Displaying publications 1 - 20 of 551 in total

Abstract:
Sort:
  1. Zhong L, Liu Q, Ting YS, Thien VY, Binti Kalong NS, Yang D, et al.
    Chem Biol Drug Des, 2018 12;92(6):1998-2008.
    PMID: 30043441 DOI: 10.1111/cbdd.13371
    Overexpression of thioredoxin-interacting protein (TXNIP) is associated with reduced insulin sensitivity and β-cell apoptosis. We have previously shown that W2476 inhibited high glucose-induced TXNIP expression at both mRNA and protein levels in INS-1E cells. In this study, we describe structural modification and optimization of W2476 leading to three more active derivatives, 8d, 8g, and 9h, capable of suppressing TXNIP expression in BG73 and INS-1E cells, increasing insulin production, and reducing high glucose-induced apoptosis in INS-1E cells.
    Matched MeSH terms: Structure-Activity Relationship
  2. Zhang Q, Zhao JJ, Xu J, Feng F, Qu W
    J Ethnopharmacol, 2015 Sep 15;173:48-80.
    PMID: 26091967 DOI: 10.1016/j.jep.2015.06.011
    The genus Uncaria belongs to the family Rubiaceae, which mainly distributed in tropical regions, such as Southeast Asia, Africa and Southeast America. Their leaves and hooks have long been thought to have healing powers and are already being tested as a treatment for asthma, cancer, cirrhosis, diabetes, hypertension, stroke and rheumatism. The present review aims to provide systematically reorganized information on the ethnopharmacology, phytochemistry and pharmacology of the genus Uncaria to support for further therapeutic potential of this genus. To better understanding this genus, information on the stereo-chemistry and structure-activity relationships in indole alkaloids is also represented.
    Matched MeSH terms: Structure-Activity Relationship
  3. Zhang D, Gao C, Li R, Zhang L, Tian J
    Arch Pharm Res, 2017 May;40(5):579-591.
    PMID: 28211011 DOI: 10.1007/s12272-017-0899-9
    2α,3α,24-Thrihydroxyurs-12-en-28-oicacid (TEOA), a pentacyclic triterpenoid, isolated from the roots of Actinidia eriantha, exhibits significant cytotoxicity against SW620, BGC-823, HepG-2, A549 and PC-3 cancer cells. In this study, we investigated the underlying molecular mechanism of the anticancer activity of TEOA in SW620 cells. We demonstrated that TEOA induced apoptosis through cleavage of caspase-9 and PARP in SW620 cells. In addition, evidence of TEOA-mediated autophagy included the induction of autophagolysosomes and activation of autophagic markers LC-3B and p62. Further analysis illustrated that TEOA promoted the phosphorylation of PERK and elF2α, followed by up-regulation of the downstream protein CHOP, suggesting the involvement of PERK/eIF2α/CHOP pathway and ER stress in TEOA-induced autophagy in SW620 cells. Meanwhile, TEOA-mediated PINK1, Parkin, ubiquitin and p62 activation revealed that TEOA induced specific autophagy-mitophagy in SW620 cells. Additionally, an antioxidant NAC attenuated the TEOA-induced mitophagy, indicating that TEOA triggers mitophagy via a ROS-dependent pathway. Collectively, our findings revealed a novel cellular mechanism of TEOA in the colon cancer cell line SW620, thus providing a molecular basis for developing TEOA into an anti-tumor candidate.
    Matched MeSH terms: Structure-Activity Relationship
  4. Zengin G, Rodrigues MJ, Abdallah HH, Custodio L, Stefanucci A, Aumeeruddy MZ, et al.
    Comput Biol Chem, 2018 Dec;77:178-186.
    PMID: 30336375 DOI: 10.1016/j.compbiolchem.2018.10.005
    The genus Silene is renowned in Turkey for its traditional use as food and medicine. Currently, there are 138 species of Silene in Turkey, amongst which have been several studies for possible pharmacological potential and application in food industry. However, there is currently a paucity of data on Silene salsuginea Hub.-Mor. This study endeavours to access its antioxidant, enzyme inhibitory, and anti-inflammatory properties. Besides, reversed-phase high-performance liquid chromatography-diode array detector (RP-HPLC-DAD) was used to detect phenolic compounds, and molecular docking was performed to provide new insights for tested enzymes and phenolics. High amounts of apigenin (534 μg/g extract), ferulic acid (452 μg/g extract), p-coumaric acid (408 μg/g extract), and quercetin (336 μg/g extract) were detected in the methanol extract while rutin (506 μg/g extract) was most abundant in the aqueous extract. As for their biological properties, the methanol extract exhibited the best antioxidant effect in the DPPH and CUPRAC assays, and also the highest inhibition against tyrosinase. The aqueous extract was the least active enzyme inhibitor but showed the highest antioxidant efficacy in the ABTS, FRAP, and metal chelating assays. At a concentration of 15.6 μg/mL, the methanol extract resulted in a moderate decrease (25.1%) of NO production in lipopolysaccharide-stimulated cells. Among the phenolic compounds, epicatechin, (+)-catechin, and kaempferol showed the highest binding affinity towards the studied enzymes in silico. It can be concluded that extracts of S. salsuginea are a potential source of functional food ingredients but need further analytical experiments to explore its complexity of chemical compounds and pharmacological properties as well as using in vivo toxicity models to establish its maximum tolerated dose.
    Matched MeSH terms: Structure-Activity Relationship
  5. Zeb A, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Hassan M, Javed Q, et al.
    Chem Biodivers, 2024 Apr;21(4):e202400133.
    PMID: 38363553 DOI: 10.1002/cbdv.202400133
    In the aimed research study, a new series of N-(aryl)-3-[(4-phenyl-1-piperazinyl)methyl]benzamides was synthesized, which was envisaged as tyrosinase inhibitor. The structures of these newly designed molecules were verified by IR, 1H-NMR, 13C-NMR, EI-MS and CHN analysis data. These molecules were screened against tyrosinase and their inhibitory activity explored that these 3-substituted-benzamides exhibit good to excellent potential, comparative to the standard. The Kinetics mechanism was investigated through Lineweaver-Burk plots which depicted that molecules inhibited this enzyme in a competitive mode. Moreover, molecular docking was also performed to determine the binding interaction of all synthesized molecules (ligands) with the active site of tyrosinase enzyme and the results showed that most of the ligands exhibited efficient binding energy values. Therefore, it is anticipated that these molecules might serve as auspicious therapeutic scaffolds for treatment of the tyrosinase associated skin disorders.
    Matched MeSH terms: Structure-Activity Relationship
  6. Zawawi NK, Taha M, Ahmat N, Wadood A, Ismail NH, Rahim F, et al.
    Bioorg Chem, 2016 Feb;64:29-36.
    PMID: 26637946 DOI: 10.1016/j.bioorg.2015.11.006
    Newly synthesized benzimidazole hydrazone derivatives 1-26 were evaluated for their α-glucosidase inhibitory activity. Compounds 1-26 exhibited varying degrees of yeast α-glucosidase inhibitory activity with IC50 values between 8.40 ± 0.76 and 179.71 ± 1.11 μM when compared with standard acarbose. In this assay, seven compounds that showed highest inhibitory effects than the rest of benzimidazole series were identified. All the synthesized compounds were characterized by different spectroscopic methods adequately. We further evaluated the interaction of the active compounds with enzyme with the help of docking studies.
    Matched MeSH terms: Structure-Activity Relationship
  7. Zawawi NK, Taha M, Ahmat N, Wadood A, Ismail NH, Rahim F, et al.
    Bioorg Med Chem, 2015 Jul 1;23(13):3119-25.
    PMID: 26001340 DOI: 10.1016/j.bmc.2015.04.081
    A library of novel 2,5-disubtituted-1,3,4-oxadiazoles with benzimidazole backbone (3a-3r) was synthesized and evaluated for their potential as β-glucuronidase inhibitors. Several compounds such as 3a-3d, 3e-3j, 3l-3o, 3q and 3r showed excellent inhibitory potentials much better than the standard (IC50=48.4±1.25μM: d-saccharic acid 1,4-lactone). All the synthesized compounds were characterized satisfactorily by using different spectroscopic methods. We further evaluated the interaction of the active compounds and the enzyme active site with the help of docking studies.
    Matched MeSH terms: Structure-Activity Relationship
  8. Zawawi NK, Rajput SA, Taha M, Ahmat N, Ismail NH, Abdullah N, et al.
    Bioorg Med Chem Lett, 2015 Oct 15;25(20):4672-6.
    PMID: 26330080 DOI: 10.1016/j.bmcl.2015.08.022
    Apoptotic cell death is the cause of the loss of insulin-producing β-cells in all forms of diabetes mellitus. The identification of small molecules capable of protecting cytokine-induced apoptosis could form the basis of useful therapeutic interventions. Here in, we present the discovery and synthesis of new benzimidazole derivatives, capable of rescuing pancreatic β-cells from cytokine-induced apoptosis. Three hydrazone derivatives of benzimidazole significantly increased the cellular ATP levels, reduced caspase-3 activity, reduced nitrite production and increased glucose-stimulated insulin secretion in the presence of proinflammatory cytokines. These findings suggest that these compounds may protect β-cells from the harmful effects of cytokines and may serve as candidates for therapeutic intervention for diabetes.
    Matched MeSH terms: Structure-Activity Relationship
  9. Zaman K, Rahim F, Taha M, Wadood A, Shah SAA, Ahmed QU, et al.
    Sci Rep, 2019 11 05;9(1):16015.
    PMID: 31690793 DOI: 10.1038/s41598-019-52100-0
    Here in this study regarding the over expression of TP, which causes some physical, mental and socio problems like psoriasis, chronic inflammatory disease, tumor angiogenesis and rheumatoid arthritis etc. By this consideration, the inhibition of this enzyme is vital to secure life from serious threats. In connection with this, we have synthesized twenty derivatives of isoquinoline bearing oxadiazole (1-20), characterized through different spectroscopic techniques such as HREI-MS, 1H- NMR and 13C-NMR and evaluated for thymidine phosphorylase inhibition. All analogues showed outstanding inhibitory potential ranging in between 1.10 ± 0.05 to 54.60 ± 1.50 µM. 7-Deazaxanthine (IC50 = 38.68 ± 1.12 µM) was used as a positive control. Through limited structure activity relationships study, it has been observed that the difference in inhibitory activities of screened analogs are mainly affected by different substitutions on phenyl ring. The effective binding interactions of the most active analogs were confirmed through docking study.
    Matched MeSH terms: Structure-Activity Relationship
  10. Zaman K, Rahim F, Taha M, Ullah H, Wadood A, Nawaz M, et al.
    Bioorg Chem, 2019 08;89:103024.
    PMID: 31176853 DOI: 10.1016/j.bioorg.2019.103024
    Despite of many diverse biological activities exhibited by benzimidazole scaffold, it is rarely explored for the urease inhibitory potential. For that purpose, benzimidazole analogues 1-19 were synthesized and screened for in vitro urease inhibitory potential. Structures of all synthetic analogues were deduced by different spectroscopic techniques. All analogues revealed inhibition potential with IC50 values of 0.90 ± 0.01 to 35.20 ± 1.10 μM, when compared with the standard thiourea (IC50 = 21.40 ± 0.21 μM). Limited SAR suggested that the variations in the inhibitory potentials of the analogues are the result of different substitutions on phenyl ring. In order to rationalize the binding interactions of most active compounds with the active site of urease enzyme, molecular docking study was conducted.
    Matched MeSH terms: Structure-Activity Relationship
  11. Zaman K, Rahim F, Taha M, Wadood A, Adnan Ali Shah S, Gollapalli M, et al.
    Bioorg Chem, 2019 08;89:102999.
    PMID: 31151055 DOI: 10.1016/j.bioorg.2019.102999
    Isoquinoline analogues (KA-1 to 16) have been synthesized and evaluated for their E. coli thymidine phosphorylase inhibitory activity. Except compound 11, all other analogs showed outstanding thymidine inhibitory potential ranging in between 4.40 ± 0.20 to 69.30 ± 1.80 µM when compared with standard drug 7-Deazaxanthine (IC50 = 38.68 ± 4.42 µM). Structure Activity Relationships has been established for all compounds, mainly based on substitution pattern on phenyl ring. All analogs were characterized by various spectroscopic techniques such as 1H NMR, 13C NMR and EI-MS. The binding interactions of isoquinoline analogues with the active site of TP enzyme, the molecular docking studies were performed. Furthermore, the angiogenic inhibitory potentials of isoquinoline analogues (KA-1-9, 14, 12 and 16) were determined in the presence of standard drug Dexamethasone based on percentage inhibitions at various concentrations. Herein this work analogue KA-12, 14 and 16 emerged with most potent angiogenic inhibitory potentials among the synthesized analogues.
    Matched MeSH terms: Structure-Activity Relationship
  12. Zaman K, Rahim F, Taha M, Sajid M, Hayat S, Nawaz M, et al.
    Bioorg Chem, 2021 10;115:105199.
    PMID: 34329995 DOI: 10.1016/j.bioorg.2021.105199
    Synthesis of quinoline analogs and their urease inhibitory activities with reference to the standard drug, thiourea (IC50 = 21.86 ± 0.40 µM) are presented in this study. The inhibitory activity range is (IC50 = 0.60 ± 0.01 to 24.10 ± 0.70 µM) which displayed that it is most potent class of urease inhibitor. Analog 1-9, and 11-13 emerged with many times greater antiurease potential than thiourea, in which analog 1, 2, 3, 4, 8, 9, and 11 (IC50 = 3.50 ± 0.10, 7.20 ± 0.20, 1.30 ± 0.10, 2.30 ± 0.10, 0.60 ± 0.01, 1.05 ± 0.10 and 2.60 ± 0.10 µM respectively) were appeared the most potent ones among the series. In this context, most potent analogs such as 1, 3, 4, 8, and 9 were further subjected for their in vitro antinematodal study against C. elegans to examine its cytotoxicity under positive control of standard drug, Levamisole. Consequently, the cytotoxicity profile displayed that analogs 3, 8, and 9 were found with minimum cytotoxic outline at higher concentration (500 µg/mL). All analogs were characterized through 1H NMR, 13C NMR and HR-EIMS. The protein-ligand binding interaction for most potent analogs was confirmed via molecular docking study.
    Matched MeSH terms: Structure-Activity Relationship
  13. Zahedifard M, Faraj FL, Paydar M, Looi CY, Hasandarvish P, Hajrezaie M, et al.
    Curr Pharm Des, 2015;21(23):3417-26.
    PMID: 25808938
    The anti-carcinogenic effect of the new quinazolinone compound, named MMD, was tested on MCF-7 human breast cancer cell line. The synthesis of quinazolinone-based compounds attracted strong attention over the past few decades as an alternative mean to produce analogues of natural products. Quinazolinone compounds sharing the main principal core structures are currently introduced in the clinical trials and pharmaceutical markets as anti-cancer agents. Thus, it is of high clinical interest to identify a new drug that could be used to control the growth and expansion of cancer cells. Quinazolinone is a metabolite derivative resulting from the conjugation of 2-aminobenzoyhydrazide and 5-methoxy-2- hydroxybenzaldehyde based on condensation reactions. In the present study, we analysed the influence of MMD on breast cancer adenoma cell morphology, cell cycle arrest, DNA fragmentation, cytochrome c release and caspases activity. MCF-7 is a type of cell line representing the breast cancer adenoma cells that can be expanded and differentiated in culture. Using different in vitro strategies and specific antibodies, we demonstrate a novel role for MMD in the inhibition of cell proliferation and initiation of the programmed cell death. MMD was found to increase cytochrome c release from the mitochondria to the cytosol and this effect was enhanced over time with effective IC50 value of 5.85 ± 0.71 μg/mL detected in a 72-hours treatment. Additionally, MMD induced cell cycle arrest at G0/G1 phase and caused DNA fragmentation with obvious activation of caspase-9 and caspases-3/7. Our results demonstrate a novel role of MMD as an anti-proliferative agent and imply the involvement of mitochondrial intrinsic pathway in the observed apoptosis.
    Matched MeSH terms: Structure-Activity Relationship
  14. Zafar MN, Butt AM, Chaudhry GE, Perveen F, Nazar MF, Masood S, et al.
    J Inorg Biochem, 2021 11;224:111590.
    PMID: 34507110 DOI: 10.1016/j.jinorgbio.2021.111590
    The bidentate N-(1-Alkylpyridin-4(1H)-ylidene)amide (PYA) pro-ligands [H2LBn][Cl]2 (2), and [H2LMe][TfO]2 (3) were prepared by simple alkylation reactions of the known compound, N,N-di(pyridin-4-yl)oxalamide (H2L, 1). The Pd(II) complexes, [Pd(LBn)2][Cl]2 (4), [Pd(LMe)2][Cl][TfO] (5), Pd(LBn)Cl2 (6) and Pd(LMe)Cl2 (7) were synthesized through reactions between these pro-ligands and suitable Pd(II) substrates in the presence of base. The molecular structures of 3 and 6 were obtained by single crystal X-ray structure determinations. Studies of the experimental and computational DNA binding interactions of the compounds 1-7 revealed that overall 4 and 6 have the largest values for the binding parameters Kb and ΔGbo. The results showed a good correlation with the steric and electronic parameters obtained by quantitative structure activity relationship (QSAR) studies. In-vitro cytotoxicity studies against four different cell lines showed that the human breast cancer cell lines MCF-7, T47D and cervical cancer cell line HeLa had either higher or similar sensitivities towards 4, 6 and 2, respectively, compared to cisplatin. In general, the cytotoxicity of the compounds, represented by IC50 values, decreased in the order 4 > 6 > 2 > 5 > 3 > 1 > 7 in cancer cell lines. Apoptosis contributed significantly to the cytotoxic effects of these anticancer agents as evaluated by apoptosis studies.
    Matched MeSH terms: Quantitative Structure-Activity Relationship
  15. Zabidi NA, Ishak NA, Hamid M, Ashari SE, Mohammad Latif MA
    J Enzyme Inhib Med Chem, 2021 Dec;36(1):109-121.
    PMID: 33249946 DOI: 10.1080/14756366.2020.1844680
    The inhibition of α-glucosidase and DPP enzymes capable of effectively reducing blood glucose level in the management of type 2 diabetes. The purpose of the present study is to evaluate the inhibitory potential of α-glucosidase and DPP (IV) activity including with the 2-NBDG uptake assay and insulin secretion activities through in vitro studies. The selected of active compounds obtained from the screening of compounds by LC-MS were docked with the targeted enzyme that involved in the mechanism of T2DM. From the results, root extracts displayed a better promising outcome in α-glucosidase (IC50 2.72 ± 0.32) as compared with the fruit extracts (IC50 3.87 ± 0.32). Besides, root extracts also displayed a better activity in the inhibition of DPP (IV), enhance insulin secretion and glucose uptake activity. Molecular docking results revealing that phlorizin binds strongly with α-glucosidase, DPP (IV) and Insulin receptor (IR) enzymes with achieving the lowest binding energy value. The present work suggests several of the compounds have the potential that contribute towards inhibiting α-glucosidase and DPP (IV) and thus effective in lowering post-prandial hyperglycaemia.
    Matched MeSH terms: Structure-Activity Relationship
  16. Yusufzai SK, Khan MS, Sulaiman O, Osman H, Lamjin DN
    Chem Cent J, 2018 Dec 04;12(1):128.
    PMID: 30515636 DOI: 10.1186/s13065-018-0497-z
    Coumarins are the phytochemicals, which belong to the family of benzopyrone, that display interesting pharmacological properties. Several natural, synthetic and semisynthetic coumarin derivatives have been discovered in decades for their applicability as lead structures as drugs. Coumarin based conjugates have been described as potential AChE, BuChE, MAO and β-amyloid inhibitors. Therefore, the objective of this review is to focus on the construction of these pharmacologically important coumarin analogues with anti-Alzheimer's activities, highlight their docking studies and structure-activity relationships based on their substitution pattern with respect to the selected positions on the chromen ring by emphasising on the research reports conducted in between year 1968 to 2017.
    Matched MeSH terms: Structure-Activity Relationship
  17. Yusoff M, Hamid H, Houghton P
    Molecules, 2014 Jan 20;19(1):1201-11.
    PMID: 24448061 DOI: 10.3390/molecules19011201
    Quaternary alkaloids are the major alkaloids isolated from Tinospora species. A previous study pointed to the necessary presence of quaternary nitrogens for strong acetylcholinesterase (AChE) inhibitory activity in such alkaloids. Repeated column chromatography of the vine of Tinospora crispa extract led to the isolation of one new protoberberine alkaloid, 4,13-dihydroxy-2,8,9-trimethoxydibenzo[a,g]quinolizinium (1), along with six known alkaloids-dihydrodiscretamine (2), columbamine (3), magnoflorine (4), N-formylannonaine (5), N-formylnornuciferine (6), and N-trans-feruloyltyramine (7). The seven compounds were isolated and structurally elucidated by spectroscopic analysis. Two known alkaloids, namely, dihydrodiscretamine and columbamine are reported for the first time for this plant. The compounds were tested for AChE inhibitory activity using Ellman's method. In the AChE inhibition assay, only columbamine (3) showed strong activity with IC50 48.1 µM. The structure-activity relationships derived from these results suggest that the quaternary nitrogen in the skeleton has some effect, but that a high degree of methoxylation is more important for acetylcholinesterase inhibition.
    Matched MeSH terms: Structure-Activity Relationship
  18. Yousuf S, Khan KM, Salar U, Chigurupati S, Muhammad MT, Wadood A, et al.
    Eur J Med Chem, 2018 Nov 05;159:47-58.
    PMID: 30268823 DOI: 10.1016/j.ejmech.2018.09.052
    Acarbose and voglibose are well-known α-amylase inhibitors used for the management of type-II diabetes mellitus. Unfortunately, these well-known and clinically used inhibitors are also associated with several adverse effects. Therefore, there is still need to develop the safer therapy. Despite of a broad spectrum of biological significances of pyrazolone, it is infrequently evaluated for α-amylase inhibition. Current study deals with the synthesis and biological screening of aryl and arylidene substituted pyrazolones 1-18 for their potential α-amylase inhibitory activity. Structures of synthetic derivatives 1-18 were identified by different spectroscopic techniques. All compounds 1-18 (IC50 = 1.61 ± 0.16 μM to 2.38 ± 0.09 μM) exhibited significant to moderate inhibitory potential when compared to standard acarbose (IC50 = 1.46 ± 0.26 μM). A number of derivatives including 8-12 (IC50 = 1.68 ± 0.1 μM to 1.97 ± 0.07 μM) and 14-16 (IC50 = 1.61 ± 0.16 μM to 1.93 ± 0.07 μM) were found to be significantly active. Limited SAR suggested that different substitutions on compounds do not have any significant effect on the inhibitory potential. Compounds were found to be mixed-type inhibitors revealed by kinetic studies. However, in silico study was identified a number of key features participating in the interaction with the binding site of α-amylase enzyme.
    Matched MeSH terms: Structure-Activity Relationship
  19. Younus HA, Hameed A, Mahmood A, Khan MS, Saeed M, Batool F, et al.
    Bioorg Chem, 2020 07;100:103827.
    PMID: 32402802 DOI: 10.1016/j.bioorg.2020.103827
    Medicinal importance of the sulfonylhydrazones is well-evident owing to their binding ability with zinc containing metalloenzymes. In the present study, we have synthesized different series of sulfonylhydrazones by using facile synthetic methods in good to excellent yield. All the successfully prepared sulfonylhydrazones were screened for ectonucleotidase (ALP & e5'NT) inhibitory activity. Among the chromen-2-one scaffold based sulfonylhydrazones, the compounds 7 was found to be most potent inhibitor for h-TNAP (human tissue non-specific alkaline phosphatase) and h-IAP (human intestinal alkaline phosphatase) with IC50 values of 1.02 ± 0.13 and 0.32 ± 0.0 3 µM respectively, compared with levamisole (IC50 = 25.2 ± 1.90 µM for h-TNAP) and l-phenylalanine (IC50 = 100 ± 3.00 µM for h-IAP) as standards. Further, the chromen-2-one based molecule 5a showed excellent activity against h-ecto 5'-NT (human ecto-5'-nucleotidase) with IC50 value of 0.29 ± 0.004 µM compared to standard, sulfamic acid (IC50 = 42.1 ± 7.8 µM). However, among the series of phenyl ring based sulfonylhydrazones, compound 9d was found to be most potent against h-TNAP and h-IAP with IC50 values of 0.85 ± 0.08 and 0.52 ± 0.03 µM, respectively. Moreover, in silico studies were also carried to demonstrate their putative binding with the target enzymes. The potent compounds 5a, 7, and 9d against different ectonucleotidases (h-ecto 5'-NT, h-TNAP, h-IAP) could potentially serve as lead for the development of new therapeutic agents.
    Matched MeSH terms: Structure-Activity Relationship
  20. Yoon YK, Choon TS
    Arch Pharm (Weinheim), 2016 Jan;349(1):1-8.
    PMID: 26616218 DOI: 10.1002/ardp.201500337
    Benzimidazole derivatives have been shown to possess sirtuin-inhibitory activity. In the continuous search for potent sirtuin inhibitors, systematic changes on the terminal benzene ring were performed on previously identified benzimidazole-based sirtuin inhibitors, to further investigate their structure-activity relationships. It was demonstrated that the sirtuin activities of these novel compounds followed the trend where meta-substituted compounds possessed markedly weaker potency than ortho- and para-substituted compounds, with the exception of halogenated substituents. Molecular docking studies were carried out to rationalize these observations. Apart from this, the methods used to synthesize the interesting compounds are also discussed.
    Matched MeSH terms: Structure-Activity Relationship
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links