Displaying publications 1 - 20 of 545 in total

Abstract:
Sort:
  1. Muhammad A, Khan B, Iqbal Z, Khan AZ, Khan I, Khan K, et al.
    ACS Omega, 2019 Sep 03;4(10):14188-14192.
    PMID: 31508540 DOI: 10.1021/acsomega.9b01041
    The antipyretic potential of viscosine, a natural product isolated from the medicinal plant Dodonaea viscosa, was investigated using yeast-induced pyrexia rat model, and its structure-activity relationship was investigated through molecular docking analyses with the target enzymes cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and microsomal prostaglandin E synthase-1 (mPGES-1). The in vivo antipyretic experiments showed a progressive dose-dependent reduction in body temperatures of the hyperthermic test animals when injected with viscosine. Comparison of docking analyses with target enzymes showed strongest bonding interactions (binding energy -17.34 kcal/mol) of viscosine with the active-site pocket of mPGES-1. These findings suggest that viscosine shows antipyretic properties by reducing the concentration of prostaglandin E2 in brain through its mPGES-1 inhibitory action and make it a potential lead compound for developing effective and safer antipyretic drugs for treating fever and related pathological conditions.
    Matched MeSH terms: Structure-Activity Relationship
  2. Nadiveedhi MR, Nuthalapati P, Gundluru M, Yanamula MR, Kallimakula SV, Pasupuleti VR, et al.
    ACS Omega, 2021 Feb 02;6(4):2934-2948.
    PMID: 33553912 DOI: 10.1021/acsomega.0c05302
    A series of novel α-furfuryl-2-alkylaminophosphonates have been efficiently synthesized from the one-pot three-component classical Kabachnik-Fields reaction in a green chemical approach by addition of an in situ generated dialkylphosphite to Schiff's base of aldehydes and amines by using environmental and eco-friendly silica gel supported iodine as a catalyst by microwave irradiation. The advantage of this protocol is simplicity in experimental procedures and products were resulted in high isolated yields. The synthesized α-furfuryl-2-alkylaminophosphonates were screened to in vitro antioxidant and plant growth regulatory activities and some are found to be potent with antioxidant and plant growth regulatory activities. These in vitro studies have been further supported by ADMET (absorption, distribution, metabolism, excretion, and toxicity), quantitative structure-activity relationship, molecular docking, and bioactivity studies and identified that they were potentially bound to the GLN340 amino acid residue in chain C of 1DNU protein and TYR597 amino acid residue in chain A of 4M7E protein, causing potential exhibition of antioxidant and plant growth regulatory activities. Eventually, title compounds are identified as good blood-brain barrier (BBB)-penetrable compounds and are considered as proficient central nervous system active and neuroprotective antioxidant agents as the neuroprotective property is determined with BBB penetration thresholds.
    Matched MeSH terms: Quantitative Structure-Activity Relationship
  3. Balam SK, Soora Harinath J, Krishnammagari SK, Gajjala RR, Polireddy K, Baki VB, et al.
    ACS Omega, 2021 May 04;6(17):11375-11388.
    PMID: 34056293 DOI: 10.1021/acsomega.1c00360
    A series of 3-amino-2-hydroxybenzofused 2-phosphalactones (4a-l) has been synthesized from the Kabachnik-Fields reaction via a facile route from a one-pot three-component reaction of diphenylphosphite with various 2-hydroxybenzaldehyes and heterocyclic amines in a new way of expansion. The in vitro anti-cell proliferation studies by MTT assay have revealed them as potential Panc-1, Miapaca-2, and BxPC-3 pancreatic cell growth inhibitors, and the same is supported by molecular docking, QSAR, and ADMET studies. The MTT assay of their SAHA derivatives against the same cell lines evidenced them as potential HDAC inhibitors and identified 4a, 4b, and 4k substituted with 1,3-thiazol, 1,3,4-thiadiazol, and 5-sulfanyl-1,3,4-thiadiazol moieties on phenyl and diethylamino phenyl rings as potential ones. Additionally, the flow cytometric analyses of 4a, 4b, and 4k against BxPC-3 cells revealed compound 4k as a lead compound that arrests the S phase cell cycle growth at low micromolar concentrations. The ADMET properties have ascertained their inherent pharmacokinetic potentiality, and the wholesome results prompted us to report it as the first study on anti-pancreatic cancer activity of cyclic α-aminophosphonates. Ultimately, this study serves as a good contribution to update the existing knowledge on the anticancer organophosphorus heterocyclic compounds and elevates the scope for generation of new anticancer drugs. Further, the studies like QSAR, drug properties, toxicity risks, and bioactivity scores predicted for them have ascertained the synthesized compounds as newer and potential drug candidates. Hence, this study had augmented the array of α-aminophosphonates by adding a new collection of 3-amino-2-hydroxybenzofused 2-phosphalactones, a class of cyclic α-aminophosphonates, to it, which proved them as potential anti-pancreatic cancer agents.
    Matched MeSH terms: Quantitative Structure-Activity Relationship
  4. Asad M, Oo CW, Kumar RS, Osman H, Ali MA
    Acta Pol Pharm, 2013 Mar-Apr;70(2):221-8.
    PMID: 23614277
    A series of some new bisadducts possessing five, six membered and coumarin subunits were synthesized by the condensation of heterocyclic aldehydes with active methylene compounds and characterized by IR, NMR and X-ray crystallographic studies and were assayed as antitubercular agents. Among the bisadducts, 4-hydroxy-3-[(4-hydroxy-2-oxo-2H-3-chromenyl)(3-thienyl)methyl]-2H-2-chromenone 3a was found to be the most promising compound, active against Mycobacterium tuberculosis (Mtb) H37Rv and isoniazid resistant Mycobacterium tuberculosis (INHR-Mtb) with minimum inhibitory concentration 5.22 and 8.34 microM, respectively.
    Matched MeSH terms: Structure-Activity Relationship
  5. Ali MA, Ismail R, Choon TS, Yoon YK, Wei AC, Pandian S, et al.
    Acta Pol Pharm, 2011 May-Jun;68(3):343-8.
    PMID: 21648188
    A series of novel 3-(substituted phenyl)-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c]isoxazole analogues were synthesized by the reaction of 5,6-dimethoxy-2-[(E)-1-phenylmethylidene]-1-indanone with hydroxylamine hydrochloride. The title compounds were tested for their in vitro anti-HIV activity. Among the compounds, (4g) showed a promising anti-HIV activity in the in vitro testing against IIIB and ROD strains. The IC50 of both IIIB and ROD were found to be 9.05 microM and > 125 microM, respectively.
    Matched MeSH terms: Structure-Activity Relationship
  6. Choong YS, Lee YV, Soong JX, Law CT, Lim YY
    Adv Exp Med Biol, 2017;1053:221-243.
    PMID: 29549642 DOI: 10.1007/978-3-319-72077-7_11
    The use of monoclonal antibody as the next generation protein therapeutics with remarkable success has surged the development of antibody engineering to design molecules for optimizing affinity, better efficacy, greater safety and therapeutic function. Therefore, computational methods have become increasingly important to generate hypotheses, interpret and guide experimental works. In this chapter, we discussed the overall antibody design by computational approches.
    Matched MeSH terms: Structure-Activity Relationship
  7. Mohd Yusof YA
    Adv Exp Med Biol, 2016;929:177-207.
    PMID: 27771925
    Since antiquity, ginger or Zingiber officinale, has been used by humans for medicinal purposes and as spice condiments to enhance flavor in cooking. Ginger contains many phenolic compounds such as gingerol, shogaol and paradol that exhibit antioxidant, anti-tumor and anti-inflammatory properties. The role of ginger and its constituents in ameliorating diseases has been the focus of study in the past two decades by many researchers who provide strong scientific evidence of its health benefit. This review discusses research findings and works devoted to gingerols, the major pungent constituent of ginger, in modulating and targeting signaling pathways with subsequent changes that ameliorate, reverse or prevent chronic diseases in human studies and animal models. The physical, chemical and biological properties of gingerols are also described. The use of ginger and especially gingerols as medicinal food derivative appears to be safe in treating or preventing chronic diseases which will benefit the common population, clinicians, patients, researchers, students and industrialists.
    Matched MeSH terms: Structure-Activity Relationship
  8. Manoharan S, Shuib AS, Abdullah N
    PMID: 28573254 DOI: 10.21010/ajtcam.v14i2.39
    BACKGROUND: The commercially available synthetic angiotensin-I-converting enzyme (ACE) inhibitors are known to exert negative side effects which have driven many research groups globally to discover the novel ACE inhibitors.

    METHOD: Literature search was performed within the PubMed, ScienceDirect.com and Google Scholar.

    RESULTS: The presence of proline at the C-terminal tripeptide of ACE inhibitor can competitively inhibit the ACE activity. The effects of other amino acids are less studied leading to difficulties in predicting potent peptide sequences. The broad specificity of the enzyme may be due to the dual active sites observed on the somatic ACE. The inhibitors may not necessarily competitively inhibit the enzyme which explains why some reported inhibitors do not have the common ACE inhibitor characteristics. Finally, the in vivo assay has to be carried out before the peptides as the antihypertensive agents can be claimed. The peptides must be absorbed into circulation without being degraded, which will affect their bioavailability and potency. Thus, peptides with strong in vitro IC50 values do not necessarily have the same effect in vivo and vice versa.

    CONCLUSION: The relationship between peptide amino acid sequence and inhibitory activity, in vivo studies of the active peptides and bioavailability must be studied before the peptides as antihypertensive agents can be claimed.

    Matched MeSH terms: Structure-Activity Relationship
  9. Arulnathan SB, Leong KH, Ariffin A, Kareem HS, Cheah KKH
    Anticancer Agents Med Chem, 2020;20(9):1072-1086.
    PMID: 32188392 DOI: 10.2174/1871520620666200318100051
    BACKGROUND: Oxadiazoles, triazoles, and their respective precursors have been shown to exhibit various pharmacological properties, namely antitumour activities. Cytotoxic activity was reported for these compounds in various cancer cell lines.

    AIM AND OBJECTIVES: In this study, we aim at investigating the mechanism of apoptosis by N-(4-chlorophenyl)-2-(4- (3,4,5-trimethoxybenzyloxy)benzoyl)-hydrazinecarbothioamide, a triazole precursor, henceforth termed compound P7a, in breast cancer cell line, MCF-7. We first screen a series of analogues containing (3,4,5-trimethoxybenzyloxy) phenyl moiety in breast cancer cell lines (MCF-7 and MDA-MB-231) to select the most cytotoxic compound and demonstrate a dose- and time-dependent cytotoxicity. Then, we unravel the mechanism of apoptosis of P7a in MCF-7 as well as its ability to cause cell cycle arrest.

    METHODS: Synthesis was performed as previously described by Kareem and co-workers. Cytotoxicity of analogues containing (3,4,5-trimethoxybenzyloxy)phenyl moiety against MCF-7 and MDA-MB-231 cell lines was evaluated using the MTS assay. Flow cytometric analyses was done using Annexin V/PI staining, JC-1 staining and ROS assay. The activity of caspases using a chemoluminescence assay and western blot analysis was conducted to study the apoptotic pathway induced by the compound in MCF-7 cells. Lastly, cell cycle analysis was conducted using flow cytometry.

    RESULTS: Upon 48 hours of treatment, compound P7a inhibited the proliferation of human breast cancer cells with IC50 values of 178.92 ± 12.51μM and 33.75 ± 1.20μM for MDA-MB-231 and MCF-7, respectively. Additionally, compound P7a showed selectivity towards the cancer cell line, MCF-7 compared to the normal breast cell line, hTERT-HME1, an advantage against current anticancer drugs (tamoxifen and vinblastine). Flow cytometric analyses using different assays indicated that compound P7a significantly increased the proportion of apoptotic cells, increased mitochondria membrane permeabilisation and caused generation of ROS in MCF-7. In addition, cell cycle analysis showed that cell proliferation was arrested at the G1 phase in the MCF-7 cell line. Furthermore, upon treatment, the MCF-7 cell line showed increased activity of caspase-3/7, and caspase-9. Lastly, the western blot analysis showed the up-regulation of pro-apoptotic proteins along with up-regulation of caspase-7 and caspase-9, indicating that an intrinsic pathway of apoptosis was induced.

    CONCLUSION: The results suggest that compound P7a could be a potential chemotherapeutic agent for breast cancer.

    Matched MeSH terms: Structure-Activity Relationship
  10. Jeyamogan S, Khan NA, Sagathevan K, Siddiqui R
    Anticancer Agents Med Chem, 2020;20(13):1558-1570.
    PMID: 32364082 DOI: 10.2174/1871520620666200504103056
    BACKGROUND: Cancer contributes to significant morbidity and mortality despite advances in treatment and supportive care. There is a need for the identification of effective anticancer agents. Reptiles such as tortoise, python, and water monitor lizards are exposed to heavy metals, tolerate high levels of radiation, feed on rotten/germ-infested feed, thrive in unsanitary habitat and yet have prolonged lifespans. Such species are rarely reported to develop cancer, suggesting the presence of anticancer molecules/mechanisms.

    METHODS: Here, we tested effects from sera of Asian water monitor lizard (Varanus salvator), python (Malayopython reticulatus) and tortoise (Cuora kamaroma amboinensis) against cancer cells. Sera were collected and cytotoxicity assays were performed using prostate cancer cells (PC3), Henrietta Lacks cervical adenocarcinoma cells (HeLa) and human breast adenocarcinoma cells (MCF7), as well as human keratinized skin cells (Hacat), by measuring lactate dehydrogenase release as an indicator for cell death. Growth inhibition assays were performed to determine the effects on cancer cell proliferation. Liquid chromatography mass spectrometry was performed for molecular identification.

    RESULTS: The findings revealed that reptilian sera, but not bovine serum, abolished viability of Hela, PC3 and MCF7 cells. Samples were subjected to liquid chromatography mass spectrometry, which detected 57 molecules from V. salvator, 81 molecules from Malayopython reticulatus and 33 molecules from C. kamaroma amboinensis and putatively identified 9 molecules from V. salvator, 20 molecules from Malayopython reticulatus and 9 molecules from C. kamaroma amboinensis when matched against METLIN database. Based on peptide amino acid composition, binary profile, dipeptide composition and pseudo-amino acid composition, 123 potential Anticancer Peptides (ACPs) were identified from 883 peptides from V. salvator, 306 potential ACPs from 1074 peptides from Malayopython reticulatus and 235 potential ACPs from 885 peptides from C. kamaroma amboinensis.

    CONCLUSION: To our knowledge, for the first time, we reported comprehensive analyses of selected reptiles' sera using liquid chromatography mass spectrometry, leading to the identification of potentially novel anticancer agents. We hope that the discovery of molecules from these animals will pave the way for the rational development of new anticancer agents.

    Matched MeSH terms: Structure-Activity Relationship
  11. Abuelizz HA, Anouar EH, Marzouk M, Hasan MH, Saleh SR, Ahudhaif A, et al.
    Anticancer Agents Med Chem, 2020;20(14):1714-1721.
    PMID: 32593283 DOI: 10.2174/1871520620666200627212128
    BACKGROUND: The use of tyrosinase has confirmed to be the best means of recognizing safe, effective, and potent tyrosinase inhibitors for whitening skin. Twenty-four 2-phenoxy(thiomethyl)pyridotriazolopyrimidines were synthesized and characterized in our previous studies.

    OBJECTIVE: The present work aimed to evaluate their cytotoxicity against HepG2 (hepatocellular carcinoma), A549 (pulmonary adenocarcinoma), MCF-7 (breast adenocarcinoma) and WRL 68 (embryonic liver) cell lines.

    METHODS: MTT assay was employed to investigate the cytotoxicity, and a tyrosinase inhibitor screening kit was used to evaluate the Tyrosinase (TYR) inhibitory activity of the targets.

    RESULTS: The tested compounds exhibited no considerable cytotoxicity, and nine of them were selected for a tyrosinase inhibitory test. Compounds 2b, 2m, and 5a showed good inhibitory percentages against TYR compared to that of kojic acid (reference substance). Molecular docking was performed to rationalize the Structure-Activity Relationship (SAR) of the target pyridotriazolopyrimidines and analyze the binding between the docked-selected compounds and the amino acid residues in the active site of tyrosinase.

    CONCLUSION: The target pyridotriazolopyrimidines were identified as a new class of tyrosinase inhibitors.

    Matched MeSH terms: Structure-Activity Relationship
  12. Sinniah SK, Tan KW, Ng SW, Sim KS
    Anticancer Agents Med Chem, 2017;17(5):741-753.
    PMID: 27671302 DOI: 10.2174/1871520616666160926110929
    BACKGROUND: Thiosemicarbazone (TSC) is a Schiff base that has been receiving considerable attention owing to its promising biological implication and remarkable pharmacological properties. The most promising drug candidate of this class would be Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone) which has entered phase II clinical trials as a potent anti-cancer chemotherapeutic agent.

    OBJECTIVE: The current research aimed to synthesize several Schiff base ligands from (3-formyl-4-hydroxyphenyl) methyltriphenylphosphonium (T). Additionally, the current research aimed to study the growth inhibitory effect of triphenylphosphonium containing thiosemicarbazone derivatives on PC-3 cells by deciphering the mechanisms involved in cell death.

    METHOD: The compounds were characterized by various spectroscopic methods (infrared spectra, 1H NMR, 13C NMR, HRESIMS and X-ray crystallography) and the results were in conformity with the structure of the targeted compounds. Growth inhibitory effect of the compounds were performed against six human cell lines.

    RESULTS: DM(tsc)T displayed most potent activity against PC-3 cells with IC50 value of 2.64 ± 0.33 μM, surpassing that of the positive control cisplatin (5.47 ± 0.06 μM). There were marked morphological changes observed in DM(tsc)T treated cells stained with acridine orange and ethidium bromide which were indicative of cell apoptosis. Treatment with DM(tsc)T showed that the cell cycle is arrested in the G0/G1 phase after 72 hours. Mitochondrial membrane potential loss was observed in cells treated with DM(tsc)T, indicating the apoptosis could be due to mitochondria mediated pathway.

    CONCLUSION: This study indicates that DM(tsc)T would serve as a lead scaffold for rational anticancer agent development.

    Matched MeSH terms: Structure-Activity Relationship
  13. Hassan LEA, Iqbal MA, Dahham SS, Tabana YM, Ahamed MBK, Majid AMSA
    Anticancer Agents Med Chem, 2017;17(4):590-598.
    PMID: 27671298 DOI: 10.2174/1871520616666160926113711
    BACKGROUND: Cancer is characterized by uncontrolled cell division caused by dysregulation of cell proliferation. Therefore, agents that impair cancer cell proliferation could have potential therapeutic value. Higher plants are considered to be a good source of anticancer agents, and several clinically tested chemotherapeutic agents have been isolated from plants or derived from constituents of plant origin.

    METHODS: In the present study, a prenylated flavone (isoglabratephrin) was isolated from aerial parts of Tephrosia apollinea using a bioassay-guided technique. Chemical structure of the isolated compound was elucidated using spectroscopic techniques (NMR, IR, and LC-MC), elemental analysis and confirmed by using single crystal X-ray analysis. The antiproliferative effect of isoglabratephrin was tested using three human cancer cell lines (prostate (PC3), pancreatic (PANC-1), and colon (HCT-116) and one normal cell line (human fibroblast).

    RESULTS: Isoglabratephrin displayed selective inhibitory activity against proliferation of PC3 and PANC-1 cells with median inhibitory concentration values of 20.4 and 26.6 μg/ml, respectively. Isoglabratephrin demonstrated proapoptotic features, as it induced chromatin dissolution, nuclear condensation, and fragmentation. It also disrupted the mitochondrial membrane potential in the treated cancer cells.

    CONCLUSION: Isoglabratephrin could be a new lead to treat human prostate (PC3) and pancreatic (PANC-1) malignancies.

    Matched MeSH terms: Structure-Activity Relationship
  14. Khairul WM, Hashim F, Mohammed M, Shah NSMN, Johari SATT, Rahamathullah R, et al.
    Anticancer Agents Med Chem, 2021;21(13):1738-1750.
    PMID: 33176667 DOI: 10.2174/1871520620999201110190709
    INTRODUCTION: In this contribution, a series of alkoxy substituted chalcones were successfully designed, synthesized, spectroscopically characterized and evaluated for their cytotoxicity potential in inhibiting the growth of MCF-7 cells.

    OBJECTIVE: In order to investigate the influence between electron density in conjugated π-systems and biological activities, different withdrawing substituents, namely Nitro (NO2), Cyano (C≡N) and trifluoromethyl (CF3) were introduced in the chalcone-based molecular system.

    METHODS: All the derivatives were then tested on MCF-7 cell line using the fluorescence microscopy-based cytotoxicity analyses.

    RESULTS: The preliminary findings showed that both -NO2 and -CF3 substituents revealed their potential to inhibit the growth of MCF-7 with IC;50 values of 14.75 and 13.75 μg/ml, respectively. In addition, the morphological changes of MCF-7 cells were observed in response to alkoxy substituted chalcone treatment through an induction of apoptosis pathway with cell blebbing, phosphatidylserine exposure and autophagic activity with acidification of lysosomal structure. Intermolecular interaction based on in silico investigation on nitro, trifluoromethyl and cyano based chalcones exhibited several types of interactions with tumor necrosis factor receptor (PDB: 1EXT) protein and high hydrogen bond in the molecule-receptor interaction have given significant impact towards their toxicity on MCF-7 cells.

    CONCLUSION: Significantly, these types of chalcones exhibited ideal and high potential to be further developed as anti-cancer agents.

    Matched MeSH terms: Structure-Activity Relationship
  15. Lim SH, Wu L, Burgess K, Lee HB
    Anticancer Drugs, 2009 Jul;20(6):461-8.
    PMID: 19387338 DOI: 10.1097/CAD.0b013e32832b7bee
    Conventional cytotoxic anticancer drugs that target all rapidly dividing cells are nonselective in their mechanism of action, because they disrupt essential components that are crucial to both malignant and proliferating normal cells. Instead, targeting cellular functions that are distinctly different between normal and cancer cells may provide a basis for selective killing of tumor cells. One such strategy that is still largely unexplored is to utilize the relatively higher negative mitochondrial membrane potential in carcinoma cells compared with adjacent normal epithelial cells to enhance accumulation and retention of cytotoxic lipophilic cations in the former. In this study, the anticancer activities of a new class of rosamines with cyclic amine substituents and their structure-activity relationships were investigated. From an in-vitro cell growth inhibition assay, 14 of the rosamines inhibited the growth of human leukemia HL-60 cells by 50% at micromolar or lower concentrations. Derivatives containing hydrophilic substituents had less potent activity, whereas aryl substitution at the meso position conferred extra activity with thiofuran and para-iodo aryl substitutions being the most potent. In addition, both compounds were at least 10-fold more cytotoxic than rhodamine 123 against a panel of cell lines of different tissue origin and similar to rhodamine 123, exhibited more cytotoxicity against cancer cells compared with immortalized normal epithelial cells of the same organ type. In subsequent experiments, the para-iodo aryl substituted rosamine was found to localize exclusively within the mitochondria and induced apoptosis as the major mode of cell death. Our results suggest that these compounds offer potential for the design of mitochondria-targeting agents that either directly kill or deliver cytotoxic drugs to selectively kill cancer cells.
    Matched MeSH terms: Structure-Activity Relationship
  16. A Abdullah A, Abdullah R, A Nazariah Z, N Balakrishnan K, Firdaus J Abdullah F, A Bala J, et al.
    Antivir Chem Chemother, 2018;26:2040206618811413.
    PMID: 30449131 DOI: 10.1177/2040206618811413
    BACKGROUND: Viruses are obligate parasites that depend on the cellular machinery of the host to regenerate and manufacture their proteins. Most antiviral drugs on the market today target viral proteins. However, the more recent strategies involve targeting the host cell proteins or pathways that mediate viral replication. This new approach would be effective for most viruses while minimizing drug resistance and toxicity.

    METHODS: Cytomegalovirus replication, latency, and immune response are mediated by the intermediate early protein 2, the main protein that determines the effectiveness of drugs in cytomegalovirus inhibition. This review explains how intermediate early protein 2 can modify the action of cyclosporin A, an immunosuppressive, and antiviral drug. It also links all the pathways mediated by cyclosporin A, cytomegalovirus replication, and its encoded proteins.

    RESULTS: Intermediate early protein 2 can influence the cellular cyclophilin A pathway, affecting cyclosporin A as a mediator of viral replication or anti-cytomegalovirus drug.

    CONCLUSION: Cyclosporin A has a dual function in cytomegalovirus pathogenesis. It has the immunosuppressive effect that establishes virus replication through the inhibition of T-cell function. It also has an anti-cytomegalovirus effect mediated by intermediate early protein 2. Both of these functions involve cyclophilin A pathway.

    Matched MeSH terms: Structure-Activity Relationship
  17. Atif M, Bhatti HN, Haque RA, Iqbal MA, Ahamed Khadeer MB, Majid AMSA
    Appl Biochem Biotechnol, 2020 Jul;191(3):1171-1189.
    PMID: 32002729 DOI: 10.1007/s12010-019-03186-9
    Synthesis and anticancer studies of three symmetrically and non-symmetrically substituted silver(I)-N-Heterocyclic carbene complexes of type [(NHC)2-Ag]PF6 (7-9) and their respective (ligands) benzimidazolium salts (4-6) are described herein. Compound 5 and Ag-NHC-complex 7 were characterized by the single crystal X-ray diffraction technique. Structural studies for 7 showed that the silver(I) center has linear C-Ag-C coordination geometry (180.00(10)o). Other azolium and Ag-NHC analogues were confirmed by H1 and C13-NMR spectroscopy. The synthesized analogues were biologically characterized for in vitro anticancer activity against three cancer cell lines including human colorectal cancer (HCT 116), breast cancer (MCF-7), and erythromyeloblastoid leukemia (K-562) cell lines and in terms of in vivo acute oral toxicity (IAOT) in view of agility and body weight of female rats. In vitro anticancer activity showed the values of IC50 in range 0.31-17.9 μM in case of K-562 and HCT-116 cancer cell lines and 15.1-35.2 μM in case of MCF-7 while taking commercially known anticancer agents 5-fluorouracil, tamoxifen, and betulinic acid which have IC50 values 5.2, 5.5, and 17.0 μM, respectively. In vivo study revealed vigor and agility of all test animals which explores the biocompatibility and non-toxicity of the test analogues.
    Matched MeSH terms: Structure-Activity Relationship
  18. Chek MF, Hiroe A, Hakoshima T, Sudesh K, Taguchi S
    Appl Microbiol Biotechnol, 2019 Feb;103(3):1131-1141.
    PMID: 30511262 DOI: 10.1007/s00253-018-9538-8
    Polyhydroxyalkanoates (PHAs) are biopolymers synthesized by a wide range of bacteria, which serve as a promising candidate in replacing some conventional petrochemical-based plastics. PHA synthase (PhaC) is the key enzyme in the polymerization of PHA, and the crystal structures were successfully determined using the catalytic domain of PhaC from Cupriavidus necator (PhaCCn-CAT) and Chromobacterium sp. USM2 (PhaCCs-CAT). Here, we review the beneficial mutations discovered in PhaCs from a structural perspective. The structural comparison of the residues involved in beneficial mutation reveals that the residues are near to the catalytic triad, but not inside the catalytic pocket. For instance, Ala510 of PhaCCn is near catalytic His508 and may be involved in the open-close regulation, which presumably play an important role in substrate specificity and activity. In the class II PhaC1 from Pseudomonas sp. 61-3 (PhaC1Ps), Ser325 stabilizes the catalytic cysteine through hydrogen bonding. Another residue, Gln508 of PhaC1Ps is located in a conserved hydrophobic pocket which is next to the catalytic Asp and His. A class I, II-conserved Phe420 of PhaCCn is one of the residues involved in dimerization and its mutation to serine greatly reduced the lag phase. The current structural analysis shows that the Phe362 and Phe518 of PhaC from Aeromonas caviae (PhaCAc) are assisting the dimer formation and maintaining the integrity of the core beta-sheet, respectively. The structure-function relationship of PhaCs discussed in this review will serve as valuable reference for future protein engineering works to enhance the performance of PhaCs and to produce novel biopolymers.
    Matched MeSH terms: Structure-Activity Relationship
  19. Yoon YK, Choon TS
    Arch Pharm (Weinheim), 2016 Jan;349(1):1-8.
    PMID: 26616218 DOI: 10.1002/ardp.201500337
    Benzimidazole derivatives have been shown to possess sirtuin-inhibitory activity. In the continuous search for potent sirtuin inhibitors, systematic changes on the terminal benzene ring were performed on previously identified benzimidazole-based sirtuin inhibitors, to further investigate their structure-activity relationships. It was demonstrated that the sirtuin activities of these novel compounds followed the trend where meta-substituted compounds possessed markedly weaker potency than ortho- and para-substituted compounds, with the exception of halogenated substituents. Molecular docking studies were carried out to rationalize these observations. Apart from this, the methods used to synthesize the interesting compounds are also discussed.
    Matched MeSH terms: Structure-Activity Relationship
  20. Khaledi H, Alhadi AA, Yehye WA, Ali HM, Abdulla MA, Hassandarvish P
    Arch Pharm (Weinheim), 2011 Nov;344(11):703-9.
    PMID: 21953995 DOI: 10.1002/ardp.201000223
    A new series of gallic hydrazones containing an indole moiety was synthesized through the reaction of gallic hydrazide and different indole carboxaldehydes. Their antioxidant activities were determined on DPPH radical scavenging and inhibition of lipid peroxidation. The in-vitro cytotoxic activities of the compounds were evaluated against HCT-116 (human colon cancer cell line) and MCF-7 (estrogen-dependent human breast cancer cell line) by the MTT method. An attempt to correlate the biological results with their structural characteristics has been done. A limited positive structure activity relationship was found between cytotoxic and antioxidant activities.
    Matched MeSH terms: Structure-Activity Relationship
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links