing and a test manual so that the test can be used by non-native Mandarin clinicians.
    Matched MeSH terms: Sound
  17. Choudhry FR, Al-Worafi YM, Akram B, Ahmed MA, Anwar Ul Haq M, Khan TM, et al.
    Front Psychol, 2018;9:1513.
    PMID: 30283370 DOI: 10.3389/fpsyg.2018.01513
    Background: A great deal of research has been carried out on the assessment of the eudaimonic perspective of psychological well-being and the hedonic perspective of subjective well-being. The Flourishing Scale (FS) has been extensively used in research and practice, as it assesses the fundamental aspects of social psychological functioning. Nevertheless, the psychometric properties of Urdu versions of eudaimonic measures, such as the FS, have not yet been ascertained. The translation and validation of the FS in the Urdu language was not available, and hence this study was planned with the aim to validate the Urdu version of the FS. Methods: We assessed the psychometric properties of the FS in a sample of adults aged 18 years and above in Pakistan (N = 130) using exploratory factor analysis based on principal component analysis with varimax rotation and confirmatory factor analysis. Results: The exploratory factor analysis confirmed the unidimensional nature of the 8-item FS. We assessed that the Urdu version of the FS showed a high internal consistency reliability (α = 0.914) with a significant intraclass correlation coefficient (ICC), p < 0.001). In our study, the Kaiser-Mayer-Olkin value was 0.915 with a chi-square test value (χ2) of 637.687, and Bartlett's test of sphericity was significant (df = 28, p < 0.001). The intraclass correlation coefficients (ICCs) at test-retest for all domains were statistically significant (p < 0.001) and showed excellent agreement for all the items. The revised confirmatory factor analysis revealed a good-fit model, but with item 8-"People respect me"-removed due to its lower factor loading. Conclusions: The findings suggest that the FS is a psychometrically sound instrument for assessing social psychological functioning among adults in Pakistan. Therefore, the validated Urdu version of the FS may be used in future studies of well-being in clinical psychology and positive psychology.
    Matched MeSH terms: Sound
  18. Cila Umat, Nahazatul Islia Jamari
    MyJurnal
    The study examined the use of linguistic contextual cues among native, Malay-speaking normal hearing young adults. Ten undergraduate students of Universiti Kebangsaan Malaysia participated in the study. All subjects had normal hearing with the average hearing threshold levels for the overall left and the right ears of 7.8 dB (SD 4.1). The Malay Hearing in Noise Test (MyHINT) materials were employed and presented to the subjects at an approximately 65 dBA presentation level. Testing was conducted in a sound field in three different listening conditions: in quiet, in noise with +5 dB signal-to-noise ratio (SNR) and 0 dB SNR. In every test condition, three lists of MyHINT were administered to each subject. The magnitude of context effects was measured using the j factor, which was derived from measurements of recognition probabilities for whole sentences (13,) and the constituent words in the sentences (PP) in which j = log P./ log P P. Results showed that all subjects scored 100% identification of words in sentences and whole sentences in quiet listening condition, while subjects' performances in 0 dB SNR were significantly poorer than that in quiet and in +5 dB SNR (p < 0.001). The j-values were significantly correlated with the probability of recognizing words in the sentences (r = 0.515, p = 0.029) in which lower j values were associated with lower P ps. Subjects were not significantly different from each other in their use of contextual cues in adverse listening conditions [F(9, 7) = 1.34, p = 0.359]. Using the linear regression function for j on word recognition probabilities, the predicted P. were calculated. It was found that the predicted and measured probabilities of recognizing whole sentences were highly correlated: r = 0.973, p < 0.001. The results suggested that linguistic contextual information become increasingly important for recognition of sentences by normal hearing young adult listeners as SNR deteriorates.
    Matched MeSH terms: Sound
  19. Das A, Barua A, Mohimin MA, Abedin J, Khandaker MU, Al-Mugren KS
    Healthcare (Basel), 2021 Apr 10;9(4).
    PMID: 33920290 DOI: 10.3390/healthcare9040445
    BACKGROUND: The use of a touchless automated hand sanitizer dispenser may play a key role to reduce contagious diseases. The key problem of the conventional ultrasonic and infra-red-based dispensers is their malfunctioning due to the interference of sunlight, vehicle sound, etc. when deployed in busy public places. To overcome such limitations, this study introduced a laser-based sensing device to dispense sanitizer in an automated touchless process.

    METHOD: The dispensing system is based on an Arduino circuit breadboard where an ATmega328p microcontroller was pre-installed. To sense the proximity, a light-dependent resistor (LDR) is used where the laser light is to be blocked after the placement of human hands, hence produced a sharp decrease in the LDR sensor value. Once the LDR sensor value exceeds the lower threshold, the pump is actuated by the microcontroller, and the sanitizer dispenses through the nozzle.

    RESULTS AND DISCUSSION: A novel design and subsequent fabrication of a low-cost, touchless, automated sanitizer dispenser to be used in public places, was demonstrated. The overall performance of the manufactured device was analyzed based on the cost and power consumption, and environmental factors by deploying it in busy public places as well as in indoor environment in major cities in Bangladesh, and found to be more efficient and cost-effective compared to other dispensers available in the market. A comprehensive discussion on this unique design compared to the conventional ultrasonic and infra-red based dispensers, is presented to show its suitability over the commercial ones. The guidelines of the World Health Organization are followed for the preparation of sanitizer liquid. A clear demonstration of the circuitry connections is presented herein, which facilitates the interested individual to manufacture a cost-effective dispenser device in a relatively short time and use it accordingly. Conclusion: This study reveals that the LDR-based automated hand sanitizer dispenser system is a novel concept, and it is cost-effective compared to the conventional ones. The presented device is expected to play a key role in contactless hand disinfection in public places, and reduce the spread of infectious diseases in society.

    Matched MeSH terms: Sound
  20. Dieng H, The CC, Satho T, Miake F, Wydiamala E, Kassim NFA, et al.
    Acta Trop, 2019 Jun;194:93-99.
    PMID: 30922800 DOI: 10.1016/j.actatropica.2019.03.027
    Sound and its reception are crucial for reproduction, survival, and population maintenance of many animals. In insects, low-frequency vibrations facilitate sexual interactions, whereas noise disrupts the perception of signals from conspecifics and hosts. Despite evidence that mosquitoes respond to sound frequencies beyond fundamental ranges, including songs, and that males and females need to struggle to harmonize their flight tones, the behavioral impacts of music as control targets remain unexplored. In this study, we examined the effects of electronic music (Scary Monsters and Nice Sprites by Skrillex) on foraging, host attack, and sexual activities of the dengue vector Aedes aegypti. Adults were presented with two sound environments (music-off or music-on). Discrepancies in visitation, blood feeding, and copulation patterns were compared between environments with and without music. Ae. aegypti females maintained in the music-off environment initiated host visits earlier than those in the music-on environment. They visited the host significantly less often in the music-on than the music-off condition. Females exposed to music attacked hosts much later than their non-exposed peers. The occurrence of blood feeding activity was lower when music was being played. Adults exposed to music copulated far less often than their counterparts kept in an environment where there was no music. In addition to providing insight into the auditory sensitivity of Ae. aegypti to sound, our results indicated the vulnerability of its key vectorial capacity traits to electronic music. The observation that such music can delay host attack, reduce blood feeding, and disrupt mating provides new avenues for the development of music-based personal protective and control measures against Aedes-borne diseases.
    Matched MeSH terms: Sound
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links