Displaying all 12 publications

Abstract:
Sort:
  1. Awang K, Loong XM, Leong KH, Supratman U, Litaudon M, Mukhtar MR, et al.
    Fitoterapia, 2012 Dec;83(8):1391-5.
    PMID: 23098876 DOI: 10.1016/j.fitote.2012.10.004
    A study on the leaves of Aglaia exima led to the isolation of one new and seven known compounds: six triterpenoids and two steroids. Their structures were elucidated and analyzed mainly by using spectroscopic methods; 1D and 2D NMR, mass spectrometry, UV spectrometry and X-ray. All the triterpenoids and steroids were measured in vitro for their cytotoxic activities against eight cancer cell lines; lung (A549), prostate (DU-145), skin (SK-MEL-5), pancreatic (BxPC-3), liver (Hep G2), colon (HT-29), breast (MCF-7) and (MDA-MB-231). The new cycloartane triterpenoid, 24(E)-cycloart-24-ene-26-ol-3-one 1, showed potent cytotoxic activity against colon (HT-29) cancer cell line (IC(50) 11.5μM).
    Matched MeSH terms: Steroids/pharmacology
  2. Dehghan F, Yusof A, Muniandy S, Salleh N
    Environ Toxicol Pharmacol, 2015 Nov;40(3):785-91.
    PMID: 26447688 DOI: 10.1016/j.etap.2015.09.004
    The high risk of knee injuries in female may be associated with sex-steroid hormone fluctuations during the menstrual cycle by its effect on ligaments and tendons stiffness. This study examined changes in knee range of motion in presence of estrogen and progesterone and investigated the interaction of their antagonists to relaxin receptors.
    Matched MeSH terms: Steroids/pharmacology
  3. Gupta G, Chellappan DK, Kikuchi IS, Pinto TJA, Pabreja K, Agrawal M, et al.
    J Environ Pathol Toxicol Oncol, 2017;36(2):113-119.
    PMID: 29199592 DOI: 10.1615/JEnvironPatholToxicolOncol.2017019457
    Paracetamol (PCM) has an acceptable safety profile when used at prescribed doses. However, it is now understood that paracetamol can damage the kidneys when administered as an overdose. In addition, oxidative stress can play a major role in causing nephrotoxicity. This investigation studies the efficacy of moralbosteroid isolated from M. alba stem bark. Nephrotoxicity was induced with administration of paracetamol. Nephroprotection was studied using two doses of the extract. The experimental animals were divided into four groups (n = 6). Two groups served as positive and negative controls, respectively, and two received the test substances. All of the contents were orally administered. Significant reductions in nephrotoxicity and oxidative damages were observed in the treatment groups. There was a marked decrease in blood levels of urea, creatinine, and lipid peroxidation. Furthermore, it was found that glutathione levels in the blood increased dramatically after treatment. Histological findings confirmed the potent renoprotective potential of moralbosteroid. This was evidenced by the minimized intensity of nephritic cellular destruction. In animal studies, moralbosteroid exhibited dose-dependent activity, which is thought to be mediated through its antioxidant potential.
    Matched MeSH terms: Steroids/pharmacology*
  4. Holland I, Bakri YM, Sakoff J, Zaleta Pinet D, Motti C, van Altena I
    Phytochemistry, 2021 Aug;188:112798.
    PMID: 34020274 DOI: 10.1016/j.phytochem.2021.112798
    As part of our ongoing study of the specialised metabolites present in brown algae belonging to the Cystophora genus, eight new steroids including three pairs of diastereoisomers were isolated from Cystophora xiphocarpa (Harvey) (Sargassacea, Fucales). The metabolites identified by standard spectrometric methods are (16S,22S)-16,22-dihydroxyergosta-4,24(28)-dien-3-one and (16S,22R)-16,22-dihydroxyergosta-4,24(28)-dien-3-one, (16S,22S,24R)-16,22,24-trihydroxyporifera-4,28-dien-3-one and (16S,22S,24S)-16,22,24-trihydroxystigma-4,28-dien-3-one along with (16S,22S,24E)-16,22-dihydroxystigma-4,24(28)-dien-3-one and (16S,20S)-16,20-dihydroxyergosta-4,24(28)-dien-3-one. (16S,22S,24E)-16,22-Dihydroxystigma-4,24(28)-dien-3-one possessed the most potent cytotoxicity of the steroids in this series with cell growth inhibitions of GI50 8.7 ± 0.7 μM against colon cancer HT29, GI50 5.6 ± 0.8 μM against the breast cancer line MCF-7 and GI50 4.5 ± 0.2 μM against the ovarian cancer cell line A2780. (16S,22R)-16,22-dihydroxyergosta-4,24(28)-dien-3-one was found to be active against the ovarian cancer cell line A2780 with a GI50 of 6.2 ± 0.1 μM.
    Matched MeSH terms: Steroids/pharmacology
  5. Jenila JS, Issac PK, Lam SS, Oviya JC, Jones S, Munusamy-Ramanujam G, et al.
    Environ Res, 2023 Nov 01;236(Pt 2):116810.
    PMID: 37532209 DOI: 10.1016/j.envres.2023.116810
    Gestagens are common pollutants accumulated in the aquatic ecosystem. Gestagens are comprised of natural gestagens (i.e. progesterone) and synthetic gestagens (i.e. progestins). The major contributors of gestagens in the environment are paper plant mill effluent, wastewater treatment plants, discharge from pharmaceutical manufacturing, and livestock farming. Gestagens present in the aquatic environment interact with progesterone receptors and other steroid hormone receptors, negatively influencing fish reproduction, development, and behavior. In fish, the gonadotropin induces 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) production, an important steroid hormone involved in gametogenesis. DHP interacts with the membrane progestin receptor (mPR), which regulates sperm motility and oocyte maturation. Gestagens also interfere with the hypothalamic-pituitary-gonadal (HPG) axis, which results in altered hormone levels in fish. Moreover, recent studies showed that even at low concentrations exposure to gestagens can have detrimental effects on fish reproduction, including reduced egg production, masculinization, feminization in males, and altered sex ratio, raising concerns about their impact on the fish population. This review highlights the hormonal regulation of sperm motility, oocyte maturation, the concentration of environmental gestagens in the aquatic environment, and their detrimental effects on fish reproduction. However, the long-term and combined impacts of multiple gestagens, including their interactions with other pollutants on fish populations and ecosystems are not well understood. The lack of standardized regulations and monitoring protocols for gestagens pollution in wastewater effluent hampers effective control and management. Nonetheless, advancements in analytical techniques and biomonitoring methods provide potential solutions by enabling better detection and quantification of gestagens in aquatic ecosystems.
    Matched MeSH terms: Steroids/pharmacology
  6. Jomori T, Shiroyama S, Ise Y, Kohtsuka H, Matsuda K, Kuranaga T, et al.
    J Nat Med, 2019 Sep;73(4):814-819.
    PMID: 31054009 DOI: 10.1007/s11418-019-01315-6
    Two new steroidal saponins, scrobiculosides A and B, were isolated from the deep-sea sponge Pachastrella scrobiculosa, collected at a depth of 200 m off Miura Peninsula, Japan. The aglycones of scrobiculosides A and B feature a vinylic cyclopropane and a ∆24,25 exomethylene on the side chains, respectively. Both saponins have a common sugar moiety composed of β-D-galactopyranosyl-(1 → 2)-6-acetyl-β-D-glucopyranoside, with the exception of an acetyl group on C6″ in scrobiculoside A. Scrobiculoside A exhibited cytotoxicity against HL-60 and P388 cells, with IC50 values of 52 and 61 μM, respectively.
    Matched MeSH terms: Steroids/pharmacology*
  7. Kam TS, Sim KM, Koyano T, Toyoshima M, Hayashi M, Komiyama K
    J Nat Prod, 1998 Nov;61(11):1332-6.
    PMID: 9834146
    The EtOH extract of the leaves of Holarrhena curtisii yielded five new steroidal alkaloids: 17-epi-holacurtine (3), 17-epi-N-demethylholacurtine (4), holacurtinol (5), 3alpha-amino-14beta-hydroxypregnan-20-one (7), and 15alpha-hydroxyholamine (8), in addition to the known compounds, holacurtine (1), N-demethylholacurtine (2), and holamine (6). All eight compounds showed significant cytotoxic and leishmanicidal activities.
    Matched MeSH terms: Steroids/pharmacology*
  8. Nabishah BM, Morat PB, Kadir BA, Khalid BA
    Gen. Pharmacol., 1991;22(2):389-92.
    PMID: 1647349
    1. Glucocorticosteroid may relieve bronchospasm by mediating changes in the muscarinic receptor concentration and/or its affinity. 2. Cholinergic muscarinic receptors were determined by using Scatchard's plots from radioligand binding assays of 0.13-3.2 nM [3H]quinuclidinyl benzylate binding to the membrane fraction of bronchial smooth muscle (BSM). 3. The concentration of muscarinic receptor in BSM of normal rat was 57 +/- 3 fmol mg protein and the dissociation constant was 0.07 +/- 0.02 nM. Dexamethasone and corticosterone reduced muscarinic receptor concentration to 50-60% of basal with no changes in receptor affinity. No changes were found in rat treated with deoxycorticosterone. 4. These findings suggest that glucocorticoids but not mineralocorticoid relieve bronchospasm at least partly by reducing the cholinergic hypersensitivity.
    Matched MeSH terms: Steroids/pharmacology*
  9. Ruszymah BH, Nabishah BM, Aminuddin S, Sarjit S, Khalid BA
    Malays J Pathol, 1999 Jun;21(1):51-8.
    PMID: 10879279
    Corticotrophin releasing factor (CRF) and beta-endorphin (beta EP) containing neurons are shown to be present in the hypothalamus and both neurons are found at the paraventricular nucleus (PVN). Steroid hormones have been found to alter the plasma level of these neurotransmitters. Glycyrrhizic acid (GCA) is the active component of liquorice. GCA inhibits the enzyme 11 beta-hydroxysteroid dehydrogenase (11HSD) which is needed for the inactivation of the steroid pathway, so therefore would cause changes to these neurons. The aim of this study was to investigate the effects of GCA as well as deoxycorticosterone (DOC) and dexamethasone (DM) on the modulation of CRF and beta EP containing neuron at the PVN of the hypothalamus. Rats were given either DM, DOC or GCA and adrenalectomized (ADX) and given either DM or DOC. At the end of treatment rats were transfused transcardially before sacrifice and the brain were dissected for immunohistochemical analysis. We found that immunostaining of the CRF containing neurons demonstrate a reduction in the number of positive neurons in DM treated rats. DOC and GCA treated rats showed the same result as in DM rats but the reduction is less. ADX, DM, DOC and GCA treated rats did not show any changes in the number of beta EP containing neurons but naloxone increased the number of beta EP containing neurons markedly. In conclusion, GCA and DOC have similar effects on CRF and beta EP containing neurons at the PVN.
    Matched MeSH terms: Steroids/pharmacology*
  10. Salhi N, Mohammed Saghir SA, Terzi V, Brahmi I, Ghedairi N, Bissati S
    Biomed Res Int, 2017;2017:7526291.
    PMID: 29226147 DOI: 10.1155/2017/7526291
    Aim: This study investigated the antifungal properties of aqueous extracts obtained from indigenous plants that grow spontaneously in the Northern Sahara of Algeria. The activities of these plants in controlling two fungal species that belong to Fusarium genus were evaluated in an in vitro assay.

    Materials and Methods: Fresh aerial parts of four plant species (Artemisia herba alba, Cotula cinerea, Asphodelus tenuifolius, and Euphorbia guyoniana) were collected for the preparation of aqueous extracts. Two levels of dilution (10% and 20%) of the pure extracts were evaluated against Fusarium graminearum and Fusarium sporotrichioides.

    Results: The results of this study revealed that the A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana aqueous extracts are effective at both concentrations of 10% and 20% for the Fusarium mycelia growth inhibition. In particular, A. tenuifolius extract is effective against F. graminearum, whereas F. sporotrichioides mycelium growth is strongly affected by the E. guyoniana 20% extract. The phytochemical characterization of the compositions of the aqueous extracts has revealed that the presence of some chemical compounds (tannins, flavonoids, saponins, steroids, and alkaloids) is likely to be responsible for the antifungal activities sought.

    Conclusion: The antifungal properties of A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana make these plants of potential interest for the control of fungi affecting both wheat yield and safety.

    Matched MeSH terms: Steroids/pharmacology
  11. Shamsian S, Nabipour I, Mohebbi G, Baghban N, Zare M, Zandi K, et al.
    Microb Pathog, 2024 Jan;186:106486.
    PMID: 38056601 DOI: 10.1016/j.micpath.2023.106486
    In this study, we investigated the potential in vitro anti-HSV-1 activities of the Cassiopea andromeda jellyfish tentacle extract (TE) and its fractions, as well as computational work on the thymidine kinase (TK) inhibitory activity of the identified secondary metabolites. The LD50, secondary metabolite identification, preparative and analytical chromatography, and in silico TK assessment were performed using the Spearman-Karber, GC-MS, silica gel column chromatography, RP-HPLC, LC-MS, and docking methods, respectively. The antiviral activity of TE and the two purified compounds Ca2 and Ca7 against HSV-1 in Vero cells was evaluated by MTT and RT-PCR assays. The LD50 (IV, mouse) values of TE, Ca2, and Ca7 were 104.0 ± 4, 5120 ± 14, and 197.0 ± 7 (μg/kg), respectively. They exhibited extremely effective antiviral activity against HSV-1. The CC50 and MNTD of TE, Ca2, and Ca7 were (125, 62.5), (25, 12.5), and (50, 3.125) μg/ml, respectively. GC-MS analysis of the tentacle extract revealed seven structurally distinct chemical compositions. Four of the seven compounds had a steroid structure. According to the docking results, all compounds showed binding affinity to the active sites of both thymidine kinase chains. Among them, the steroid compound Pregn-5-ene-3,11-dione, 17,20:20,21 bis [methylenebis(oxy)]-, cyclic 3-(1,2-ethane diyl acetal) (Ca2) exhibited the highest affinity for both enzyme chains, surpassing that of standard acyclovir. In silico data confirmed the experimental results. We conclude that the oxosteroid Ca2 may act as a potent agent against HSV-1.
    Matched MeSH terms: Steroids/pharmacology
  12. Zhou C, Yu T, Zhu R, Lu J, Ouyang X, Zhang Z, et al.
    Int J Biol Sci, 2023;19(5):1471-1489.
    PMID: 37056925 DOI: 10.7150/ijbs.77979
    Timosaponin AIII (Tim-AIII), a steroid saponin, exhibits strong anticancer activity in a variety of cancers, especially breast cancer and liver cancer. However, the underlying mechanism of the effects of Tim-AIII-mediated anti-lung cancer effects remain obscure. In this study, we showed that Tim-AIII suppressed cell proliferation and migration, induced G2/M phase arrest and ultimately triggered cell death of non-small cell lung cancer (NSCLC) cell lines accompanied by the release of reactive oxygen species (ROS) and iron accumulation, malondialdehyde (MDA) production, and glutathione (GSH) depletion. Interestingly, we found that Tim-AIII-mediated cell death was reversed by ferroptosis inhibitor ferrostatin-1 (Fer-1). Meanwhile, the heat shock protein 90 (HSP90) was predicted and verified as the direct binding target of Tim-AIII by SwissTargetPrediction (STP) and surface plasmon resonance (SPR) assay. Further study showed that Tim-AIII promoted HSP90 expression and Tim-AIII induced cell death was blocked by the HSP90 inhibitor tanespimycin, indicating that HSP90 was the main target of Tim-AIII to further trigger intracellular events. Mechanical analysis revealed that the Tim-AIII-HSP90 complex further targeted and degraded glutathione peroxidase 4 (GPX4), and promoted the ubiquitination of GPX4, as shown by an immunoprecipitation, degradation and in vitro ubiquitination assay. In addition, Tim-AIII inhibited cell proliferation, induced cell death, led to ROS and iron accumulation, MDA production, GSH depletion, as well as GPX4 ubiquitination and degradation, were markedly abrogated when HSP90 was knockdown by HSP90-shRNA transfection. Importantly, Tim-AIII also showed a strong capacity of preventing tumor growth by promoting ferroptosis in a subcutaneous xenograft tumor model, whether C57BL/6J or BALB/c-nu/nu nude mice. Together, HSP90 was identified as a new target of Tim-AIII. Tim-AIII, by binding and forming a complex with HSP90, further targeted and degraded GPX4, ultimately induced ferroptosis in NSCLC. These findings provided solid evidence that Tim-AIII can serve as a potential candidate for NSCLC treatment.
    Matched MeSH terms: Steroids/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links