OBJECTIVE: The aim of this study is to analyze the multiphase pulsatile blood flow in the left coronary artery tree with stenosis.
METHODS: The 3D left coronary artery model was reconstructed using 2D computerized tomography (CT) scan images. The Red Blood Cell (RBC) and varying hemodynamic parameters for single and multiphase blood flow conditions were analyzed.
RESULTS: Results asserted that the multiphase blood flow modeling has a maximum velocity of 1.017 m/s and1.339 m/s at the stenosed region during the systolic and diastolic phases respectively. The increase in Wall Shear Stress (WSS) observed at the stenosed region during the diastole phase as compared during the systolic phase. It was also observed that the highest Oscillatory Shear Index (OSI) regions are found in the downstream area of stenosis and across the bifurcations. The increase in RBCs velocity from 0.45 m/s to 0.6 m/s across the stenosis was also noticed.
CONCLUSION: The computational multiphase blood flow analysis improves the understanding and accuracy of the complex flow conditions of blood elements (RBC and Plasma) and provides the progression of the disease development in the coronary arteries. This study helps to enhance the diagnosis of the blocked (stenosed) arteries more precisely compared to the single-phase blood flow modeling.
METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period.
RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05). The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05), indicating cell proliferation.
CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.
PURPOSE: The purpose of this laboratory and finite element analysis study was to investigate the effects on the formation of a hybrid layer of an experimental silane coupling agent containing primer solutions composed of different percentages of hydroxyethyl methacrylate.
MATERIAL AND METHODS: A total of 125 sound human premolars were restored in vitro. Simple class I cavities were formed on each tooth, followed by the application of different compositions of experimental silane primers (0%, 5%, 25%, and 50% of hydroxyethyl methacrylate), bonding agents, and dental composite resins. Bond strength tests and scanning electron microscopy analyses were performed. The laboratory experimental results were validated with finite element analysis to determine the pattern of stress distribution. Simulations were conducted by placing the restorative composite resin in a premolar tooth by imitating simple class I cavities. The laboratory and finite element analysis data were significantly different from each other, as determined by 1-way ANOVA. A post hoc analysis was conducted on the bond strength data to further clarify the effects of silane primers.
RESULTS: The strongest bond of hybrid layer (16.96 MPa) was found in the primer with 25% hydroxyethyl methacrylate, suggesting a barely visible hybrid layer barrier. The control specimens without the application of the primer and the primer specimens with no hydroxyethyl methacrylate exhibited the lowest strength values (8.30 MPa and 11.78 MPa) with intermittent and low visibility of the hybrid layer. These results were supported by finite element analysis that suggested an evenly distributed stress on the model with 25% hydroxyethyl methacrylate.
CONCLUSIONS: Different compositions of experimental silane primers affected the formation of the hybrid layer and its resulting bond strength.