Displaying publications 1 - 20 of 560 in total

Abstract:
Sort:
  1. Akhtar MT, Samar M, Shami AA, Mumtaz MW, Mukhtar H, Tahir A, et al.
    Molecules, 2021 Jul 30;26(15).
    PMID: 34361796 DOI: 10.3390/molecules26154643
    Meat is a rich source of energy that provides high-value animal protein, fats, vitamins, minerals and trace amounts of carbohydrates. Globally, different types of meats are consumed to fulfill nutritional requirements. However, the increasing burden on the livestock industry has triggered the mixing of high-price meat species with low-quality/-price meat. This work aimed to differentiate different meat samples on the basis of metabolites. The metabolic difference between various meat samples was investigated through Nuclear Magnetic Resonance spectroscopy coupled with multivariate data analysis approaches like principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). In total, 37 metabolites were identified in the gluteal muscle tissues of cow, goat, donkey and chicken using 1H-NMR spectroscopy. PCA was found unable to completely differentiate between meat types, whereas OPLS-DA showed an apparent separation and successfully differentiated samples from all four types of meat. Lactate, creatine, choline, acetate, leucine, isoleucine, valine, formate, carnitine, glutamate, 3-hydroxybutyrate and α-mannose were found as the major discriminating metabolites between white (chicken) and red meat (chevon, beef and donkey). However, inosine, lactate, uracil, carnosine, format, pyruvate, carnitine, creatine and acetate were found responsible for differentiating chevon, beef and donkey meat. The relative quantification of differentiating metabolites was performed using one-way ANOVA and Tukey test. Our results showed that NMR-based metabolomics is a powerful tool for the identification of novel signatures (potential biomarkers) to characterize meats from different sources and could potentially be used for quality control purposes in order to differentiate different meat types.
    Matched MeSH terms: Species Specificity
  2. Sawamura K, Sato H, Lee CY, Kamimura Y, Matsuda M
    Zoolog Sci, 2016 Oct;33(5):467-475.
    PMID: 27715417
    We surveyed natural population of the Drosophila ananassae species complex on Penang Island, Malaysia. Analyses of phenotypic traits, chromosome arrangements, molecular markers, and reproductive isolation suggest the existence of two species: D. ananassae and D. cf. parapallidosa. Molecular marker analysis indicates that D. cf. parapallidosa carries chromosome Y and 4 introgressions from D. ananassae. Thus, D. cf. parapallidosa seems to be a hybrid descendant that recently originated from a natural D. parapallidosa♀× D. ananassae♂ cross. Furthermore, D. cf. parapallidosa behaves differently from authentic D. parapallidosa with respect to its reproductive isolation from D. ananassae. Premating isolation is usually seen in only the D. ananassae♀× D. parapallidosa♂ cross, but we observed it in crosses of both directions between D. ananassae and D. cf. parapallidosa. In addition, hybrid males from the D. ananassae♀× D. parapallidosa♂ cross are usually sterile, but they were fertile when D. ananassae♀ were mated with D. cf. parapallidosa ♂. We attempted an artificial reconstruction of the hybrid species to simulate the evolutionary process(es) that produced D. cf. parapallidosa. This is a rare case of natural hybrid population in Drosophila and may be a useful system for elucidating speciation with gene flow.
    Matched MeSH terms: Species Specificity
  3. Takaoka H, Low VL, Tan TK, Ya'cob Z, Sofian-Azirun M, Dhang Chen C, et al.
    J Med Entomol, 2019 02 25;56(2):432-440.
    PMID: 30597034 DOI: 10.1093/jme/tjy222
    Simulium (Gomphostilbia) yvonneae sp. nov. is described based on adults, pupae, and mature larvae from Vietnam. This new species belongs to the Simulium duolongum subgroup in the S. batoense species-group of the subgenus Gomphostilbia Enderlein. It is distinguished by having a relatively larger number of male upper-eye facets in 16 vertical columns and 16 horizontal rows and a pupal gill with eight filaments arranged as 3+(1+2)+2 from dorsal to ventral, of which two filaments of the ventral pair are 1.8 times as long as the longest filament of the middle and dorsal triplets. Morphological comparisons are made to distinguish this new species from all 22 related species. The genetic distinctiveness of this new species in the S. duolongum subgroup is also presented based on the DNA barcoding COI gene.
    Matched MeSH terms: Species Specificity
  4. Matsui M, Nishikawa K, Eto K, Hossman MYB
    Zoolog Sci, 2017 Aug;34(4):345-350.
    PMID: 28770684 DOI: 10.2108/zs170008
    A new small, semi-arboreal toad of the genus Pelophryne is described from western Sarawak, Malaysian Borneo, on the basis of molecular and morphological evidence. Of the two morphotypes recognized in the genus, the new species belongs to the one in which the tips of the fingers are expanded into truncate discs. Among the species in the morphotype, the new species is most similar to P. murudensis, but differs from it by body size, relative hindlimb length, and dorsal coloration. The new species is currently known only from a limited area on Gunung (= Mt.) Penrissen, and future measures of its habitat conservation are necessary.
    Matched MeSH terms: Species Specificity
  5. Wong C, Ling YS, Wee JLS, Mujahid A, Müller M
    Sci Rep, 2020 12 14;10(1):21861.
    PMID: 33318532 DOI: 10.1038/s41598-020-78873-3
    Nepenthes, as the largest family of carnivorous plants, is found with an extensive geographical distribution throughout the Malay Archipelago, specifically in Borneo, Philippines, and Sumatra. Highland species are able to tolerate cold stress and lowland species heat stress. Our current understanding on the adaptation or survival mechanisms acquired by the different Nepenthes species to their climatic conditions at the phytochemical level is, however, limited. In this study, we applied an eco-metabolomics approach to identify temperature stressed individual metabolic fingerprints of four Nepenthes species: the lowlanders N. ampullaria, N. rafflesiana and N. northiana, and the highlander N. minima. We hypothesized that distinct metabolite regulation patterns exist between the Nepenthes species due to their adaptation towards different geographical and altitudinal distribution. Our results revealed not only distinct temperature stress induced metabolite fingerprints for each Nepenthes species, but also shared metabolic response and adaptation strategies. The interspecific responses and adaptation of N. rafflesiana and N. northiana likely reflected their natural habitat niches. Moreover, our study also indicates the potential of lowlanders, especially N. ampullaria and N. rafflesiana, to produce metabolites needed to deal with increased temperatures, offering hope for the plant genus and future adaption in times of changing climate.
    Matched MeSH terms: Species Specificity
  6. Feroz SR, Sumi RA, Malek SN, Tayyab S
    Exp Anim, 2015;64(2):101-8.
    PMID: 25519455 DOI: 10.1538/expanim.14-0053
    The interaction of pinostrobin (PS), a multitherapeutic agent with serum albumins of various mammalian species namely, goat, bovine, human, porcine, rabbit, sheep and dog was investigated using fluorescence quench titration and competitive drug displacement experiments. Analysis of the intrinsic fluorescence quenching data revealed values of the association constant, K(a) in the range of 1.49 - 6.12 × 10(4) M(-1), with 1:1 binding stoichiometry. Based on the PS-albumin binding characteristics, these albumins were grouped into two classes. Ligand displacement studies using warfarin as the site I marker ligand correlated well with the binding data. Albumins from goat and bovine were found to be closely similar to human albumin on the basis of PS binding characteristics.
    Matched MeSH terms: Species Specificity
  7. Tan NH, Tan CS
    Comp. Biochem. Physiol., B, 1988;90(4):745-50.
    PMID: 2854766
    1. The L-amino acid oxidase, hyaluronidase, alkaline phosphomonoesterase, protease, phosphodiesterase, acetylcholinesterase, phospholipase A and 5'-nucleotidase activities of 47 samples of venoms from all the six species of cobra (Naja), including five subspecies of Naja naja, were examined. 2. The results demonstrated interspecific differences in the venom contents of phospholipase A, acetylcholinesterase, hyaluronidase and phosphodiesterase. These differences in venom enzyme contents can be used for the differentiation of species of the genus Naja. 3. Thus, our results revealed a correlation between the enzyme composition of venom and the taxonomic status of the snake at the species level for the genus Naja.
    Matched MeSH terms: Species Specificity
  8. Tan NH, Ponnudurai G
    PMID: 1676959
    1. The hemorrhagic, procoagulant, anticoagulant, protease, arginine ester hydrolase, phosphodiesterase, alkaline phosphomonoesterase, 5'-nucleotidase, hyaluronidase, phospholipase A and L-amino acid oxidase activities of 50 venom samples from 20 taxa of rattlesnake (genera Crotalus and Sistrurus) were examined. 2. The results show that notwithstanding individual variations in the biological activities of Crotalus venoms and the wide ranges of certain biological activities observed, there are some common characteristics at the genus and species levels. 3. The differences in biological activities of the venoms compared can be used for differentiation of the species. Particularly useful for this purpose are the thrombin-like enzyme, protease, arginine ester hydrolase, hemorrhagic and phospholipase A activities and kaolin-cephalin clotting time measurements.
    Matched MeSH terms: Species Specificity
  9. Tan NH, Ponnudurai G
    Comp. Biochem. Physiol., B, 1990;95(3):577-82.
    PMID: 2158874
    1. The hemorrhagic, procoagulant, anticoagulant, phosphodiesterase, alkaline phosphomonoesterase, 5'-nucleotidase, hyaluronidase, arginine ester hydrolase, phospholipase A, L-amino acid oxidase and protease activities of 31 samples of venom from three species of Agkistrodon (A. bilineatus, A. contortrix and A. piscivorus) and 10 venom samples from five other related species belonging to the same tribe of Agkistrodontini were examined. 2. The results indicate that interspecific differences in certain biological activities of the Agkistrodon venoms are more marked than individual variations of the activities, and that these differences can be used for differentiation of the species. Particularly useful for this purpose are the phosphodiesterase, arginine ester hydrolase and anticoagulant activities of the venoms. 3. Venoms of the subspecies of A. contortrix and A. piscivorus do not differ significantly in their biological activities.
    Matched MeSH terms: Species Specificity
  10. Tan NH, Ponnudurai G
    PMID: 1981349
    1. The hemorrhagic, procoagulant, anticoagulant, protease, phosphodiesterase, alkaline phosphomonoesterase, L-amino acid oxidase, acetylcholinesterase, arginine ester hydrolase, phospholipase A, 5'-nucleotidase and hyaluronidase activities of 39 samples of venoms from 13 species (15 taxa) of Australian elapids were determined and the Sephadex G-75 gel filtration patterns for some of the venoms were also examined. 2. The results indicate that Australian elapid venoms can be divided into two groups: procoagulant Australian venoms (including N. scutatus, N. ater, O. scutellatus, O. microlepidotus, P. porphyriacus, T. carinatus, H. stephensii and P. textilis) and non-procoagulant Australian venoms (including A. superbus, P. colletti, P. australis, P. guttatus and A. antarcticus). 3. The non-procoagulant Australian venoms exhibited biological properties similar to other elapid venoms, while the procoagulant Australian venoms exhibited some properties characteristic of viperid venoms. 4. The data show that information on venom biological properties can be used for differentiation of many species of Australian elapids. 5. Particularly useful for this purpose are the hyaluronidase, alkaline phosphomonoesterase, acetylcholinesterase, and the procoagulant activities and the Sephadex G-75 gel filtration patterns of the venoms.
    Matched MeSH terms: Species Specificity
  11. Tan NH, Arunmozhiarasi A, Ponnudurai G
    PMID: 1685421
    1. The biological properties of twelve samples of venoms from all four species of Dendroaspis (mamba) were investigated. 2. Dendroaspis venoms generally exhibited very low levels of protease, phosphodiesterase and alkaline phosphomonoesterase; low to moderately low level of 5'-nucleotidase and very high hyaluronidase activities, but were devoid of L-amino acid oxidase, phospholipase A, acetylcholinesterase and arginine ester hydrolase activities. The unusual feature in venom enzyme content can be used to distinguish Dendroaspis venoms from other snake venoms. 3. All Dendroaspis venoms did not exhibit hemorrhagic or procoagulant activity. Some Dendroaspis venoms, however, exhibited strong anticoagulant activity. The intravenous median lethal dose of the venoms ranged from 0.5 microgram/g mouse to 4.2 micrograms/g mouse. 4. Venom biological activities are not very useful for the differentiation of the Dendroaspis species. The four Dendroaspis venoms, however, can be differentiated by their venom SDS-polyacrylamide gel electrophoretic patterns.
    Matched MeSH terms: Species Specificity
  12. Tan NH, Ponnudurai G
    PMID: 1971550
    1. The intravenous median lethal doses (LD50), protease, phosphodiesterase, alkaline phosphomonoesterase, L-amino acid oxidase, acetylcholinesterase, phospholipase A, 5'-nucleotidase, hyauronidase and anticoagulant activities of fourteen samples of venoms from the four common species of krait (Bungarus caeruleus, Bungarus candidus, Bungarus multicinctus and Bungarus fasciatus) were examined. 2. The results indicate that even though there are individual variations in the biological properties of the krait venoms, interspecific differences in the properties can be used for differentiation of the venoms from the four species of Bungarus. Particularly useful for this purpose are the LD50's and the contents of 5'-nucleotidase and hyaluronidase of the venoms.
    Matched MeSH terms: Species Specificity
  13. Tan NH, Ponnudurai G
    Comp. Biochem. Physiol., B, 1991;99(2):351-4.
    PMID: 1764914
    1. The protease, phosphodiesterase, alkaline phosphomonoesterase, L-amino acid oxidase, acetylcholinesterase, phospholipase A, 5'-nucleotidase, hyaluronidase, arginine ester hydrolase, procoagulant, anticoagulant and hemorrhagic activities of ten samples of venoms from seven taxa of sea snakes were examined. 2. The results show that venoms of sea snakes of both subfamilies of Hydrophiinae and Laticaudinae are characterized by a very low level of enzymatic activities, except phospholipase A activity and, for some species, hyaluronidase activity. 3. Because of the low levels of enzymatic activities and the total lack of procoagulant and hemorrhagic activities, venom biological properties are not useful for the differentiation of species of sea snakes. Nevertheless, the unusually low levels of enzymatic activities of sea snake venoms may be used to distinguish sea snake venoms from other elapid or viperid venoms.
    Matched MeSH terms: Species Specificity
  14. Tan NH, Ponnudurai G
    Comp. Biochem. Physiol., B, 1991;100(2):361-5.
    PMID: 1799979
    1. The hemorrhagic, procoagulant, anticoagulant, phosphodiesterase, alkaline phosphomonoesterase, 5'-nucleotidase, hyaluronidase, arginine ester hydrolase, phospholipase A, L-amino acid oxidase and protease activities of 26 samples of venoms from 13 species of Bothrops were determined, and the Sephadex G-75 gel filtration patterns for some of the venoms also examined. 2. The results show that while there are considerable individual variations in the biological activities of many of the Bothrops venoms tested, there are some common characteristics at the genus and species levels. 3. The differences in the biological properties of the Bothrops venoms tested can be used for the differentiation of most Bothrops species examined.
    Matched MeSH terms: Species Specificity
  15. Tan NH, Ponnudurai G
    Comp. Biochem. Physiol., B, 1990;96(4):683-8.
    PMID: 2171867
    1. The hemorrhagic, procoagulant, anticoagulant, phosphodiesterase, hyaluronidase, alkaline phosphomonoesterase, 5'-nucleotidase, arginine ester hydrolase, phospholipase A, L-amino acid oxidase and protease activities of 26 samples of venoms of 13 taxa of Vipera were determined and the Sephadex G-75 gel filtration patterns for some of the venoms were also examined. 2. The results indicate the presence of certain common characteristics among the venoms, particularly if V. russelli is excluded from the comparison. The results also support the recently proposed reassignment of V. russelli to a separate genus. 3. The data show that information on venom biological properties can be used for differentiation of venoms of many species of Vipera. Particularly useful for this purpose are the protease, phosphodiesterase, phospholipase A and the procoagulant activities and the Sephadex G-75 gel filtration patterns of the venoms.
    Matched MeSH terms: Species Specificity
  16. Tan NH, Ponnudurai G
    Int. J. Biochem., 1992 Feb;24(2):331-6.
    PMID: 1733799
    1. The hemorrhagic, procoagulant, anticoagulant, phosphodiesterase, hyaluronidase, alkaline phosphomonoesterase, 5'-nucleotidase, arginine ester hydrolase, phospholipase A, L-amino acid oxidase and protease activities of 30 samples of venoms from nine species (12 taxa) of the old world vipers (Subfamily Viperinae) including snakes from the genera Bitis, Causus, Cerastes, Echis, Eristicophis and Pseudocerastes, were determined and the Sephadex G-75 gel filtration patterns for some of the venoms were also examined. 2. Examination of the biological properties of the venoms of the Viperinae tested indicates the presence of common venom biological characteristics at the various phylogenic levels. 3. Venoms of most species of the Viperinae examined exhibited characteristic biological properties at the species level, and this allows the differentiation of the Viperinae species by differences in their biological properties. 4. Particularly useful for this purpose, are the effects of venom on kaolin-cephalin clotting time of platelet poor rabbit plasma and the Sephadex G-75 gel filtration pattern and arginine ester hydrolase activity of the venom.
    Matched MeSH terms: Species Specificity
  17. Tan NH, Ponnudurai G
    Comp. Biochem. Physiol., B, 1992 May;102(1):103-9.
    PMID: 1526113
    1. Examination of the polyacrylamide gel electrophoretic (PAGE) and SDS-PAGE patterns of snake venoms shows that these patterns are useful for species differentiation (and hence identification) for snakes of certain genera but have only limited application for snakes from some other genera, due either to the marked individual variations in the venoms or the lack of marked interspecific differences within the same genus. 2. There is no substantial intersubspecific difference in the electrophoretic patterns of the venoms. 3. In general there are no common characteristics in the electrophoretic patterns of the venom at the generic level because of the wide variations in the electrophoretic patterns of venoms of snakes within the same genus. 4. At the familial level, the venoms of Elapidae exhibited SDS-PAGE patterns distinct from those of Crotalidae.
    Matched MeSH terms: Species Specificity
  18. Huang C, Yu W, Xu Z, Qiu Y, Chen M, Qiu B, et al.
    Int J Biol Sci, 2014;10(2):200-11.
    PMID: 24550688 DOI: 10.7150/ijbs.7301
    Three distinct bamboo bat species (Tylonycteris) are known to inhabit tropical and subtropical areas of Asia, i.e., T. pachypus, T. robustula, and T. pygmaeus. This study performed karyotypic examinations of 4 specimens from southern Chinese T. p. fulvidus populations and one specimen from Thai T. p. fulvidus population, which detected distinct karyotypes (2n=30) compared with previous karyotypic descriptions of T. p. pachypus (2n=46) and T. robustula (2n=32) from Malaysia. This finding suggested a cryptic Tylonycteris species within T. pachypus complex in China and Thailand. Morphometric studies indicated the difficulty in distinguishing the cryptic species and T. p. pachypus from Indonesia apart from the external measurements, which might be the reason for their historical misidentification. Based on 623 bp mtDNA COI segments, a phylogeographic examination including T. pachypus individuals from China and nearby regions, i.e., Vietnam, Laos, and Cambodia, was conducted to examine the population genetic structure. Genealogical and phylogeographical results indicated that at least two diverged lineages existed in these regions (average 3.4 % of Kimura 2-parameter distances) and their population structure did not match the geographic pattern. These results suggested that at least two historical colonizations have occurred by the cryptic species. Furthermore, through integration of traditional and geometric morphological results, morphological differences on zygomatic arches, toothrows and bullae were detected between two lineages in China. Given the similarity of vegetation and climate of Guangdong and Guangxi regions, we suggested that such differences might be derived from their historical adaptation or distinct evolutionary history rather than the differences of habitats they occurred currently.
    Matched MeSH terms: Species Specificity
  19. Benacer D, Zain SNM, Lewis JW, Khalid MKNM, Thong KL
    Rev Soc Bras Med Trop, 2017 Mar-Apr;50(2):239-242.
    PMID: 28562762 DOI: 10.1590/0037-8682-0364-2016
    INTRODUCTION:: This study aimed to develop a duplex endpoint PCR assay for rapid detection and differentiation of Leptospira strains.

    METHODS:: Primers were designed to target the rrs (LG1/LG2) and ligB (LP1/LP2) genes to confirm the presence of the Leptospira genus and the pathogenic species, respectively.

    RESULTS:: The assay showed 100% specificity against 17 Leptospira strains with a limit of detection of 23.1pg/µl of leptospiral DNA and sensitivity of 103 leptospires/ml in both spiked urine and water.

    CONCLUSIONS:: Our duplex endpoint PCR assay is suitable for rapid early detection of Leptospira with high sensitivity and specificity.
    Matched MeSH terms: Species Specificity
  20. Singh B, Bobogare A, Cox-Singh J, Snounou G, Abdullah MS, Rahman HA
    Am J Trop Med Hyg, 1999 Apr;60(4):687-92.
    PMID: 10348249
    A nested polymerase chain reaction (PCR) assay that uses Plasmodium genus-specific primers for the initial PCR (nest 1) amplification and either genus- or species-specific primers for the nest 2 amplifications was tested on laboratory and field samples. With in vitro cultured Plasmodium falciparum-infected blood samples, it was capable of detecting six parasites/microl of blood using DNA prepared from 25-microl blood spots on filter paper. The assay was evaluated on fingerprick blood samples collected on filter paper from 129 individuals living in a malaria-endemic area in Malaysia. Malaria prevalence by genus-specific nested PCR was 35.6% (46 of 129) compared with 28.7% (37 of 129) by microscopy. The nested PCR detected seven more malaria samples than microscopy in the first round of microscopic examination, malaria in three microscopically negative samples, six double infections identified as single infections by microscopy and one triple infection identified as a double infection by microscopy. The nested PCR assay described is a sensitive technique for collecting accurate malaria epidemiologic data. When coupled with simple blood spot sampling, it is particularly useful for screening communities in remote regions of the world.
    Matched MeSH terms: Species Specificity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links