Displaying publications 1 - 20 of 243 in total

Abstract:
Sort:
  1. Lan YW, Choo KB, Chen CM, Hung TH, Chen YB, Hsieh CH, et al.
    Stem Cell Res Ther, 2015;6:97.
    PMID: 25986930 DOI: 10.1186/s13287-015-0081-6
    Idiopathic pulmonary fibrosis is a progressive diffuse parenchymal lung disorder of unknown etiology. Mesenchymal stem cell (MSC)-based therapy is a novel approach with great therapeutic potential for the treatment of lung diseases. Despite demonstration of MSC grafting, the populations of engrafted MSCs have been shown to decrease dramatically 24 hours post-transplantation due to exposure to harsh microenvironments. Hypoxia is known to induce expression of cytoprotective genes and also secretion of anti-inflammatory, anti-apoptotic and anti-fibrotic factors. Hypoxic preconditioning is thought to enhance the therapeutic potency and duration of survival of engrafted MSCs. In this work, we aimed to prolong the duration of survival of engrafted MSCs and to enhance the effectiveness of idiopathic pulmonary fibrosis transplantation therapy by the use of hypoxia-preconditioned MSCs.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/metabolism*
  2. Fakiruddin KS, Lim MN, Nordin N, Rosli R, Zakaria Z, Abdullah S
    Cancers (Basel), 2019 08 28;11(9).
    PMID: 31466290 DOI: 10.3390/cancers11091261
    Mesenchymal stem cells (MSCs) are emerging as vehicles for anti-tumor cytotherapy; however, investigation on its efficacy to target a specific cancer stem cell (CSC) population in non-small cell lung cancer (NSCLC) is lacking. Using assays to evaluate cell proliferation, apoptosis, and gene expression, we investigated the efficacy of MSCs expressing tumour necrosis factor (TNF)-related apoptosis inducing ligand (MSC-TRAIL) to target and destroy CD133+ (prominin-1 positive) NSCLC-derived CSCs. Characterization of TRAIL death receptor 5 (DR5) revealed that it was highly expressed in the CD133+ CSCs of both H460 and H2170 cell lines. The human MSC-TRAIL generated in the study maintained its multipotent characteristics, and caused significant tumor cell inhibition in NSCLC-derived CSCs in a co-culture. The MSC-TRAIL induced an increase in annexin V expression, an indicator of apoptosis in H460 and H2170 derived CD133+ CSCs. Through investigation of mitochondria membrane potential, we found that MSC-TRAIL was capable of inducing intrinsic apoptosis to the CSCs. Using pathway-specific gene expression profiling, we uncovered candidate genes such as NFKB1, BAG3, MCL1, GADD45A, and HRK in CD133+ CSCs, which, if targeted, might increase the sensitivity of NSCLC to MSC-TRAIL-mediated inhibition. As such, our findings add credibility to the utilization of MSC-TRAIL for the treatment of NSCLC through targeting of CD133+ CSCs.
    Matched MeSH terms: Mesenchymal Stromal Cells
  3. Lee SS, Cheah YK
    J Immunol Res, 2019;2019:3046379.
    PMID: 30944831 DOI: 10.1155/2019/3046379
    Cellular components of the tumour microenvironment (TME) are recognized to regulate the hallmarks of cancers including tumour proliferation, angiogenesis, invasion, and metastasis, as well as chemotherapeutic resistance. The linkage between miRNA, TME, and the development of the hallmarks of cancer makes miRNA-mediated regulation of TME a potential therapeutic strategy to complement current cancer therapies. Despite significant advances in cancer therapy, lung cancer remains the deadliest form of cancer among males in the world and has overtaken breast cancer as the most fatal cancer among females in more developed countries. Therefore, there is an urgent need to develop more effective treatments for NSCLC, which is the most common type of lung cancer. Hence, this review will focus on current literature pertaining to antitumour or protumourigenic effects elicited by nonmalignant stromal cells of TME in NSCLC through miRNA regulation as well as current status and future prospects of miRNAs as therapeutic agents or targets to regulate TME in NSCLC.
    Matched MeSH terms: Stromal Cells
  4. Lan YW, Theng SM, Huang TT, Choo KB, Chen CM, Kuo HP, et al.
    Stem Cells Transl Med, 2017 03;6(3):1006-1017.
    PMID: 28297588 DOI: 10.5966/sctm.2016-0054
    Mesenchymal stem cells (MSCs) are widely considered for treatment of pulmonary fibrosis based on the anti-inflammatory, antifibrotic, antiapoptotic, and regenerative properties of the cells. Recently, elevated levels of oncostatin M (OSM) have been reported in the bronchoalveolar lavage fluid of a pulmonary fibrosis animal model and in patients. In this work, we aimed to prolong engrafted MSC survival and to enhance the effectiveness of pulmonary fibrosis transplantation therapy by using OSM-preconditioned MSCs. OSM-preconditioned MSCs were shown to overexpress type 2 OSM receptor (gp130/OSMRβ) and exhibited high susceptibility to OSM, resulting in upregulation of the paracrine factor, hepatocyte growth factor (HGF). Moreover, OSM-preconditioned MSCs enhanced cell proliferation and migration, attenuated transforming growth factor-β1- or OSM-induced extracellular matrix production in MRC-5 fibroblasts through paracrine effects. In bleomycin-induced lung fibrotic mice, transplantation of OSM-preconditioned MSCs significantly improved pulmonary respiratory functions and downregulated expression of inflammatory factors and fibrotic factors in the lung tissues. Histopathologic examination indicated remarkable amelioration of the lung fibrosis. LacZ-tagged MSCs were detected in the lung tissues of the OSM-preconditioned MSC-treated mice 18 days after post-transplantation. Taken together, our data further demonstrated that HGF upregulation played an important role in mediating the therapeutic effects of transplanted OSM-preconditioned MSCs in alleviating lung fibrosis in the mice. Stem Cells Translational Medicine 2017;6:1006-1017.
    Matched MeSH terms: Mesenchymal Stromal Cells
  5. Jose S, Tan SW, Ooi YY, Ramasamy R, Vidyadaran S
    J Neuroinflammation, 2014;11:149.
    PMID: 25182840 DOI: 10.1186/s12974-014-0149-8
    Progression of neurodegenerative diseases occurs when microglia, upon persistent activation, perpetuate a cycle of damage in the central nervous system. Use of mesenchymal stem cells (MSC) has been suggested as an approach to manage microglia activation based on their immunomodulatory functions. In the present study, we describe the mechanism through which bone marrow-derived MSC modulate the proliferative responses of lipopolysaccharide-stimulated BV2 microglia.
    Matched MeSH terms: Mesenchymal Stromal Cells/physiology*
  6. Alkaisi A, Ismail AR, Mutum SS, Ahmad ZA, Masudi S, Abd Razak NH
    J Oral Maxillofac Surg, 2013 Oct;71(10):1758.e1-13.
    PMID: 24040948 DOI: 10.1016/j.joms.2013.05.016
    The main aim of the present study was to evaluate the capacity of stem cells from human exfoliated deciduous teeth (SHED) to enhance mandibular distraction osteogenesis (DO) in rabbits.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology
  7. Takebe Y, Tsujigiwa H, Katase N, Siar CH, Takabatake K, Fujii M, et al.
    J Oral Pathol Med, 2017 Jan;46(1):67-75.
    PMID: 27327904 DOI: 10.1111/jop.12467
    BACKGROUND: Tumor parenchyma-stromal interactions affect the properties of tumors and their dynamics. Our group previously showed that secreted frizzled related protein (sFRP)-2 impairs bone formation and promotes bone invasion in ameloblastoma. However, the effects of the secreted growth factors CCN2, TGF-β, and BMP4 on stromal tissues in ameloblastoma remain unclear.

    MATERIALS AND RESULTS: Thirty-five paraffin-embedded ameloblastoma cases, ameloblastoma-derived cell lines (AM-1), and primary cultures of ameloblastoma stromal fibroblasts (ASF) were used. Immunohistochemistry, MTT assay, Western blotting, and RT-PCR were performed on these samples. Parenchyma-stromal CCN2 overexpression correlated significantly with fibrous-type stroma, but not with myxoid-type stroma, suggesting a role of CCN2 in fibrosis (P < 0.05). Recombinant CCN2 induction of enhanced ASF proliferation in AM-1 medium supports this view. Conversely, BMP4 and TGF-β were expressed in myxoid-type fibroblasts, but little expression was found in parenchyma. RANKL-positive and CD68-positive stromal cell populations were significantly greater in myxoid-type tumor areas than in fibrous-type tumor areas, while a higher Ki-67 labeling index was recorded in ameloblastoma with fibrous-type stroma. These data suggest that stromal properties influence bone resorption-related activities and growth rates, respectively.

    CONCLUSIONS: These results suggest that the effects of secreted growth factors are governed by ameloblastoma parenchyma-stromal interactions. CCN2 promotes fibrogenesis independent of TGF-β signaling. Absence of CCN2 expression is associated with a phenotypic switch to a myxoid-type microenvironment that is conducive for TGF-β/BMP4 signaling to promote osteoclastogenesis.

    Matched MeSH terms: Stromal Cells/metabolism
  8. Xu Z, Nan W, Zhang X, Sun Y, Yang J, Lu K, et al.
    J Mol Neurosci, 2018 Jun;65(2):222-233.
    PMID: 29845511 DOI: 10.1007/s12031-018-1075-5
    Mesenchymal stem cell (MSC) therapy is a promising prospect for the treatment of Alzheimer's disease (AD); however, the underlying mechanisms by which MSCs mediate positive effects are still unclear. We speculated that MSCs mediate microglial autophagy and enhance the clearance of Aβ. To test this hypothesis, we cultured BV2 microglial cells with umbilical cord mesenchymal stem cells conditioned medium (ucMSCs-CM) in the presence or absence of Aβ25-35 oligomers. We investigated BV2 cell proliferation, cell death, and Aβ25-35 phagocytosis as well as protein expression levels of LC3, Beclin-1, p62, insulin-degrading enzyme (IDE), and neprilysin (Nep) with western blotting. The results showed that ucMSCs-CM inhibited the proliferation and decreased cell death of BV2 cells induced by Aβ25-35. ucMSCs-CM also promoted the phagocytosis of Aβ25-35 by BV2 cells and changed the expression of autophagy-related proteins LC3, Beclin-1, and p62. Treatment also upregulated the expression of Aβ-degrading enzymes IDE and Nep. Furthermore, the culture medium in BV2 cells with Aβ25-35 and ucMSCs-CM prevented neuronal cell SH-SY5Y from cell death compared to control medium without ucMSCs-CM. Altogether, these data suggested that ucMSCs-CM protect microglial and neuronal cells from Aβ25-35-induced cell death and promote Aβ phagocytosis by modulating autophagy and enhancing the expression of Aβ-degrading enzymes in microglia.
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism*
  9. Aithal AP, Bairy LK, Seetharam RN, Rao MK
    J Cell Biochem, 2019 08;120(8):13026-13036.
    PMID: 30873677 DOI: 10.1002/jcb.28573
    BACKGROUND: To evaluate the antimutagenic potential of combination treatment of human bone marrow-derived mesenchymal stromal cells (BM-MSCs) and silymarin and its effect on hepatocyte growth factor levels in CCl4 induced hepatotoxicity in Wistar rats.

    METHODS: Hepatotoxicity was induced in adult female Wistar rats using carbon tetrachloride (CCl4 ). Thirty-six rats were randomly divided into six groups with six rats in each group: Group 1 (normal control group), Group 2 (received only CCl 4 ), Group 3 (CCl 4 +low dose BM-MSCs), Group 4 (CCl 4 +high dose BM-MSCs), Group 5 (CCl 4  + silymarin), Group 6 (CCl 4 +silymarin+high dose BM-MSCs). Thirty days after the treatment, blood samples were collected for hepatocyte growth factor estimation. The rats were then killed, bone marrow was extracted for chromosomal aberration assay. Liver tissue was processed for evaluating the DNA fragmentation assay, histopathology, and scanning electron microscopy study.

    RESULTS: Combination treatment of silymarin and high dose BM-MSCs significantly (P 

    Matched MeSH terms: Mesenchymal Stromal Cells/cytology
  10. Raghavendran HR, Mohan S, Genasan K, Murali MR, Naveen SV, Talebian S, et al.
    Colloids Surf B Biointerfaces, 2016 Mar 1;139:68-78.
    PMID: 26700235 DOI: 10.1016/j.colsurfb.2015.11.053
    Scaffolds with structural features similar to the extracellular matrix stimulate rapid osteogenic differentiation in favorable microenvironment and with growth factor supplementation. In this study, the osteogenic potential of electrospun poly-l-lactide/hydroxyapatite/collagen (PLLA/Col/HA, PLLA/HA and PLLA/Col) scaffolds were tested in vitro with the supplementation of platelet derived growth factor-BB (PDGF-BB). Cell attachment and topography, mineralization, extracellular matrix protein localization, and gene expression of the human mesenchymal stromal cells were compared between the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA. The levels of osteocalcin, calcium, and mineralization were significantly greater in the PLLA/Col/HA and PLLA/HA compared with PLLA/Col. High expression of fibronectin, intracellular adhesion molecule, cadherin, and collagen 1 (Col1) suggests that PLLA/Col/HA and PLLA/HA scaffolds had superior osteoinductivity than PLLA/Col. Additionally, osteopontin, osteocalcin, osterix, Runt-related transcription factor 2 (Runx2), and bone morphogenic protein (BMP2) expression were higher in PLLA/Col/HA and PLLA/HA compared with PLLA/Col. In comparison with PLLA/Col, the PLLA/Col/HA and PLLA/HA scaffolds presented a significant upregulation of the genes Runx2, Col 1, Integrin, osteonectin (ON), bone gamma-carboxyglutamic acid-containing protein (BGALP), osteopontin (OPN), and BMP2. The upregulation of these genes was further increased with PDGF-BB supplementation. These results show that PDGF-BB acts synergistically with PLLA/Col/HA and PLLA/HA to enhance the osteogenic differentiation potential. Therefore, this combination can be used for the rapid expansion of bone marrow stromal cells into bone-forming cells for tissue engineering.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/drug effects*; Mesenchymal Stromal Cells/metabolism
  11. Choong PF, Mok PL, Cheong SK, Leong CF, Then KY
    Cytotherapy, 2007;9(2):170-83.
    PMID: 17453969
    The multipotency of stromal cells has been studied extensively. It has been reported that mesenchymal stromal cells (MSC) are capable of differentiating into cells of multilineage. Different methods and reagents have been used to induce the differentiation of MSC. We investigated the efficacy of different growth factors in inducing MSC differentiation into neurons.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*; Mesenchymal Stromal Cells/drug effects; Mesenchymal Stromal Cells/metabolism
  12. Huat TJ, Khan AA, Abdullah JM, Idris FM, Jaafar H
    Int J Mol Sci, 2015;16(5):9693-718.
    PMID: 25938966 DOI: 10.3390/ijms16059693
    Insulin-like growth factor 1 (IGF-1) enhances cellular proliferation and reduces apoptosis during the early differentiation of bone marrow derived mesenchymal stem cells (BMSCs) into neural progenitor-like cells (NPCs) in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). BMSCs were differentiated in three groups of growth factors: (A) EGF + bFGF, (B) EGF + bFGF + IGF-1, and (C) without growth factor. To unravel the molecular mechanisms of the NPCs derivation, microarray analysis using GeneChip miRNA arrays was performed. The profiles were compared among the groups. Annotated microRNA fingerprints (GSE60060) delineated 46 microRNAs temporally up-regulated or down-regulated compared to group C. The expressions of selected microRNAs were validated by real-time PCR. Among the 46 microRNAs, 30 were consistently expressed for minimum of two consecutive time intervals. In Group B, only miR-496 was up-regulated and 12 microRNAs, including the let-7 family, miR-1224, miR-125a-3p, miR-214, miR-22, miR-320, miR-708, and miR-93, were down-regulated. Bioinformatics analysis reveals that some of these microRNAs (miR-22, miR-214, miR-125a-3p, miR-320 and let-7 family) are associated with reduction of apoptosis. Here, we summarize the roles of key microRNAs associated with IGF-1 in the differentiation of BMSCs into NPCs. These findings may provide clues to further our understanding of the mechanisms and roles of microRNAs as key regulators of BMSC-derived NPC maintenance.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*; Mesenchymal Stromal Cells/drug effects; Mesenchymal Stromal Cells/metabolism
  13. Ghani SA, Wan Ismail WF, Md Salleh MS, Yahaya S, Syahrul Fitri ZM
    Indian J Orthop, 2018 2 9;52(1):31-34.
    PMID: 29416167 DOI: 10.4103/ortho.IJOrtho_153_17
    Background: Giant cell tumor (GCT) of bone is a benign locally aggressive primary bone tumor which is risky for local recurrences and pulmonary metastasis. Till date, there are still many uncertainties in predicting the aggressiveness of GCT. We aim to investigate whether receptor activator nuclear kappa-B ligand (RANKL) expression may determine the prognosis of the lesion.

    Materials and Methods: We examined RANKL expression in 39 patients (21 males, 18 females) by immunohistochemistry. Four patients (10%) were presented with tumor recurrence, eight patients (20%) were complicated with lung metastasis, and two patients (5%) were presented with both recurrence and lung metastasis. Positive RANKL expression was assessed according to a scoring system evaluating the percentage of the immunostained epithelial area and the staining intensity. The cumulative score was calculated to determine the final score value. Data were analyzed using PASW version 18.0 and independent t-test between nonrecurrence/recurrence groups, and nonlung metastasis/lung metastasis groups. Significance was set at P < 0.05.

    Results: Thirty-two patients (82%) scored 3 in RANKL-staining percentage from whole stromal cell population (>75%), 6 patients scored 2, and 1 patient scored 1. Nine patients (23%) scored 3 in RANKL-staining intensity (most intense), 19 patients (48%) scored 2, and 11 patients (29%) scored 1. Twenty six patients (67%) had strong RANKL expression (total score of 5-6), 12 patients (31%) showed moderate score (3-4) whereas only 1 patient (2%) showed weak RANKL expression. Together, the mean value of RANKL-staining percentage was 2.79, intensity 1.95 and the total score 4.77. The mean RANKL-staining percentage between recurrence and nonrecurrence groups was statistically significant (P = 0.009). There was no significant difference in the mean staining intensity and total score between nonrecurrence and recurrence groups, and staining percentage staining intensity and a total cumulative score of RANKL expression between lung metastasis and nonlung metastasis groups.

    Conclusion: RANKL expression is generally high in Stage III GCT and is a reliable prognostic marker in predicting the risk of local recurrence however not in lung metastasis.

    Matched MeSH terms: Stromal Cells
  14. Ahn J, Lim J, Jusoh N, Lee J, Park TE, Kim Y, et al.
    PMID: 31380359 DOI: 10.3389/fbioe.2019.00168
    Bone is one of the most common sites of cancer metastasis, as its fertile microenvironment attracts tumor cells. The unique mechanical properties of bone extracellular matrix (ECM), mainly composed of hydroxyapatite (HA) affect a number of cellular responses in the tumor microenvironment (TME) such as proliferation, migration, viability, and morphology, as well as angiogenic activity, which is related to bone metastasis. In this study, we engineered a bone-mimetic microenvironment to investigate the interactions between the TME and HA using a microfluidic platform designed for culturing tumor cells in 3D bone-mimetic composite of HA and fibrin. We developed a bone metastasis TME model from colorectal cancer (SW620) and gastric cancer (MKN74) cells, which has very poor prognosis but rarely been investigated. The microfluidic platform enabled straightforward formation of 3D TME composed the hydrogel and multiple cell types. This facilitated monitoring of the effect of HA concentration and culture time on the TME. In 3D bone mimicking culture, we found that HA rich microenvironment affects cell viability, proliferation and cancer cell cytoplasmic volume in a manner dependent on the different metastatic cancer cell types and culture duration indicating the spatial heterogeneity (different origin of metastatic cancer) and temporal heterogeneity (growth time of cancer) of TME. We also found that both SW620 and MKN72 cells exhibited significantly reduced migration at higher HA concentration in our platform indicating inhibitory effect of HA in both cancer cells migration. Next, we quantitatively analyzed angiogenic sprouts induced by paracrine factors that secreted by TME and showed paracrine signals from tumor and stromal cell with a high HA concentration resulted in the formation of fewer sprouts. Finally we reconstituted vascularized TME allowing direct interaction between angiogenic sprouts and tumor-stroma microspheroids in a bone-mimicking microenvironment composing a tunable HA/fibrin composite. Our multifarious approach could be applied to drug screening and mechanistic studies of the metastasis, growth, and progression of bone tumors.
    Matched MeSH terms: Stromal Cells
  15. Choudhary R, Vecstaudza J, Krishnamurithy G, Raghavendran HRB, Murali MR, Kamarul T, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:89-100.
    PMID: 27524000 DOI: 10.1016/j.msec.2016.04.110
    Diopside was synthesized from biowaste (Eggshell) by sol-gel combustion method at low calcination temperature and the influence of two different fuels (urea, l-alanine) on the phase formation temperature, physical and biological properties of the resultant diopside was studied. The synthesized materials were characterized by heating microscopy, FTIR, XRD, BET, SEM and EDAX techniques. BET analysis reveals particles were of submicron size with porosity in the nanometer range. Bone-like apatite deposition ability of diopside scaffolds was examined under static and circulation mode of SBF (Simulated Body Fluid). It was noticed that diopside has the capability to deposit HAP (hydroxyapatite) within the early stages of immersion. ICP-OES analysis indicates release of Ca, Mg, Si ions and removal of P ions from the SBF, but in different quantities from diopside scaffolds. Cytocompatability studies on human bone marrow stromal cells (hBMSCs) revealed good cellular attachment on the surface of diopside scaffolds and formation of extracellular matrix (ECM). This study suggests that the usage of eggshell biowaste as calcium source provides an effective substitute for synthetic starting materials to fabricate bioproducts for biomedical applications.
    Matched MeSH terms: Stromal Cells
  16. Fazliah, S.N., Jaafar, S., Shamsuddin, S., Zainudin, Z., Hilmi, A.B., Razila, A.R., et al.
    ASM Science Journal, 2010;4(1):1-14.
    MyJurnal
    Stem cells from human extracted deciduous teeth (SHED) have the ability to multiply much faster and double their population in culture at a greater rate, indicating that it may be in a more immature state than other type of adult stem cells. Mesenchymal stem cells (MSC) from human primary molars were isolated and cultured in media supplemented with 20% fetal bovine serum. The MSCs were confirmed using CD 105 and CD 166 and the identification of the osteoblast cells were done using reverse transcriptase polymerase chain reaction (RT-PCR) analysis. Differentiated osteoblast cells (DOC) were characterized by alkaline phosphotase and von Kossa staining followed by immunocytochemistry staining using osteocalcin and osteonectin antibodies. Further validation of SHED was done by RT-PCR to detect the presence of insulin-like growth factor 2 (IGF-2) and discoidin domain tyrosine kinase-2 (DDTK-2) transcripts, while the presence of Runx-2 mRNA was used to characterize DOC. The results showed that SHED was found positive for CD 105 and CD 166 and could differentiate into osteoblast, bone forming cells. The findings revealed the presence of distinct MSC population which had the capability to generate living human cells that could be a possible source for tissue engineering in the future.
    Matched MeSH terms: Mesenchymal Stromal Cells
  17. Samsudin EZ, Kamarul T
    JUMMEC, 2014;17(2):1-11.
    MyJurnal
    Autologous chondrocyte implantation (ACI) is a significant technique that has gained widespread use for the treatment of focal articular cartilage damage. Since its inception in 2004, the Tissue Engineering Group (TEG) of the Faculty of Medicine, University Malaya has been dedicated to carrying out extensive research on this cell-based therapy. The objective of this report, comprising one clinical case report, six animal studies and one laboratory study, is to summarise and discuss TEG’s key findings. On the whole, we observed that the ACI technique was effective in regenerating hyaline-like cartilage in treated defects. Autologous chondrocytes and mesenchymal stem cells (MSC) were found to produce comparable tissue repair irrespective of the state of MSC differentiation, and the use of alginate-based scaffolding and oral pharmacotherapy (Glucosamine and Chondroitin Sulphate) was shown to enhance ACI-led tissue repair. ACI is suggested to be an efficient therapeutic option for the treatment of articular cartilage defects of the knee.
    Matched MeSH terms: Mesenchymal Stromal Cells
  18. Mohd Hilmi, A.B., Fazliah, S.N., Siti Fadilah, A., Asma, H., Siti Razila, A.R., Shaharum, S., et al.
    MyJurnal
    The aim of this study was to isolate stem cells from dental pulp of primary molars and incisors to be used as possible source for tissue engineering. Human primary molars and incisors were collected from subjects aged 4-7 year-old under standardized procedures. Within 24 hours, the tooth was cut at the cemento-enamel junction using hard tissue material cutter. The dental pulp tissue was extracted, digested and then cultured in Alpha Modified Eagles's Medium (α-MEM) supplemented with 20% FCS, 100 mM L-ascorbic acid 2-phosphate, 200 mM L-glutamine and 5000 units/ml Penicillin/Streptomycin. The cells were observed daily under the microscope until confluence. Children's tooth pulp- derived progenitor cells were found positive for stem cell markers CD105 and CD166, which are consistent with the finding for mesenchymal stem cells (MSCs) from bone marrow.
    Matched MeSH terms: Mesenchymal Stromal Cells
  19. Ramasamy, R., Krishna, K., Maqbool, M., Vellasamy, S., Sarmadi, V. H., Abdullah, M., et al.
    MyJurnal
    Objective: Mesenchymal stem cells (MSC) are multipotent, non-haematopoietic stem cells that are
    capable of differentiating into different varieties of mature cell types such as osteoblasts, chondrocytes, adipocytes, and myoblasts. There is abundant evidence showing that MSC not only affect the differentiation of haematopoietic progenitors, but also the function of mature cells like lymphocytes and neutrophils. However the effect of MSC on neutrophil function and its responses is not well studied. Therefore, this study was conducted to assess the effect of MSC on neutrophil nitric oxide production. Method: Neutrophils from heparanised venous blood were isolated using Ficoll-Hypaque density gradient centrifugation followed by Dextran sedimentation and red blood cell (RBC) lysis. Isolated neutrophils were on average of 97% purity as determined by morphologic analysis. MSC were generated from human bone marrow and characterised by immunophenotyping (monoclonal antibodies CD105, CD73 and CD34) using a flowcytometer. In order to test the effects of MSC on neutrophil function, isolated neutrophils were co-cultured in the presence or absence of MSC at different ratios for 24 and 48 hours. The amount of nitric oxide released was used as an indication of oxidative burst and measured using the Griess assay. Result: The results indicate that MSC neither elevate the NO level when cocultured with resting neutrophils nor alone. However MSC profoundly inhibit the secretion of nitric oxide in PMA stimulated neutrophils after 24hr of incubation. Conclusion: MSC exert an immunomodulatory effect on neutrophil by suppressing neutrophil oxidative burst in vitro.
    Matched MeSH terms: Mesenchymal Stromal Cells
  20. Sandrasaigaran P, Algraittee SJR, Ahmad AR, Vidyadaran S, Ramasamy R
    Cytotechnology, 2018 Jun;70(3):1037-1050.
    PMID: 29497876 DOI: 10.1007/s10616-017-0182-4
    Mesenchymal stem cells (MSCs) exert potent immuno-regulatory activities on various immune cells and also differentiate into various mesodermal lineages besides retaining a distinct self-renewal ability. Such exclusive characteristics had enabled MSCs to be recognised as an ideal source for cell-based treatment in regenerative medicine and immunotherapy. Thus, considering MSCs for treating degenerative disease of organs with limited regenerative potential such as cartilage would serve as an ideal therapy. This study explored the feasibility of generating human cartilage-derived MSCs (hC-MSCs) from sports injured patients and characterised based on multipotent differentiation and immunosuppressive activities. Cartilage tissues harvested from a non-weight bearing region during an arthroscopy procedure were used to generate MSCs. Despite the classic morphology of fibroblast-like cells and a defined immunophenotyping, MSCs expressed early embryonic transcriptional markers (SOX2, REX1, OCT4 and NANOG) and differentiated into chondrocytes, adipocytes and osteocytes when induced accordingly. Upon co-culture with PHA-L activated T-cells, hC-MSCs suppressed the proliferation of the T-cells in a dose-dependent manner. Although, hC-MSCs did not alter the activation profile of T cells significantly, yet prevented the entering of activated T cells into S phase of the cell cycle by cell cycle arrest. The present study has strengthened the evidence of tissue-resident mesenchymal stem cells in human cartilage tissue. The endogenous MSCs could be an excellent tool in treating dysregulated immune response that associated with cartilage since hC-MSCs exerted both immunosuppressive and regenerative capabilities.
    Matched MeSH terms: Mesenchymal Stromal Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links