Displaying publications 1 - 20 of 317 in total

Abstract:
Sort:
  1. de Toledo TA, da Costa RC, Al-Maqtari HM, Jamalis J, Pizani PS
    PMID: 28259100 DOI: 10.1016/j.saa.2017.02.051
    The heterocyclic chalcone containing thiophene ring 1-(4-chlorophenyl)-3-(2-thienyl)prop-2-en-1-one, C13H9ClOS was synthesized and investigated using experimental techniques such as nuclear magnetic resonance (1H and 13C NMR), Fourier transform infrared spectroscopy (FTIR) at room temperature, differential scanning calorimeter (DSC) from room temperature to 500K and Raman scattering at the temperature range 10-413K in order to study its structure and vibrational properties as well as stability and possible phase transition. Density functional theory (DFT) calculations were performed to determine the vibrational spectrum viewing to improve the knowledge of the material properties. A reasonable agreement was observed between theoretical and experimental Raman spectrum taken at 10K since anharmonic effects of the molecular motion is reduced at low temperatures, leading to a more comprehensive assignment of the vibrational modes. Increasing the temperature up to 393K, was observed the typical phonon anharmonicity behavior associated to changes in the Raman line intensities, line-widths and red-shift, in special in the external mode region, whereas the internal modes region remains almost unchanged due its strong chemical bonds. Furthermore, C13H9ClOS goes to melting phase transition in the temperature range 393-403K and then sublimates in the temperature range 403-413K. This is denounced by the disappearance of the external modes and the absence of internal modes in the Raman spectra, in accordance with DSC curve. The enthalpy (ΔH) obtained from the integration of the endothermic peak in DSC curve centered at 397K is founded to be 121.5J/g.
    Matched MeSH terms: Spectrum Analysis, Raman
  2. Zèches M, Mesbah K, Loukaci A, Richard B, Schaller H, Sévenet T, et al.
    Planta Med, 1995 Feb;61(1):97.
    PMID: 7701009
    Matched MeSH terms: Spectrum Analysis
  3. Zia Q, Alawami M, Mokhtar NFK, Nhari RMHR, Hanish I
    Food Chem, 2020 Sep 15;324:126664.
    PMID: 32380410 DOI: 10.1016/j.foodchem.2020.126664
    Authentication of meat products is critical in the food industry. Meat adulteration may lead to religious apprehensions, financial gain and food-toxicities such as meat allergies. Thus, empirical validation of the quality and constituents of meat is paramount. Various analytical methods often based on protein or DNA measurements are utilized to identify meat species. Protein-based methods, including electrophoretic and immunological techniques, are at times unsuitable for discriminating closely related species. Most of these methods have been replaced by more accurate and sensitive detection methods, such as DNA-based techniques. Emerging technologies like DNA barcoding and mass spectrometry are still in their infancy when it comes to their utilization in meat detection. Gold nanobiosensors have shown some promise in this regard. However, its applicability in small scale industries is distant. This article comprehensively reviews the recent developments in the field of analytical methods used for porcine identification.
    Matched MeSH terms: Spectrum Analysis/methods
  4. Zhao J, Ma H, Wu W, Ali Bacar M, Wang Q, Gao M, et al.
    Bioresour Technol, 2023 Jan;368:128375.
    PMID: 36414142 DOI: 10.1016/j.biortech.2022.128375
    Substrate toxicity would limit the upgrading of waste biomass to medium-chain fatty acids (MCFAs). In this work, two fermentation modes of electro-fermentation (EF) and traditional fermentation (TF) with different concentration of liquor fermentation waste (20%, 40%, 60%) were used for MCFAs production as well as mechanism investigation. The highest caproate (4.04 g/L) and butyrate (13.96 g/L) concentrations were obtained by EF at 40% substrate concentration. TF experiments showed that the substrate concentration above 40% severely inhibited ethanol oxidation and products formation. Compared with TF mode, the total substrates consumption and product yields under EF mode were significantly increased by 2.6%-43.5% and 54.0%-83.0%, respectively. Microbial analysis indicated that EF effectively alleviated substrate toxicity and enriched chain elongation bacteria, particularly Clostridium_sensu_stricto 12, thereby promoting ethanol oxidation and products formation. Caproiciproducens tolerated high-concentration substrates to ensure normal lactate metabolism. This study provides a new way to produce MCFAs from high concentration wastewater.
    Matched MeSH terms: Spectrum Analysis
  5. Zen DI, Saidin N, Damanhuri SS, Harun SW, Ahmad H, Ismail MA, et al.
    Appl Opt, 2013 Feb 20;52(6):1226-9.
    PMID: 23434993 DOI: 10.1364/AO.52.001226
    We demonstrate mode locking of a thulium-bismuth codoped fiber laser (TBFL) operating at 1901.6 nm, using a graphene-based saturable absorber (SA). In this work, a single layer graphene is mechanically exfoliated using the scotch tape method and directly transferred onto the surface of a fiber pigtail to fabricate the SA. The obtained Raman spectrum characteristic indicates that the graphene on the core surface has a single layer. At 1552 nm pump power of 869 mW, the mode-locked TBFL self starts to generate an optical pulse train with a repetition rate of 16.7 MHz and pulse width of 0.37 ps. This is a simple, low-cost, stable, and convenient laser oscillator for applications where eye-safe and low-photon-energy light sources are required, such as sensing and biomedical diagnostics.
    Matched MeSH terms: Spectrum Analysis, Raman/methods
  6. Zamiri R, Ahangar HA, Kaushal A, Zakaria A, Zamiri G, Tobaldi D, et al.
    PLoS One, 2015;10(4):e0122989.
    PMID: 25910071 DOI: 10.1371/journal.pone.0122989
    A template-free precipitation method was used as a simple and low cost method for preparation of CeO2 nanoparticles. The structure and morphology of the prepared nanoparticle samples were studied in detail using X-ray diffraction, Raman spectroscopy and Scanning Electron Microscopy (SEM) measurements. The whole powder pattern modelling (WPPM) method was applied on XRD data to accurately measure the crystalline domain size and their size distribution. The average crystalline domain diameter was found to be 5.2 nm, with a very narrow size distribution. UV-visible absorbance spectrum was used to calculate the optical energy band gap of the prepared CeO2 nanoparticles. The FT-IR spectrum of prepared CeO2 nanoparticles showed absorption bands at 400 cm(-1) to 450 cm(-1) regime, which correspond to CeO2 stretching vibration. The dielectric constant (εr) and dielectric loss (tan δ) values of sintered CeO2 compact consolidated from prepared nanoparticles were measured at different temperatures in the range from 298 K (room temperature) to 623 K, and at different frequencies from 1 kHz to 1 MHz.
    Matched MeSH terms: Spectrum Analysis, Raman
  7. Zakuwan SZ, Ahmad I, Abu Tahrim N, Mohamed F
    Polymers (Basel), 2021 Apr 06;13(7).
    PMID: 33917600 DOI: 10.3390/polym13071176
    In this study, we fabricated a modified biomaterial based on chitosan and gelatin, which is an intrinsic hydrophilic membrane for oil-water separation to clean water contamination by oil. Modification of the membrane with a non-toxic natural crosslinker, genipin, significantly enhanced the stability of the biopolymer membrane in a water-based medium towards an eco-friendly environment. The effects of various compositions of genipin-crosslinked chitosan-gelatin membrane on the rheological properties, thermal stability, and morphological structure of the membrane were investigated using a dynamic rotational rheometer, thermogravimetry analysis, and chemical composition by attenuated total reflectance spectroscopy (ATR). Modified chitosan-gelatin membrane showed completely miscible blends, as determined by field-emission scanning electron microscopy, differential scanning calorimetry, and ATR. Morphological results showed membrane with establish microstructure to further experiment as filtration product. The membranes were successfully tested for their oil-water separation efficiencies. The membrane proved to be selective and effective in separating water from an oil-water mixture. The optimum results achieved a stable microporous structure of the membrane (microfiltration) and a separation efficiency of above 98%. The membrane showed a high permeation flux, generated as high as 698 and 420 L m-2 h-1 for cooking and crude oils, respectively. Owing to its outstanding recyclability and anti-fouling performance, the membrane can be washed away easily, ensuring the reusability of the prepared membrane.
    Matched MeSH terms: Spectrum Analysis
  8. Zakaria A, Ho YB
    Regul Toxicol Pharmacol, 2015 Oct;73(1):191-5.
    PMID: 26190304 DOI: 10.1016/j.yrtph.2015.07.005
    This study aimed to determine the heavy metals (lead, cadmium, and chromium) concentration in lipsticks of different price categories sold in the Malaysian market and evaluate the potential health risks due to daily ingestion of heavy metals in lipsticks. A total of 374 questionnaires were distributed to the female staff in a public university in Malaysia in order to obtain information such as brand and price of the lipsticks, body weight, and frequency and duration of wearing lipstick. This information was important for the calculation of hazard quotient (HQ) in health risk assessment. The samples were extracted using a microwave digester and analyzed using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The concentrations of lead, cadmium, and chromium in lipsticks ranged from 0.77 to 15.44 mg kg(-1), 0.06-0.33 mg kg(-1), and 0.48-2.50 mg kg(-1), respectively. There was a significant difference of lead content in the lipsticks of different price categories. There was no significant non-carcinogenic health risk due to the exposure of these heavy metals through lipstick consumption for the prolonged exposure of 35 years (HQ < 1).
    Matched MeSH terms: Spectrum Analysis
  9. Zak AK, Hashim AM, Darroudi M
    Nanoscale Res Lett, 2014;9(1):399.
    PMID: 25177218 DOI: 10.1186/1556-276X-9-399
    Pure zinc oxide and zinc oxide/barium carbonate nanoparticles (ZnO-NPs and ZB-NPs) were synthesized by the sol-gel method. The prepared powders were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), Auger spectroscopy, and transmission electron microscopy (TEM). The XRD result showed that the ZnO and BaCO3 nanocrystals grow independently. The Auger spectroscopy proved the existence of carbon in the composites besides the Zn, Ba, and O elements. The UV-Vis spectroscopy results showed that the absorption edge of ZnO nanoparticles is redshifted by adding barium carbonate. In addition, the optical parameters including the refractive index and permittivity of the prepared samples were calculated using the UV-Vis spectra.
    Matched MeSH terms: Spectrum Analysis
  10. Zainudin Jaafar, Mukhlis Mokhtar, Abu Bakar Mhd Ghazali
    MyJurnal
    Personal computer (PC) based user interface for equipment control and data acquisition from the nuclear counting system to count nuclear radiation energy from radioactive sources have been developed at Malaysian Nuclear Agency. Effort is made to ensure a good reliability of the system for nuclear counting, especially neutrons particles and gamma rays. It will be used in laboratory for testing and maintenance of nuclear spectrometry instruments. Personal computer is used to control the operation of equipment and data acquisition from counter/timer module. Control and data communication between PC and the Counter/ Timer is made through the USB' to RS 232 converter terminal. The program for this system was written using Labview 8.6 software on Windows XP environment. This system has been successfully tested using a pulse generator to simulate the detector signal for calibration and then followed by actual measurement using HE-3 detector.
    Matched MeSH terms: Spectrum Analysis
  11. Zainon SNM, Azmi WH
    Micromachines (Basel), 2021 Feb 11;12(2).
    PMID: 33670250 DOI: 10.3390/mi12020176
    Many studies have shown the remarkable enhancement of thermo-physical properties with the addition of a small quantity of nanoparticles into conventional fluids. However, the long-term stability of the nanofluids, which plays a significant role in enhancing these properties, is hard to achieve, thus limiting the performance of the heat transfer fluids in practical applications. The present paper attempts to highlight various approaches used by researchers in improving and evaluating the stability of thermal fluids and thoroughly explores various factors that contribute to the enhancement of the thermo-physical properties of mono, hybrid, and green nanofluids. There are various methods to maintain the stability of nanofluids, but this paper particularly focuses on the sonication process, pH modification, and the use of surfactant. In addition, the common techniques to evaluate the stability of nanofluids are undertaken by using visual observation, TEM, FESEM, XRD, zeta potential analysis, and UV-Vis spectroscopy. Prior investigations revealed that the type of nanoparticle, particle volume concentration, size and shape of particles, temperature, and base fluids highly influence the thermo-physical properties of nanofluids. In conclusion, this paper summarized the findings and strategies to enhance the stability and factors affecting the thermal conductivity and dynamic viscosity of mono and hybrid of nanofluids towards green nanofluids.
    Matched MeSH terms: Spectrum Analysis
  12. Zainal-Abidin MH, Hayyan M, Ngoh GC, Wong WF
    ACS Omega, 2020 Jan 28;5(3):1656-1668.
    PMID: 32010840 DOI: 10.1021/acsomega.9b03709
    The application of graphene in the field of drug delivery has attracted massive interest among researchers. However, the high toxicity of graphene has been a drawback for its use in drug delivery. Therefore, to enhance the biocompatibility of graphene, a new route was developed using ternary natural deep eutectic solvents (DESs) as functionalizing agents, which have the capability to incorporate various functional groups and surface modifications. Physicochemical characterization analyses, including field emission scanning electron microscope, fourier-transform infrared spectroscopy, Raman spectroscopy, Brunauer-Emmett-Teller, X-ray diffraction, and energy dispersive X-ray, were used to verify the surface modifications introduced by the functionalization process. Doxorubicin was loaded onto the DES-functionalized graphene. The results exhibited significantly improved drug entrapment efficiency (EE) and drug loading capacity (DLC) compared with pristine graphene and oxidized graphene. Compared with unfunctionalized graphene, functionalization with DES choline chloride (ChCl):sucrose:water (4:1:4) resulted in the highest drug loading capacity (EE of 51.84% and DLC of 25.92%) followed by DES ChCl:glycerol:water (1:2:1) (EE of 51.04% and DLC of 25.52%). Following doxorubicin loading, graphene damaged human breast cancer cell line (MCF-7) through the generation of intracellular reactive oxygen species (>95%) and cell cycle disruption by increase in the cell population at S phase and G2/M phase. Thus, DESs represent promising green functionalizing agents for nanodrug carriers. To the best of our knowledge, this is the first time that DES-functionalized graphene has been used as a nanocarrier for doxorubicin, illustrating the potential application of DESs as functionalizing agents in drug delivery systems.
    Matched MeSH terms: Spectrum Analysis, Raman
  13. Zaidi Embong
    MyJurnal
    This review briefly describes some of the techniques available for analysing surfaces and illustrates their usefulness with a few examples such as a metal and alloy. In particular, Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and laser Raman spectroscopy are all described as advanced surface analytical techniques. In analysing a surface, AES and XPS would normally be considered first, with AES being applied where high spatial resolution is required and XPS where chemical state information is needed. Laser Raman spectroscopy is useful for determining molecular bonding. A combination of XPS, AES and Laser Raman spectroscopy can give quantitative analysis from the top few atomic layers with a lateral spatial resolution of
    Matched MeSH terms: Spectrum Analysis, Raman
  14. Yuvaraj R, Murugappan M, Ibrahim NM, Omar MI, Sundaraj K, Mohamad K, et al.
    J Integr Neurosci, 2014 Mar;13(1):89-120.
    PMID: 24738541 DOI: 10.1142/S021963521450006X
    Deficits in the ability to process emotions characterize several neuropsychiatric disorders and are traits of Parkinson's disease (PD), and there is need for a method of quantifying emotion, which is currently performed by clinical diagnosis. Electroencephalogram (EEG) signals, being an activity of central nervous system (CNS), can reflect the underlying true emotional state of a person. This study applied machine-learning algorithms to categorize EEG emotional states in PD patients that would classify six basic emotions (happiness and sadness, fear, anger, surprise and disgust) in comparison with healthy controls (HC). Emotional EEG data were recorded from 20 PD patients and 20 healthy age-, education level- and sex-matched controls using multimodal (audio-visual) stimuli. The use of nonlinear features motivated by the higher-order spectra (HOS) has been reported to be a promising approach to classify the emotional states. In this work, we made the comparative study of the performance of k-nearest neighbor (kNN) and support vector machine (SVM) classifiers using the features derived from HOS and from the power spectrum. Analysis of variance (ANOVA) showed that power spectrum and HOS based features were statistically significant among the six emotional states (p < 0.0001). Classification results shows that using the selected HOS based features instead of power spectrum based features provided comparatively better accuracy for all the six classes with an overall accuracy of 70.10% ± 2.83% and 77.29% ± 1.73% for PD patients and HC in beta (13-30 Hz) band using SVM classifier. Besides, PD patients achieved less accuracy in the processing of negative emotions (sadness, fear, anger and disgust) than in processing of positive emotions (happiness, surprise) compared with HC. These results demonstrate the effectiveness of applying machine learning techniques to the classification of emotional states in PD patients in a user independent manner using EEG signals. The accuracy of the system can be improved by investigating the other HOS based features. This study might lead to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders.
    Matched MeSH terms: Spectrum Analysis*
  15. Yusop SNW, Imran S, Adenan MI, Sultan S
    Steroids, 2020 12;164:108735.
    PMID: 32976918 DOI: 10.1016/j.steroids.2020.108735
    The fungal transformations of medroxyrogesterone (1) were investigated for the first time using Cunninghamella elegans, Trichothecium roseum, and Mucor plumbeus. The metabolites obtained are as following: 6β, 20-dihydroxymedroxyprogesterone (2), 12β-hydroxymedroxyprogesterone (3), 6β, 11β-dihydroxymedroxyprogesterone (4), 16β-hydroxymedroxyprogesterone (5), 11α, 17-dihydroxy-6α-methylpregn-4-ene-3, 20-dione (6), 11-oxo-medroxyprogesterone (7), 6α-methyl-17α-hydroxypregn-1,4-diene-3,20-dione (8), and 6β-hydroxymedroxyprogesterone (9), 15β-hydroxymedroxyprogesterone (10), 6α-methyl-17α, 11β-dihydroxy-5α-pregnan-3, 20-dione (11), 11β-hydroxymedroxyprogesterone (12), and 11α, 20-dihydroxymedroxyprogesterone (13). Among all the microbial transformed products, the newly isolated biotransformed product 13 showed the most potent activity against proliferation of SH-SY5Y cells. Compounds 12, 5, 6, 9, 11, and 3 (in descending order of activity) also showed some extent of activity against SH-SY5Y tumour cell line. The never been reported biotransformed product, 2, showed the most potent inhibitory activity against acetylcholinesterase. Molecular modelling studies were carried out to understand the observed experimental activities, and also to obtain more information on the binding mode and the interactions between the biotransformed products, and enzyme.
    Matched MeSH terms: Spectrum Analysis/methods
  16. Yusof, F., Chowdhury, S., Faruck, M. O., Sulaiman, N.
    MyJurnal
    Cancer still presents enormous challenges in the medical world. Currently, the search for
    anticancer compounds has garnered a lot of interest, especially in finding them from the natural
    sources. In this study, by using Sulforhodamine B (SRB) colorimetric assay, compounds,
    extracted from supermeal worm (Zophobas morio) larvae using two types of acidified organic
    solvent (ethanol and isopropanol), were shown to inhibit the growth of a breast cancer line,
    MCF-7. A comparative study of the effect was carried out on a normal cell line, Vero. Results
    showed that, the two types of extracts inhibits growth of MCF-7 cell at varying degrees, on
    the other hand, have much less effect on Vero cell. Extracts analysed by UV-vis spectroscopy,
    showed peaks in the range of 260 to 280 nm, inferring the presence of aromatic amino acids,
    whereas the highest peak of 3.608 AU at 230 nm indicates the presence of peptide bonds. By
    Raman spectroscopy, peaks are observed at 1349 cm-1, 944 cm-1 and 841 cm-1 indicating the
    presence of Tyr, Try and Gly, confirming the UV-vis analyses. All results of analyses implied
    that the anticancer compounds contain peptides.
    Matched MeSH terms: Spectrum Analysis, Raman
  17. Yusof NA, Ahmad M
    PMID: 17531526
    A flow-through optical fibre chemical sensor for the determination of Co(II) at trace level using immobilised 2-(4-pyridylazo)resorcinol (PAR) as the reagent phase is proposed. PAR is physically adsorbed onto XAD-7. This method provided a great sensitivity and simplicity with wide linear response range from 1x10(-2) to 1x10(3)ppm and detection limit of 20ppb. This method also showed a reproducible result with relative standard deviation (R.S.D.) of 1.78% and response time of approximately 5min. The response towards Co(II) was also reversible using acidified KCl as the regenerating solution. Interference studies showed that Cr(III) significantly interfered during the determination. Excellent agreement with reference to inductively coupled plasma optical emission spectroscopy (ICPOES) method was achieved when the developed sensor was applied for determination of Co(II) in aqueous samples.
    Matched MeSH terms: Spectrum Analysis/instrumentation*; Spectrum Analysis/methods*
  18. Yusof N, Haraguchi A, Hassan MA, Othman MR, Wakisaka M, Shirai Y
    Waste Manag, 2009 Oct;29(10):2666-80.
    PMID: 19564103 DOI: 10.1016/j.wasman.2009.05.022
    Since landfilling is the common method of waste disposal in Malaysia, river water is greatly exposed to the risk of contamination from leachate unless proper leachate management is carried out. In this study, leachates from three different types of landfills, namely active uncontrolled, active controlled and closed controlled, were characterized, and their relationships with river water chemistry were examined monthly for a year. The influence of leachate on river water chemistry from each type of landfill depended on many factors, including the presence of a leachate control mechanism, leachate characteristics, precipitation, surface runoff and the applied treatment. The impact of leachate from an active uncontrolled landfill was the highest, as the organic content, NH(4)(+)-N, Cd and Mn levels appeared high in the river. At the same time, influences of leachate were also observed from both types of controlled landfills in the form of inorganic nitrogen (NH(4)(+)-N, NO(3)(-)-N and NO(2)(-)-N) and heavy metals (Fe, Cr, Ni and Mn). Improper treatment practice led to high levels of some contaminants in the stream near the closed controlled landfill. Meanwhile, the active controlled landfill, which was located near the coastline, was exposed to the risk of contamination resulting from the pyrite oxidation of the surrounding area.
    Matched MeSH terms: Spectrum Analysis
  19. Yusof Abdullah, Mohd Reusmaazran Yusof, Megat Harun Al Rashid Megat Ahmad, Hafizal Yazid, Abdul Aziz Mohamed, Norazila Mat Sali, et al.
    MyJurnal
    Effects of 3 MeV electron (10 mA) irradiation at room temperature on the phase, microstructure,
    electrical and life time properties of 4H-SiC wafer were investigated by scanning electron
    microscopy (SEM), X-ray diffraction (XRD), four point probe current-voltage measurements and
    positron annihilation spectroscopy. It was found that irradiation damage in SiC wafer is
    significantly increased with the increase of radiation dose as observed in SEM. Irradiation also
    resulted in modification of crystallite size as identified by XRD. The resistance of a sample before
    irradiation was found to be 0.8 MΩ, whereas for a sample irradiated at 200 kGy, the resistance as
    measured by four point probe was 5.2 MΩ. It seems that the increase of resistance hence, reduction
    in conductivities could be due to defects induced by the radiation dose received then created
    leakage currents at both reverse and low-forward biases and creation of traps in the SiC.
    Meanwhile positron annihilation spectroscopy (PAS) was used to analyse the life time of irradiated
    samples which nonetheless shows that all irradiated sample have similar life time of 151 ps. It was
    observed that that no degradation process of materials experienced by SiC wafer irradiated at 500
    kGy.
    Matched MeSH terms: Spectrum Analysis
  20. Yusof AM, Salleh S, Wood AK
    Biol Trace Elem Res, 1999;71-72:139-48.
    PMID: 10676488
    Speciation of arsenic and selenium was carried out on water samples taken from rivers used as water intake points in the vicinity of landfill areas used for land-based waste disposal system. Leachates from these landfill areas may contaminate the river water through underground seepage or overflowing, especially after a heavy downpour. Preconcentration of the chemical species was done using a mixture of ammonium pyrrolidinethiocarbamate-chloroform (APDTC-CHCl3). Because only the reduced forms of both arsenic and selenium species could be extracted by the preconcentrating mixture, suitable reducing agents such as 25% sodium thiosulfate for As(III) and 6M HCl for Se(IV) were used throughout the studies. Care was taken to exclude the interfering elements such as the alkali and alkali earth metals from the inorganic arsenic and selenium species by introducing 12% EDTA solution as the masking agent. The extracted mixture was irradiated in a thermal neutron flux of 4 x 10(12)/cm/s from a TRIGA Mk.II reactor at the Malaysia Institute of Nuclear Technology Research (MINT). Gamma rays of 559 keV and 297 keV from 76As and 75Se, respectively, were used in the quantitative determination of the inorganic species. Mixed standards of As(III) and Se(IV) used in the percentage efficiency procedure were prepared from salts of Analar grade. The water quality evaluation was viewed from the ratio of the inorganic species present.
    Matched MeSH terms: Spectrum Analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links