Displaying publications 1 - 20 of 57 in total

Abstract:
Sort:
  1. Abd Majid N, Rainis R, Sahani M, Mohamed AF, Abdul Ghani Aziz SA, Muhamad Nazi N
    Geospat Health, 2021 03 11;16(1).
    PMID: 33706498 DOI: 10.4081/gh.2021.915
    In recent decades, dengue outbreaks have become increasingly common around the developing countries, including Malaysia. Thus, it is essential for rural as well as urbanised livelihood to understand the distribution pattern of this infection. The objective of this study is to determine the trend of dengue cases reported from the year 2014 to 2018 and the spatial pattern for this spread. Spatial statistical analyses conducted found that the distribution pattern and spatial mean centre for dengue cases were clustered in the eastern part of the Bangi region. Directional distribution observed that the elongated polygon of dengue cluster stretched from the Northeast to the Southwest of Bangi District. The standard distance observed for dengue cases was smallest in the year 2014 (0.017 m), and largest in 2016 (0.019 m), whereas in the year 2015, 2017 and 2018, it measured 0.018 m. The average nearest neighbour analysis also displayed clustered patterns for dengue cases in the Bangi District. The three spatial statistical analyses (spatial mean centre, standard distance and directional distribution) findings illustrate that the dengue cases from the year 2014 to 2018 are clustered in the Northeast to the Southwest of the study region.
    Matched MeSH terms: Spatial Analysis
  2. Abu Bakar MA, Samat N, Yaacob NS
    Geospat Health, 2021 10 19;16(2).
    PMID: 34672180 DOI: 10.4081/gh.2021.987
    Cerebral palsy (CP) is one of the most common causes of disability in childhood, leading to functional limitations and poor nutritional status. Families with CP children face challenges in providing proper care. Thus, accessibility of CP patients to health facilities is important to ensure that they can maintain regular visits to health facilities for proper treatment and care. The current study aimed to map the spatial distribution of CP in Johor, Malaysia and measure the accessibility of CP patients to nearby hospitals, health clinics and community-based rehabilitation centres. The study is based on CP cases in 2017 obtained from the Department of Social Welfare, Malaysia and analysed using the average nearest neighbour, buffer analysis and Kernel Density Estimation. Results indicate that there is generally good access to health care services for many of the CP children in Johor, but for 25% of those living more than 10 km away from the health clinics or community-based rehabilitation centres, regular visits can be a problem. This information should be used for targeted intervention and planning for health care strategies. Furthermore, information on hospital accessibility of CP children would allow for planning of proper and regular treatment for these patients. The study has shown that it is possible to improve the understanding of the distribution of CP cases by integrating spatial analysis using geographical information systems without relying on official information about the density of populations.
    Matched MeSH terms: Spatial Analysis
  3. Abu Hassan MR, Aziz N, Ismail N, Shafie Z, Mayala B, Donohue RE, et al.
    PLoS Negl Trop Dis, 2019 03;13(3):e0007243.
    PMID: 30883550 DOI: 10.1371/journal.pntd.0007243
    BACKGROUND: Melioidosis, a fatal infectious disease caused by Burkholderia pseudomallei, is increasingly diagnosed in tropical regions. However, data on risk factors and the geographic epidemiology of the disease are still limited. Previous studies have also largely been based on the analysis of case series data. Here, we undertook a more definitive hospital-based matched case-control study coupled with spatial analysis to identify demographic, socioeconomic and landscape risk factors for bacteremic melioidosis in the Kedah region of northern Malaysia.

    METHODOLOGY/PRINCIPAL FINDINGS: We obtained patient demographic and residential information and clinical presentation and medical history data from 254 confirmed melioidosis cases and 384 matched controls attending Hospital Sultanah Bahiyah (HSB), the main tertiary hospital of Alor Setar, the capital city of Kedah, during the period between 2005 and 2011. Crude and adjusted odds ratios employing conditional logistic regression analysis were used to assess if melioidosis in this region is related to risk factors connected with socio-demographics, various behavioural characteristics, and co-occurring diseases. Spatial clusters of cases were determined using a continuous Poisson model as deployed in SaTScan. A land cover map in conjunction with mapped case data was used to determine disease-land type associations using the Fisher's exact test deploying simulated p-values. Crude and adjusted odds ratios indicate that melioidosis in this region is related to gender (males), race, occupation (farming) and co-occurring chronic diseases, particularly diabetes. Spatial analyses of disease incidence, however, showed that disease risk and geographic clustering of cases are related strongly to land cover types, with risk of disease increasing non-linearly with the degree of human modification of the natural ecosystem.

    CONCLUSIONS/SIGNIFICANCE: These findings indicate that melioidosis represents a complex socio-ecological public health problem in Kedah, and that its control requires an understanding and modification of the coupled human and natural variables that govern disease transmission in endemic communities.

    Matched MeSH terms: Spatial Analysis
  4. Aliyu AB, Saleha AA, Jalila A, Zunita Z
    BMC Public Health, 2016 08 02;16:699.
    PMID: 27484086 DOI: 10.1186/s12889-016-3377-2
    BACKGROUND: The significant role of retail poultry meat as an important exposure pathway for the acquisition and transmission of extended spectrum β-lactamase-producing Escherichia coli (ESBL-EC) into the human population warrants understanding concerning those operational practices associated with dissemination of ESBL-EC in poultry meat retailing. Hence, the objective of this study was to determine the prevalence, spatial distribution and potential risk factors associated with the dissemination of ESBL-EC in poultry meat retail at wet-markets in Selangor, Malaysia.

    METHODS: Poultry meat (breast, wing, thigh, and keel) as well as the contact surfaces of weighing scales and cutting boards were sampled to detect ESBL-EC by using culture and disk combination methods and polymerase chain reaction assays. Besides, questionnaire was used to obtain data and information pertaining to those operational practices that may possibly explain the occurrence of ESBL-EC. The data were analysed using logistic regression analysis at 95 % CI.

    RESULTS: The overall prevalence of ESBL-EC was 48.8 % (95 % CI, 42 - 55 %). Among the risk factors that were explored, type of countertop, sanitation of the stall environment, source of cleaning water, and type of cutting board were found to be significantly associated with the presence of ESBL-EC.

    CONCLUSIONS: Thus, in order to prevent or reduce the presence of ESBL-EC and other contaminants at the retail-outlet, there is a need to design a process control system based on the current prevailing practices in order to reduce cross contamination, as well as to improve food safety and consumer health.

    Matched MeSH terms: Spatial Analysis
  5. Alyousifi Y, Ibrahim K, Kang W, Zin WZW
    Environ Monit Assess, 2020 Oct 21;192(11):719.
    PMID: 33083907 DOI: 10.1007/s10661-020-08666-8
    An environmental problem which is of concern across the globe nowadays is air pollution. The extent of air pollution is often studied based on data on the observed level of air pollution. Although the analysis of air pollution data that is available in the literature is numerous, studies on the dynamics of air pollution with the allowance for spatial interaction effects through the use of the Markov chain model are very limited. Accordingly, this study aims to explore the potential impact of spatial dependence over time and space on the distribution of air pollution based on the spatial Markov chain (SMC) model using the longitudinal air pollution index (API) data. This SMC model is pertinent to be applied since the daily data of API from 2012 to 2014 that have been gathered from 37 different air quality stations in Peninsular Malaysia is found to exhibit the property of spatial autocorrelation. Based on the spatial transition probability matrices found from the SMC model, specific characteristics of air pollution are studied in the regional context. These characteristics are the long-run proportion and the mean first passage time for each state of air pollution. It is found that the probability for a particular station's state to remain good is 0.814 if its neighbors are in a good state of air pollution and 0.7082 if its neighbors are in a moderate state. For a particular station having neighbors in a good state of air pollution, the proportion of time for it to continue being in a good state is 0.6. This proportion reduces to 0.4, 0.01, and 0 for the cell of moderate, unhealthy, and very unhealthy states, respectively. In addition, there exists a significant spatial dependence of API, indicating that air pollution for a particular station is dependent on the states of the neighboring stations.
    Matched MeSH terms: Spatial Analysis
  6. Asra Hosseini
    MyJurnal
    From earliest cities to the present, spatial division into residential zones and neighbourhoods is the universal feature of urban areas. This study explored issue of measuring neighbourhoods through spatial autocorrelation method based on Moran’s I index in respect of achieving to best neighbourhoods’ model for forming cities smarter. The research carried out by selection of 35 neighbourhoods only within central part of traditional city of Kerman in Iran. The results illustrate, 75% of neighbourhoods’ area in the inner city of Kerman had clustered pattern, and it shows reduction in Moran’s index is associated with disproportional distribution of density and increasing in Moran’s I and Z-score have monotonic relation with more dense areas and clustered pattern. It may be more efficient for urban planner to focus on spatial autocorrelation to foster neighbourhood cohesion rather than emphasis on suburban area. It is recommended characteristics of historic neighbourhoods can be successfully linked to redevelopment plans toward making city smarter, and also people’s quality of life can be related to the way that neighbourhoods’ patterns are defined.
    Matched MeSH terms: Spatial Analysis
  7. Aziz Shafie
    Sains Malaysiana, 2011;40:1179-1186.
    In Malaysia, the incidence of Dengue Fever (DF) and Dengue Hemorrhagic Fever (DHF) have risen dramatically in the last twenty years. With the use of Geographical Information System an explanation for the spread and control of these diseases can be obtained. This study aims to develop a spatial modeling that can predict the risks for DF and DHF based on environmental factors such as physical surroundings, land use, rainfall, temperature and GIS application using logistic regression. A total of 16 variables were used in the process of spatial modeling development. At the significant level of 0.05, the results of logistic regression showed that only 10 out of 16 significant variables in the modeling process. The accuracy of the resulting model is 70.3%. A crucial feature of this study is a risk area map for incidence of DF and DHF in the study area. This study also highlights the application of spatial analysis in planning and implementing the process for the prevention and control activities of DF and DHF in Malaysia.
    Matched MeSH terms: Spatial Analysis
  8. Brock PM, Fornace KM, Grigg MJ, Anstey NM, William T, Cox J, et al.
    Proc Biol Sci, 2019 Jan 16;286(1894):20182351.
    PMID: 30963872 DOI: 10.1098/rspb.2018.2351
    The complex transmission ecologies of vector-borne and zoonotic diseases pose challenges to their control, especially in changing landscapes. Human incidence of zoonotic malaria ( Plasmodium knowlesi) is associated with deforestation although mechanisms are unknown. Here, a novel application of a method for predicting disease occurrence that combines machine learning and statistics is used to identify the key spatial scales that define the relationship between zoonotic malaria cases and environmental change. Using data from satellite imagery, a case-control study, and a cross-sectional survey, predictive models of household-level occurrence of P. knowlesi were fitted with 16 variables summarized at 11 spatial scales simultaneously. The method identified a strong and well-defined peak of predictive influence of the proportion of cleared land within 1 km of households on P. knowlesi occurrence. Aspect (1 and 2 km), slope (0.5 km) and canopy regrowth (0.5 km) were important at small scales. By contrast, fragmentation of deforested areas influenced P. knowlesi occurrence probability most strongly at large scales (4 and 5 km). The identification of these spatial scales narrows the field of plausible mechanisms that connect land use change and P. knowlesi, allowing for the refinement of disease occurrence predictions and the design of spatially-targeted interventions.
    Matched MeSH terms: Spatial Analysis
  9. Byrne I, Aure W, Manin BO, Vythilingam I, Ferguson HM, Drakeley CJ, et al.
    Sci Rep, 2021 Jun 03;11(1):11810.
    PMID: 34083582 DOI: 10.1038/s41598-021-90893-1
    Land-use changes, such as deforestation and agriculture, can influence mosquito vector populations and malaria transmission. These land-use changes have been linked to increased incidence in human cases of the zoonotic malaria Plasmodium knowlesi in Sabah, Malaysian Borneo. This study investigates whether these associations are partially driven by fine-scale land-use changes creating more favourable aquatic breeding habitats for P. knowlesi anopheline vectors. Using aerial remote sensing data, we developed a sampling frame representative of all land use types within a major focus of P. knowlesi transmission. From 2015 to 2016 monthly longitudinal surveys of larval habitats were collected in randomly selected areas stratified by land use type. Additional remote sensing data on environmental variables, land cover and landscape configuration were assembled for the study site. Risk factor analyses were performed over multiple spatial scales to determine associations between environmental and spatial variables and anopheline larval presence. Habitat fragmentation (300 m), aspect (350 m), distance to rubber plantations (100 m) and Culex larval presence were identified as risk factors for Anopheles breeding. Additionally, models were fit to determine the presence of potential larval habitats within the areas surveyed and used to generate a time-series of monthly predictive maps. These results indicate that land-use change and topography influence the suitability of larval habitats, and may partially explain the link between P. knowlesi incidence and deforestation. The predictive maps, and identification of the spatial scales at which risk factors are most influential may aid spatio-temporally targeted vector control interventions.
    Matched MeSH terms: Spatial Analysis
  10. Camara M, Jamil NR, Abdullah AFB, Hashim RB, Aliyu AG
    Sci Total Environ, 2020 May 30;737:139800.
    PMID: 32526579 DOI: 10.1016/j.scitotenv.2020.139800
    The evaluation of the importance of having accurate and representative stations in a network for river water quality monitoring is always a matter of concern. The minimal budget and time demands of water quality monitoring programme may appear very attractive, especially when dealing with large-scale river watersheds. This article proposes an improved methodology for optimising water quality monitoring network for present and forthcoming monitoring of water quality under a case study of the Selangor River watershed in Malaysia, where different monitoring networks are being used by water management authorities. Knowing that the lack of financial resources in developing countries like Malaysia is one of the reasons for inadequate monitoring network density, to identify an optimised network for cost-efficiency benefits in this study, a geo-statistical technique coupled Kendall's W was first applied to analyse the performance of each monitoring station in the existing networks under the monitored water quality parameters. Second, the present and future changes in non-point pollution sources were simulated using the integrated Cellular Automata and Markov chain model (CA-Markov). Third, Station Potential Pollution Score (SPPS) determined based on Analytic Hierarchy Process (AHP) was used to weight each station under the changes of non-point pollution sources for 2015, 2024, and 2033 prior to prioritisation. Finally, according to the Kendall's W test on kriging results, the weights of non-point sources from the AHP evaluation and fuzzy membership functions, six most efficient sampling stations were identified to build a robust network for the present and future monitoring of water quality status in the Selangor River watershed. This study proposes a useful approach to the pertinent agencies and management authority concerned to establish appropriate methods for developing an efficient water quality monitoring network for tropical rivers.
    Matched MeSH terms: Spatial Analysis
  11. Cheong YL, Leitão PJ, Lakes T
    Spat Spatiotemporal Epidemiol, 2014 Jul;10:75-84.
    PMID: 25113593 DOI: 10.1016/j.sste.2014.05.002
    The transmission of dengue disease is influenced by complex interactions among vector, host and virus. Land use such as water bodies or certain agricultural practices have been identified as likely risk factors for dengue because of the provision of suitable habitats for the vector. Many studies have focused on the land use factors of dengue vector abundance in small areas but have not yet studied the relationship between land use factors and dengue cases for large regions. This study aims to clarify if land use factors other than human settlements, e.g. different types of agricultural land use, water bodies and forest are associated with reported dengue cases from 2008 to 2010 in the state of Selangor, Malaysia. From the correlative relationship, we aim to generate a prediction risk map. We used Boosted Regression Trees (BRT) to account for nonlinearities and interactions between the factors with high predictive accuracies. Our model with a cross-validated performance score (Area Under the Receiver Operator Characteristic Curve, ROC AUC) of 0.81 showed that the most important land use factors are human settlements (model importance of 39.2%), followed by water bodies (16.1%), mixed horticulture (8.7%), open land (7.5%) and neglected grassland (6.7%). A risk map after 100 model runs with a cross-validated ROC AUC mean of 0.81 (±0.001 s.d.) is presented. Our findings may be an important asset for improving surveillance and control interventions for dengue.
    Matched MeSH terms: Spatial Analysis*
  12. Darwis S, Isnani, Ashat A
    Sains Malaysiana, 2007;36:207-211.
    The aim of semivariogram modeling is to infer the structure of spatial continuity of the measurements. Practical experiences show that semivariogram modeling is an important step in spatial interpolation. The usual empirical semivariogram is sensitive to extreme data and shows a noised pattern. Some robust empirical semivariogram was proposed. This paper reports the application of pairwise relative empirical semivariogram to Kamojang geothermal decline rate. Using the same data, the usual empirical semivariogram and pairwise semivariogram are compared. Comparative study shows that the empirical pairwise relative semivariogram is able to infer the structure of spatial continuity of the process.
    Matched MeSH terms: Spatial Analysis
  13. Dom NC, Ahmad AH, Latif ZA, Ismail R
    Trans R Soc Trop Med Hyg, 2013 Nov;107(11):715-22.
    PMID: 24062522 DOI: 10.1093/trstmh/trt073
    Dengue has emerged as one of the major public health problems in Malaysia. The Ministry of Health, Malaysia, is committed in monitoring and controlling this disease for many years. The objective of this study is to analyze the dengue outbreak pattern on a monthly basis in Subang Jaya in terms of their spatial dissemination and hotspot identification.
    Matched MeSH terms: Spatial Analysis
  14. Ebrahim Jahanshiri, Taher Buyong, Abdul Rashid Mohd. Shariff
    MyJurnal
    Mass valuation of properties is important for purposes like property tax, price indices construction, and understanding market dynamics. There are several ways that the mass valuation can be carried out. This paper reviews the conventional MRA and several other advanced methods such as SAR, Kriging, GWR, and MWR. SAR and Kriging are good for modeling spatial dependence while GWR and MWR are good for modeling spatial heterogeneity. The difference between SAR and Kriging is the calculation of weights. Kriging weights are based on the spatial dependence or so called the semi-variogram analysis of the price data whereas the weights in SAR are based on the spatial contiguity between the sample data. MWR and GWR are special types of regression where study region is subdivided into local sections to increase the accuracy of prediction through neutralizing the heterogeneity of autocorrelations. MWR assigns equal weights for observations within a window while GWR uses distance decay functions. The merits and drawbacks of each method are discussed.
    Matched MeSH terms: Spatial Analysis
  15. Foong, Ng Set, Eng, Ch’ng Pei, Ming, Chew Yee, Shien, Ng Kok
    MyJurnal
    Soil properties are very crucial for civil engineers to differentiate one type of soil from another and to predict its mechanical behavior. However, it is not practical to measure soil properties at all the locations at a site. In this paper, an estimator is derived to estimate the unknown values for soil properties from locations where soil samples were not collected. The estimator is obtained by combining the concept of the ‘Inverse Distance Method’ into the technique of ‘Kriging’. The method of Lagrange Multipliers is applied in this paper. It is shown that the estimator derived in this paper is an unbiased estimator. The partiality of the estimator with respect to the true value is zero. Hence, the estimated value will be equal to the true value of the soil property. It is also shown that the variance between the estimator and the soil property is minimized. Hence, the distribution of this unbiased estimator with minimum variance spreads the least from the true value. With this characteristic of minimum variance unbiased estimator, a high accuracy estimation of soil property could be obtained.
    Matched MeSH terms: Spatial Analysis
  16. Fornace KM, Abidin TR, Alexander N, Brock P, Grigg MJ, Murphy A, et al.
    Emerg Infect Dis, 2016 Feb;22(2):201-8.
    PMID: 26812373 DOI: 10.3201/eid2202.150656
    The zoonotic malaria species Plasmodium knowlesi has become the main cause of human malaria in Malaysian Borneo. Deforestation and associated environmental and population changes have been hypothesized as main drivers of this apparent emergence. We gathered village-level data for P. knowlesi incidence for the districts of Kudat and Kota Marudu in Sabah state, Malaysia, for 2008-2012. We adjusted malaria records from routine reporting systems to reflect the diagnostic uncertainty of microscopy for P. knowlesi. We also developed negative binomial spatial autoregressive models to assess potential associations between P. knowlesi incidence and environmental variables derived from satellite-based remote-sensing data. Marked spatial heterogeneity in P. knowlesi incidence was observed, and village-level numbers of P. knowlesi cases were positively associated with forest cover and historical forest loss in surrounding areas. These results suggest the likelihood that deforestation and associated environmental changes are key drivers in P. knowlesi transmission in these areas.
    Matched MeSH terms: Spatial Analysis*
  17. Hodges JE, Vamshi R, Holmes C, Rowson M, Miah T, Price OR
    Integr Environ Assess Manag, 2014 Apr;10(2):237-46.
    PMID: 23913410 DOI: 10.1002/ieam.1476
    Environmental risk assessment of chemicals is reliant on good estimates of product usage information and robust exposure models. Over the past 20 to 30 years, much progress has been made with the development of exposure models that simulate the transport and distribution of chemicals in the environment. However, little progress has been made in our ability to estimate chemical emissions of home and personal care (HPC) products. In this project, we have developed an approach to estimate subnational emission inventory of chemical ingredients used in HPC products for 12 Asian countries including Bangladesh, Cambodia, China, India, Indonesia, Laos, Malaysia, Pakistan, Philippines, Sri Lanka, Thailand, and Vietnam (Asia-12). To develop this inventory, we have coupled a 1 km grid of per capita gross domestic product (GDP) estimates with market research data of HPC product sales. We explore the necessity of accounting for a population's ability to purchase HPC products in determining their subnational distribution in regions where wealth is not uniform. The implications of using high resolution data on inter- and intracountry subnational emission estimates for a range of hypothetical and actual HPC product types were explored. It was demonstrated that for low value products (<500 US$ per capita/annum required to purchase product) the maximum deviation from baseline (emission distributed via population) is less than a factor of 3 and it would not result in significant differences in chemical risk assessments. However, for other product types (>500 US$ per capita/annum required to purchase product) the implications on emissions being assigned to subnational regions can vary by several orders of magnitude. The implications of this on conducting national or regional level risk assessments may be significant. Further work is needed to explore the implications of this variability in HPC emissions to enable the HPC industry and/or governments to advance risk-based chemical management policies in emerging markets.
    Matched MeSH terms: Spatial Analysis
  18. Hosseinpour M, Sahebi S, Zamzuri ZH, Yahaya AS, Ismail N
    Accid Anal Prev, 2018 Sep;118:277-288.
    PMID: 29861069 DOI: 10.1016/j.aap.2018.05.003
    According to crash configuration and pre-crash conditions, traffic crashes are classified into different collision types. Based on the literature, multi-vehicle crashes, such as head-on, rear-end, and angle crashes, are more frequent than single-vehicle crashes, and most often result in serious consequences. From a methodological point of view, the majority of prior studies focused on multivehicle collisions have employed univariate count models to estimate crash counts separately by collision type. However, univariate models fail to account for correlations which may exist between different collision types. Among others, multivariate Poisson lognormal (MVPLN) model with spatial correlation is a promising multivariate specification because it not only allows for unobserved heterogeneity (extra-Poisson variation) and dependencies between collision types, but also spatial correlation between adjacent sites. However, the MVPLN spatial model has rarely been applied in previous research for simultaneously modelling crash counts by collision type. Therefore, this study aims at utilizing a MVPLN spatial model to estimate crash counts for four different multi-vehicle collision types, including head-on, rear-end, angle, and sideswipe collisions. To investigate the performance of the MVPLN spatial model, a two-stage model and a univariate Poisson lognormal model (UNPLN) spatial model were also developed in this study. Detailed information on roadway characteristics, traffic volume, and crash history were collected on 407 homogeneous segments from Malaysian federal roads. The results indicate that the MVPLN spatial model outperforms the other comparing models in terms of goodness-of-fit measures. The results also show that the inclusion of spatial heterogeneity in the multivariate model significantly improves the model fit, as indicated by the Deviance Information Criterion (DIC). The correlation between crash types is high and positive, implying that the occurrence of a specific collision type is highly associated with the occurrence of other crash types on the same road segment. These results support the utilization of the MVPLN spatial model when predicting crash counts by collision manner. In terms of contributing factors, the results show that distinct crash types are attributed to different subsets of explanatory variables.
    Matched MeSH terms: Spatial Analysis
  19. Ismail A, Toriman ME, Juahir H, Zain SM, Habir NL, Retnam A, et al.
    Mar Pollut Bull, 2016 May 15;106(1-2):292-300.
    PMID: 27001716 DOI: 10.1016/j.marpolbul.2015.10.019
    This study presents the determination of the spatial variation and source identification of heavy metal pollution in surface water along the Straits of Malacca using several chemometric techniques. Clustering and discrimination of heavy metal compounds in surface water into two groups (northern and southern regions) are observed according to level of concentrations via the application of chemometric techniques. Principal component analysis (PCA) demonstrates that Cu and Cr dominate the source apportionment in northern region with a total variance of 57.62% and is identified with mining and shipping activities. These are the major contamination contributors in the Straits. Land-based pollution originating from vehicular emission with a total variance of 59.43% is attributed to the high level of Pb concentration in the southern region. The results revealed that one state representing each cluster (northern and southern regions) is significant as the main location for investigating heavy metal concentration in the Straits of Malacca which would save monitoring cost and time.

    CAPSULE: The monitoring of spatial variation and source of heavy metals pollution at the northern and southern regions of the Straits of Malacca, Malaysia, using chemometric analysis.

    Matched MeSH terms: Spatial Analysis
  20. Jiaqi Y, Yang S, Ziqi Y, Tingting L, Teo BSX
    Environ Sci Pollut Res Int, 2022 Apr;29(18):26759-26774.
    PMID: 34859343 DOI: 10.1007/s11356-021-17026-z
    Climate change and tourism's interaction and vulnerability have been among the most hotly debated topics recently. In this context, the study focuses on how CO2 emissions, the primary cause of global warming and climate change, respond to changes in tourism development. In order to do so, the impact of tourism development on CO2 emissions in the most visited countries is investigated. A panel data from 2000 to 2017 for top 70 tourist countries are analysed using a spatial econometric method to investigate the spatial effect of tourism on environmental pollution. The direct, indirect, and overall impact of tourism on CO2 emissions are estimated using the most appropriate generalized nested spatial econometric (GNS) method. The findings reveal that tourism has a positive direct effect and a negative indirect effect; both are significant at the 1% level. The negative indirect effect of tourism is greater than its direct positive effect, implying an overall significantly negative impact. Further, the outcome of financial development and CO2 emissions have an inverted U-shaped and U-shaped relationship in direct and indirect impacts. Population density, trade openness, and economic growth significantly influence environmental pollution. In addition, education expenditure and infrastructure play a significant moderating role among tourism and environmental pollution. The results have important policy implications as they establish an inverted-U-shaped relationship among tourism and CO2 emissions and indicate that while a country's emissions initially rise with the tourism industry's growth, it begins declining after a limit.
    Matched MeSH terms: Spatial Analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links