Displaying publications 1 - 20 of 79 in total

Abstract:
Sort:
  1. Wan Omar WH, Mahyudin NA, Azmi NN, Mahmud Ab Rashid NK, Ismail R, Mohd Yusoff MHY, et al.
    Int J Food Microbiol, 2023 Jun 02;394:110184.
    PMID: 36996693 DOI: 10.1016/j.ijfoodmicro.2023.110184
    Staphylococcus aureus and Salmonella Typhimurium have a propensity to develop biofilms on food contact surfaces, such as stainless-steel, that persist despite rigorous cleaning and sanitizing procedures. Since both bacterial species pose a significant public health risk within the food chain, improved anti-biofilm measures are needed. This study examined the potential of clays as antibacterial and anti-biofilm agents against these two pathogens on appropriate contact surfaces. Natural soil was processed to yield leachates and suspensions of both untreated and treated clays. Soil particle size, pH, cation-exchange capacity, and metal ions were characterized to assess their importance in bacterial killing. Initial antibacterial screening was performed on nine distinct types of natural Malaysian soil using a disk diffusion assay. Untreated leachate from Kuala Gula and Kuala Kangsar clays were found to inhibit S. aureus (7.75 ± 0.25 mm) and Salmonella Typhimurium (11.85 ± 1.63 mm), respectively. The treated Kuala Gula suspension (50.0 and 25.0 %) reduced S. aureus biofilms by 4.4 and 4.2 log at 24 and 6 h, respectively, while treated Kuala Kangsar suspension (12.5 %) by a 4.16 log reduction at 6 h. Although less effective, the treated Kuala Gula leachate (50.0 %) was effective in removing Salmonella Typhimurium biofilm with a decrease of >3 log in 24 h. In contrast to Kuala Kangsar clays, the treated Kuala Gula clays contained a much higher soluble metal content, especially Al (301.05 ± 0.45 ppm), Fe (691.83 ± 4.80 ppm) and Mg (88.44 ± 0.47 ppm). Elimination of S. aureus biofilms correlated with the presence of Fe, Cu, Pb, Ni, Mn and Zn irrespective of the pH of the leachate. Our findings demonstrate that a treated suspension is the most effective for eradication of S. aureus biofilms with a potential as a sanitizer-tolerant, natural antibacterial against biofilms for applications in the food industry.
    Matched MeSH terms: Stainless Steel
  2. Kamaruzzaman WMIWM, Fekeri MFM, Nasir NAM, Hamidi NASM, Baharom MZ, Adnan A, et al.
    Molecules, 2021 Jun 03;26(11).
    PMID: 34205014 DOI: 10.3390/molecules26113379
    With the trend for green technology, the study focused on utilizing a forgotten herb to produce an eco-friendly coating. Andrographis paniculata or the kalmegh leaves extract (KLE) has been investigated for its abilities in retarding the corrosion process due to its excellent anti-oxidative and antimicrobial properties. Here, KLE was employed as a novel additive in coatings and formulations were made by varying its wt%: 0, 3, 6, 9, and 12. These were applied to stainless steel 316L immersed in seawater for up to 50 days. The samples were characterized and analyzed to measure effectiveness of inhibition of corrosion and microbial growth. The best concentration was revealed to be 6 wt% KLE; it exhibited the highest performance in improving the ionic resistance of the coating and reducing the growth of bacteria.
    Matched MeSH terms: Stainless Steel/pharmacology*; Stainless Steel/chemistry
  3. Anwer AH, Khan N, Umar MF, Rafatullah M, Khan MZ
    Membranes (Basel), 2021 Mar 22;11(3).
    PMID: 33810075 DOI: 10.3390/membranes11030223
    Microbial electrosynthesis is a new approach to converting C1 carbon (CO2) to more complex carbon-based products. In the present study, CO2, a potential greenhouse gas, was used as a sole carbon source and reduced to value-added chemicals (acetate, ethanol) with the help of bioelectrochemical reduction in microbial electrosynthesis systems (MES). The performance of MES was studied with varying electrode materials (carbon felt, stainless steel, and cobalt electrodeposited carbon felt). The MES performance was assessed in terms of acetic acid and ethanol production with the help of gas chromatography (GC). The electrochemical characterization of the system was analyzed with chronoamperometry and cyclic voltammetry. The study revealed that the MES operated with hybrid cobalt electrodeposited carbon felt electrode yielded the highest acetic acid (4.4 g/L) concentration followed by carbon felt/stainless steel (3.7 g/L), plain carbon felt (2.2 g/L), and stainless steel (1.87 g/L). The alcohol concentration was also observed to be highest for the hybrid electrode (carbon felt/stainless steel/cobalt oxide is 0.352 g/L) as compared to the bare electrodes (carbon felt is 0.22 g/L) tested, which was found to be in correspondence with the pH changes in the system. Electrochemical analysis revealed improved electrotrophy in the hybrid electrode, as confirmed by the increased redox current for the hybrid electrode as compared to plain electrodes. Cyclic voltammetry analysis also confirmed the role of the biocatalyst developed on the electrode in CO2 sequestration.
    Matched MeSH terms: Stainless Steel
  4. Yasmin F, Tamrin KF, Sheikh NA, Barroy P, Yassin A, Khan AA, et al.
    Materials (Basel), 2021 Mar 09;14(5).
    PMID: 33803364 DOI: 10.3390/ma14051311
    Laser-assisted high speed milling is a subtractive machining method that employs a laser to thermally soften a difficult-to-cut material's surface in order to enhance machinability at a high material removal rate with improved surface finish and tool life. However, this machining with high speed leads to high friction between workpiece and tool, and can result in high temperatures, impairing the surface quality. Use of conventional cutting fluid may not effectively control the heat generation. Besides, vegetable-based cutting fluids are invariably a major source of food insecurity of edible oils which is traditionally used as a staple food in many countries. Thus, the primary objective of this study is to experimentally investigate the effects of water-soluble sago starch-based cutting fluid on surface roughness and tool's flank wear using response surface methodology (RSM) while machining of 316 stainless steel. In order to observe the comparison, the experiments with same machining parameters are conducted with conventional cutting fluid. The prepared water-soluble sago starch based cutting fluid showed excellent cooling and lubricating performance. Therefore, in comparison to the machining using conventional cutting fluid, a decrease of 48.23% in surface roughness and 38.41% in flank wear were noted using presented approach. Furthermore, using the extreme learning machine (ELM), the obtained data is modeled to predict surface roughness and flank wear and showed good agreement between observations and predictions.
    Matched MeSH terms: Stainless Steel
  5. Taufiqurrahman I, Ahmad A, Mustapha M, Lenggo Ginta T, Ady Farizan Haryoko L, Ahmed Shozib I
    Materials (Basel), 2021 Feb 27;14(5).
    PMID: 33673716 DOI: 10.3390/ma14051129
    Welding parameters obviously determine the joint quality during the resistance spot welding process. This study aimed to investigate the effect of welding current and electrode force on the heat input and the physical and mechanical properties of a SS316L and Ti6Al4V joint with an aluminum interlayer. The weld current values used in this study were 11, 12, and 13 kA, while the electrode force values were 3, 4, and 5 kN. Welding time and holding time remained constant at 30 cycles. The study revealed that, as the welding current and electrode force increased, the generated heat input increased significantly. The highest tensile-shear load was recorded at 8.71 kN using 11 kA of weld current and 3 kN of electrode force. The physical properties examined the formation of a brittle fracture and several weld defects on the high current welded joint. The increase in weld current also increased the weld diameter. The microstructure analysis revealed no phase transformation on the SS316L interface; instead, the significant grain growth occurred. The phase transformation has occurred on the Ti6Al4V interface. The intermetallic compound layer was also investigated in detail using the EDX (Energy Dispersive X-Ray) and XRD (X-Ray Diffraction) analyses. It was also found that both stainless steel and titanium alloy have their own fusion zone, which is indicated by the highest microhardness value.
    Matched MeSH terms: Stainless Steel
  6. Mutafi A, Yidris N, Koloor SSR, Petrů M
    Materials (Basel), 2020 Nov 26;13(23).
    PMID: 33256257 DOI: 10.3390/ma13235378
    Stainless steels are increasingly used in construction today, especially in harsh environments, in which steel corrosion commonly occurs. Cold-formed stainless steel structures are currently increasing in popularity because of its efficiency in load-bearing capacity and its appealing architectural appearance. Cold-rolling and press-braking are the cold-working processes used in the forming of stainless steel sections. Press braking can produce large cross-sections from thin to thick-walled sections compared to cold-rolling. Cold-forming in press-braked sections significantly affect member behaviour and joints; therefore, they have attained great attention from many researchers to initiate investigations on those effects. This paper examines the behaviour of residual stress distribution of stainless steel press-braked sections by implementing three-dimensional finite element (3D-FE) technique. The study proposed a full finite element procedure to predict the residual stresses starting from coiling-uncoiling to press-braking. This work considered material anisotropy to examine its effect on the residual stress distribution. The technique adopted was compared with different finite element techniques in the literature. This study also provided a parametric study for three corner radius-to-thickness ratios looking at the through-thickness residual stress distribution of four stainless steels (i.e., ferritic, austenitic, duplex, lean duplex) in which have their own chemical composition. In conclusion, the comparison showed that the adopted technique provides a detailed prediction of residual stress distribution. The influence of geometrical aspects is more pronounced than the material properties. Neglecting the material anisotropy shows higher shifting in the neutral axis. The parametric study showed that all stainless steel types have the same stress through-thickness distribution. Moreover, R/t ratios' effect is insignificant in all transverse residual stress distributions, but a slight change to R/t ratios can affect the longitudinal residual stress distribution.
    Matched MeSH terms: Stainless Steel
  7. Revathi M, Sivagaami Sundari G, Ahmed Basha C, Alam M, Sagadevan S, Ahmad N
    J Nanosci Nanotechnol, 2020 10 01;20(10):6547-6554.
    PMID: 32385012 DOI: 10.1166/jnn.2020.18562
    This investigation aims at the reclamation of Cr(VI) from synthetic electroplating industrial effluent by electroextraction process namely electrochemical ion exchange (EIX). An electrochemical ion exchange reactor of desired dimensions was fabricated with the help of ion-permeable membranes, stainless steel cathode and PbO₂ coated Ti expanded mesh anode. The performance of the reactor was studied in batch recirculation mode, continuous flow mode at different experimental conditions. The influence of various experimental factors, for instance, initial metal ion concentration (20, 300, 1000 mg/L of Cr(VI)), applied voltages (2.5 V, 5 V, 7.5 V, 10 V) and flow rates of the process stream (2, 4, 6, 8, 10, 12 and 14 ml/min) on removal/reclamation efficiency was deliberated. For comparison purposes, an electrodialysis process was conducted at the same optimal conditions. It was found that the EIX process with three compartments has more removal efficiency at optimum experimental conditions than the electrodialysis process. The continuous flow process of the reactor with 300 mg/L of Cr(VI) as inlet concentration has studied to predict the breakeven point of the reactor. It was noted that Cr(VI) ion concentration in the treated wastewater is almost zero up to the discharge of 20 liters of treated rinse water.
    Matched MeSH terms: Stainless Steel
  8. Chai WS, Sun D, Cheah KH, Li G, Meng H
    ACS Omega, 2020 Aug 11;5(31):19525-19532.
    PMID: 32803046 DOI: 10.1021/acsomega.0c01804
    Hydroxylammonium nitrate (HAN) is a promising green propellant because of its low toxicity, high volumetric specific impulse, and reduced development cost. Electrolytic decomposition of HAN is an efficient approach to prepare it for further ignition and combustion. This paper describes the investigation of a co-electrolysis effect on electrolytic decomposition of HAN-fuel mixtures using stainless steel-platinum (SS-Pt) electrodes. For the first time, different materials were utilized as electrodes to alter the cathodic reaction, which eliminated the inhibition effect and achieved a repeatable and consistent electrolytic decomposition of HAN solution. Urea and methanol were added as fuel components in the HAN-fuel mixtures. When the mass ratio of added urea ≥20%, the electrolytic decomposition of a HAN-urea ternary mixture achieved 67% increment in maximum gas temperature (Tgmax) and 185% increment in overall temperature increasing rate over the benchmark case of HAN solution. The co-electrolysis of urea released additional electrons into the mixtures and enhanced the overall electrolytic decomposition of HAN. In contrast, the addition of methanol did not improve the Tgmax but only increased the overall temperature increasing rate. This work has important implications in the development of an efficient and reliable electrolytic decomposition system of HAN and its mixtures for propulsion applications.
    Matched MeSH terms: Stainless Steel
  9. Alias R, Mahmoodian R, Genasan K, Vellasamy KM, Hamdi Abd Shukor M, Kamarul T
    Mater Sci Eng C Mater Biol Appl, 2020 Feb;107:110304.
    PMID: 31761210 DOI: 10.1016/j.msec.2019.110304
    Surgical site infection associated with surgical instruments has always been a factor in delaying post-operative recovery of patients. The evolution in surface modification of surgical instruments can be a potential choice to overcome the nosocomial infection mainly caused by bacterial populations such as Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. A study was, therefore, conducted characterising the morphology, hydrophobicity, adhesion strength, phase, Nano-hardness, surface chemistry, antimicrobial and biocompatibility of SS 316L steel deposited with a Nano-composite layer of Silver (Ag) and Tantalum oxide (Ta2O5) using physical vapour deposition magnetron sputtering. The adhesion strength of Ag/AgTa2O5 coating on SS 316L and treated at 250-850 °C of thermal treatment was evaluated using micro-scratch. The Ag/Ag-Ta2O5-400 °C was shown a 154% improvement in adhesion strength on SS 316L when compared with as-sputtered layer or Ag/Ag-Ta2O5-250, 550, 700 and 850 °C. The FESEM, XPS, and XRD indicated the segregation of Ag on the surface of SS 316L after the crystallization. Wettability and Nano-indentation tests demonstrated an increase in hydrophobicity (77.3 ± 0.3°) and Nano-hardness (1.12 ± 0.43 GPa) when compared with as-sputtered layer, after the 400 °C of thermal treatment. The antibacterial performance on Ag/Ag-Ta2O5-400 °C indicated a significant zone of inhibition to Staphylococcus aureus (A-axis: 16.33 ± 0.58 mm; B-axis: 25.67 ± 0.58 mm, p 
    Matched MeSH terms: Stainless Steel/chemistry*
  10. Mohd Shahminan Ibrahim, Wen, Yap Kai, Gonzalez, Maria Angela Garcia, Noor Azlin Yahya
    Ann Dent, 2020;27(1):41-49.
    MyJurnal
    This study compared the surface roughness of selected tooth coloured restorative materials that were polished according to manufacturers’ instructions and Sof-Lex. It also assessed the surface roughness of polished materials after thermocycling.Filtek Z350XT, Beautifil-Bulk Restorative and Cention N, were used in this study. A stainless steel mould (10mm diameter x 2mm height) was used to fabricate 75 cylindrical specimens: 15 Filtek Z350XT (FZ), 30 Beautifil-Bulk Restorative (BB) and 30 Cention N (CN). All 15 FZ specimens were polished with Sof-Lex. Fifteen BB and CN specimens were polished according to manufacturers’ instructions. The remaining fifteen BB and CN specimens were polished using Sof-Lex. All the specimens were subjected to thermocycling (1000 cycles). Surface roughness was assessed quantitatively with profilometry after specimen preparation (Mylar stage), polishingand thermocycling. Data were analysed using SPSS version 25.0 at α=0.05. When polished according to manufacturers’ instructions, BB had the lowest mean surface roughness (Ra) values (0.13±0.01μm) followed sequentially by CN (0.14±0.03μm) and FZ (0.15±0.02μm). The differences were not statistically significant. When polished with Sof-Lex, BB exhibited the smoothest surface (0.116±0.03μm) followed sequentially by and FZ (0.150±0.02μm) and CN (0.157±0.02μm). Thermocycling caused an increase in the Ra. The differences were statistically significant. All materials tested had Ra values below the threshold value of 0.2 μm at Mylar stage and after polishing with their recommended polishing system and Sof-Lex. Thermocycling produced rougher surfaces that did not exceed the threshold Ra value. Polishability was material dependent.
    Matched MeSH terms: Stainless Steel
  11. Rohani Abu Bakar, Asrul Mustafa
    MyJurnal
    Adhesives serve many functions in daily life, starting from sticking envelopes to rejoining broken
    materials. Adhesives are usually developed for a specific purpose and the performances can vary
    according to their specific end-use. Most of the commercially available adhesives comprised nonrenewable or petroleum derived raw materials. Thus, in order to mitigate negative impact of using nonrenewable material as the raw material for adhesives, a new type of adhesive containing epoxidised
    natural rubber (NR) latex is developed. Epoxidised NR latex adhesive was initially prepared and pigment
    was subsequently added to produce desired colours of the adhesive. Hence, the newly developed adhesive
    can serve as adhesive and also as paint for art. The adhesives were characterised and the results indicated
    that they were free from heavy metal contents and volatile organic compounds (VOCs). The adhesives
    exhibited comparable odour concentration to commercial synthetic-based adhesive. In terms of toxicity
    level, the adhesive developed exhibited low acute oral toxicity. Peel adhesion test of A4 and drawing
    papers on stainless steel and glass substrates, opacity and glossiness were also investigated in the present
    study. This coloured adhesive is deemed to support the STEM (science, technology, engineering and
    mathematics) learning by indirectly imparting polymer science and technology in art education and
    further promotes creative learning among school children. The adhesive is also derived from renewable
    material rendering it more environmentally friendly.
    Matched MeSH terms: Stainless Steel
  12. Chitturi V, Pedapati SR, Awang M
    Materials (Basel), 2019 Nov 26;12(23).
    PMID: 31779107 DOI: 10.3390/ma12233901
    Automobile, aerospace, and shipbuilding industries are looking for lightweight materials for cost effective manufacturing which demands the welding of dissimilar alloy materials. In this study, the effect of tool rotational speed, welding speed, tilt angle, and pin depth on the weld joint were investigated. Aluminum 5052 and 304 stainless-steel alloys were joined by friction stir welding in a lap configuration. The design of the experiments was based on Taguchi's orthogonal array for conducting the experiments with four factors and three levels for each factor. The microstructural analysis showed tunnel defects, micro voids, and cracks which formed with 0° and 1.5° tilt angles. The defects were eliminated when the tilt angle increased to 2.5° and a mixed stir zone was formed with intermetallic compounds. The presence of the intermetallic compounds increased with the increase in tilt angle and pin depth which further resulted in obtaining a defect-free weld. Hooks were formed on either side of the weld zone creating a mechanical link for the joint. A Vickers hardness value of HV 635.46 was achieved in the mixed stir zone with 1000 rpm, 20 mm/min, and 4.2 mm pin depth with a tilt angle of 2.5°, which increased by three times compared to the hardness of SS 304 steel. The maximum shear strength achieved with 800 rpm, 40 mm/min, and a 4.3 mm pin depth with a tilt angle of 2.5° was 3.18 kN.
    Matched MeSH terms: Stainless Steel
  13. Ahmad S, Badshah S, Ul Haq I, Abdullah Malik S, Amjad M, Nasir Tamin M
    Materials (Basel), 2019 Oct 23;12(21).
    PMID: 31652687 DOI: 10.3390/ma12213463
    Wire ropes undergo a fretting fatigue condition when subjected to axial and bending loads. The fretting behavior of wires are classified as line contact and trellis point of contact. The experimental study on the fatigue of wire ropes indicates that most of the failure occurs due to high localized stresses at trellis point of contact. A continuum damage mechanics approach was previously proposed to estimate the fatigue life estimation of wire ropes. The approach majorly depends on the high value of localized stresses as well as the micro-slippage occurs at the contact region. Finite element approach has been used to study radial and axial distribution of stresses and displacement in order to clearly understand the evolution of stresses and existence of relative displacements between neighboring wires under various loading and frictional conditions. The relative movements of contacting wires are more when friction is not considered. In the presence of friction, the relative movement occurs at the boundaries of the contact region. The location of microslip in the presence of friction is backed by the experimental observation stating the crack is initiated at or the outer boundary of the contact spot. The existence of slip is due to different displacement of outer and central wires.
    Matched MeSH terms: Stainless Steel
  14. Sim BM, Hong TS, Hanim MA, Tchan EN, Talari MK
    Materials (Basel), 2019 Oct 10;12(20).
    PMID: 31658593 DOI: 10.3390/ma12203285
    Duplex stainless steels (DSSs) are complex materials and they have been widely used in the marine environment and gas industries, primarily offering a better resistance of pitting corrosion and good mechanical properties. In the present work, the effects of heat treatment on duplex stainless steel (DSS) weld overlay samples that were heat treated at three different temperatures, namely 350 °C, 650 °C, and 1050 °C, and followed by air cooling and water quenching were studied. Stress relief temperature at 650 °C had induced sigma phase precipitation in between delta ferrite and austenite (δ/γ) grain boundaries, resulting in the loss of corrosion resistance in the weld metal. Interestingly, post weld heat treatment (PWHT) test samples that were reheated to solution annealing temperature had shown no weight loss. The ferrite count determination in the region of weld metal overlay increased at hydrogen relief and decreased at stress relief temperatures due to slow cooling, which is more favorable to austenite formation. The amount of ferrite in the weld metals was significantly reduced with the increment of solution anneal temperature to 1050 °C because of sufficient time for the formation of austenite and giving optimum equilibrium fraction in the welds.
    Matched MeSH terms: Stainless Steel
  15. Lukman SK, Al-Ashwal RH, Sultana N, Saidin S
    Chem Pharm Bull (Tokyo), 2019;67(5):445-451.
    PMID: 31061369 DOI: 10.1248/cpb.c18-00847
    Electrodeposition is commonly used to deposit ceramic or metal coating on metallic implants. Its utilization in depositing polymer microcapsule coating is currently being explored. However, there is no encapsulation of drug within polymer microcapsules that will enhance its chemical and biological properties. Therefore, in this study, ginseng which is known for its multiple therapeutic effects was encapsulated inside biodegradable poly(lactic-co-glycolic acid) (PLGA) microcapsules to be coated on pre-treated medical grade stainless steel 316L (SS316L) using an electrodeposition technique. Polyaniline (PANI) was incorporated within the microcapsules to drive the formation of microcapsule coating. The electrodeposition was performed at different current densities (1-3 mA) and different deposition times (20-60 s). The chemical composition, morphology and wettability of the microcapsule coatings were characterized through attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) and contact angle analyses. The changes of electrolyte colors, before and after the electrodeposition were also observed. The addition of PANI has formed low wettability and uniform microcapsule coatings at 2 mA current density and 40 s deposition time. Reduction in the current density or deposition time caused less attachment of microcapsule coatings with high wettability records. While prolonging either one parameter has led to debris formation and melted microcapsules with non-uniform wettability measurements. The color of electrolytes was also changed from milky white to dark yellow when the current density and deposition time increased. The application of tolerable current density and deposition time is crucial to obtain a uniform microcapsule coating, projecting a controlled release of encapsulated drug.
    Matched MeSH terms: Stainless Steel/chemistry*
  16. Mohd Daud N, Hussein Al-Ashwal R, Abdul Kadir MR, Saidin S
    Ann. Anat., 2018 Nov;220:29-37.
    PMID: 30048761 DOI: 10.1016/j.aanat.2018.06.009
    Immobilization of chlorhexidine (CHX) on stainless steel 316L (SS316L), assisted by a polydopamine film as an intermediate layer is projected as an approach in combating infection while aiding bone regeneration for coating development on orthopedic and dental implants. This study aimed to investigate the ability of CHX coating to promote apatite layer, osteoblast cells viability, adhesion, osteogenic differentiation and mineralization. Stainless steel 316L disks were pre-treated, grafted with a polydopamine film and immobilized with different concentrations of CHX (10-30mM). The apatite layer formation was determined through an in vitro simulated body fluid (SBF) test by ATR-FTIR and SEM-EDX analyses. The osteoblastic evaluations including cells viability, cells adhesion, osteogenic differentiation and mineralization were assessed with human fetal osteoblast cells through MTT assay, morphology evaluation under FESEM, ALP enzyme activity and Alizarin Red S assay. The apatite layer was successfully formed on the CHX coated disks, demonstrating potential excellent bioactivity property. The CHX coatings were biocompatible with the osteoblast cells at low CHX concentration (<20mM) with good adhesion on the metal surfaces. The increment of ALP activity and calcium deposition testified that the CHX coated disks able to support osteoblastic maturation and mineralization. These capabilities give a promising value to the CHX coating to be implied in bone regeneration area.
    Matched MeSH terms: Stainless Steel
  17. Nirmal U
    Polymers (Basel), 2018 Sep 25;10(10).
    PMID: 30960991 DOI: 10.3390/polym10101066
    The current work is an attempt to reduce friction coefficient of the treated betelnut fibre reinforced polyester (T-BFRP) composites by aging them in twelve different solutions with different kinematic viscosities. The test will be performed on a pin on disc (POD) wear test rig using different applied loads (5⁻30 N), different sliding distances (0⁻6.72 km) at sliding speed of 2.8 m/s subjected to a smooth stainless steel counterface (AISI-304). Different orientations of the fibre mats such as anti-parallel (AP) and parallel (P) orientations subjected to the rotating counterface will be considered. The worn surfaces were examined through optical microscopy imaging and it was found that the aged specimens had significantly lower damages as compared to neat polyester (NP) and the unaged samples. Besides, P-O samples revealed lower friction coefficients as compared to AP-O, i.e., reduction was about 24.71%. Interestingly, aging solutions with lower kinematic viscosities revealed lower friction coefficients of the aged T-BFRP composites when compared to the ones aged in higher kinematic viscosities.
    Matched MeSH terms: Stainless Steel
  18. Azman AR, Mahat NA, Abdul Wahab R, Abdul Razak FI, Hamzah HH
    Int J Mol Sci, 2018 May 25;19(6).
    PMID: 29799469 DOI: 10.3390/ijms19061576
    Waterways are popular locations for the disposition of criminal evidence because the recovery of latent fingerprints from such evidence is difficult. Currently, small particle reagent is a method often used to visualize latent fingerprints containing carcinogenic and hazardous compounds. This study proposes an eco-friendly, safranin-tinted Candida rugosa lipase (triacylglycerol ester hydrolysis EC 3.1.1.3) with functionalized carbon nanotubes (CRL-MWCNTS/GA/SAF) as an alternative reagent to the small particle reagent. The CRL-MWCNTS/GA/SAF reagent was compared with the small particle reagent to visualize groomed, full fingerprints deposited on stainless steel knives which were immersed in a natural outdoor pond for 30 days. The quality of visualized fingerprints using the new reagent was similar (modified-Centre for Applied Science and Technology grade: 4; p > 0.05) to small particle reagent, even after 15 days of immersion. Despite the slight decrease in quality of visualized fingerprints using the CRL-MWCNTS/GA/SAF on the last three immersion periods, the fingerprints remained forensically identifiable (modified-Centre for Applied Science and Technology grade: 3). The possible chemical interactions that enabled successful visualization is also discussed. Thus, this novel reagent may provide a relatively greener alternative for the visualization of latent fingerprints on immersed non-porous objects.
    Matched MeSH terms: Stainless Steel
  19. Tapsir Z, Jamaludin FH, Pingguan-Murphy B, Saidin S
    J Biomater Appl, 2018 02;32(7):987-995.
    PMID: 29187035 DOI: 10.1177/0885328217744081
    The utilisation of hydroxyapatite and collagen as bioactive coating materials could enhance cells attachment, proliferation and osseointegration. However, most methods to form crystal hydroxyapatite coating do not allow the incorporation of polymer/organic compound due to production phase of high sintering temperature. In this study, a polydopamine film was used as an intermediate layer to immobilise hydroxyapatite-collagen without the introduction of high sintering temperature. The surface roughness, coating adhesion, bioactivity and osteoblast attachment on the hydroxyapatite-collagen coating were assessed as these properties remains unknown on the polydopamine grafted film. The coating was developed by grafting stainless steel 316L disks with a polydopamine film. Collagen type I fibres were then immobilised on the grafted film, followed by the biomineralisation of hydroxyapatite. The surface roughness and coating adhesion analyses were later performed by using AFM instrument. An Alamar Blue assay was used to determine the cytotoxicity of the coating, while an alkaline phosphatase activity test was conducted to evaluate the osteogenic differentiation of human fetal osteoblasts on the coating. Finally, the morphology of cells attachment on the coating was visualised under FESEM. The highest RMS roughness and coating adhesion were observed on the hydroxyapatite-collagen coating (hydroxyapatite-coll-dopa). The hydroxyapatite-coll-dopa coating was non-toxic to the osteoblast cells with greater cells proliferation, greater level of alkaline phosphate production and more cells attachment. These results indicate that the immobilisation of hydroxyapatite and collagen using an intermediate polydopamine is identical to enhance coating adhesion, osteoblast cells attachment, proliferation and differentiation, and thus could be implemented as a coating material on orthopaedic and dental implants.
    Matched MeSH terms: Stainless Steel/chemistry*
  20. Sadri R, Hosseini M, Kazi SN, Bagheri S, Abdelrazek AH, Ahmadi G, et al.
    J Colloid Interface Sci, 2018 Jan 01;509:140-152.
    PMID: 28898734 DOI: 10.1016/j.jcis.2017.07.052
    In this study, we synthesized covalently functionalized graphene nanoplatelet (GNP) aqueous suspensions that are highly stable and environmentally friendly for use as coolants in heat transfer systems. We evaluated the heat transfer and hydrodynamic properties of these nano-coolants flowing through a horizontal stainless steel tube subjected to a uniform heat flux at its outer surface. The GNPs functionalized with clove buds using the one-pot technique. We characterized the clove-treated GNPs (CGNPs) using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). We then dispersed the CGNPs in distilled water at three particle concentrations (0.025, 0.075 and 0.1wt%) in order to prepare the CGNP-water nanofluids (nano-coolants). We used ultraviolet-visible (UV-vis) spectroscopy to examine the stability and solubility of the CGNPs in the distilled water. There is significant enhancement in thermo-physical properties of CGNPs nanofluids relative those for distilled water. We validated our experimental set-up by comparing the friction factor and Nusselt number for distilled water obtained from experiments with those determined from empirical correlations, indeed, our experimental set-up is reliable and produces results with reasonable accuracy. We conducted heat transfer experiments for the CGNP-water nano-coolants flowing through the horizontal heated tube in fully developed turbulent condition. Our results are indeed promising since there is a significant enhancement in the Nusselt number and convective heat transfer coefficient for the CGNP-water nanofluids, with only a negligible increase in the friction factor and pumping power. More importantly, we found that there is a significant increase in the performance index, which is a positive indicator that our nanofluids have potential to substitute conventional coolants in heat transfer systems because of their overall thermal performance and energy savings benefits.
    Matched MeSH terms: Stainless Steel
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links