Displaying all 11 publications

Abstract:
Sort:
  1. Naing SW, Wahid H, Mohd Azam K, Rosnina Y, Zuki AB, Kazhal S, et al.
    Anim. Reprod. Sci., 2010 Oct;122(1-2):23-8.
    PMID: 20637550 DOI: 10.1016/j.anireprosci.2010.06.006
    In order to improve Boer goat semen quality during cryopreservation process, the influence of sugar supplementation on semen characteristics of sperm were investigated. Three experiments were carried out to investigate the effect of (a) addition of two monosaccharides (fructose and glucose) and two disaccharides sugars (trehalose and sucrose) (b) sugar combination (fructose and trehalose, sucrose and trehalose, glucose and trehalose), and control (glucose without trehalose) (c) different concentrations of trehalose on cryopreservation using Tris based extender. The total motility, forward motility, viability, normal spermatozoa, acrosome integrity and membrane integrity were assessed subjectively. Differences were not detected among monosaccharides, but glucose increased (P<0.05) sperm forward motility in post-thaw goat semen compared to trehalose or sucrose supplementation. Semen quality did not differ (P>0.05) among disaccharide sugar supplementation. Combination of glucose and trehalose significantly improved the characteristics of Boer spermatozoa after cryopreservation (P<0.05). Supplementation of trehalose (198.24mM) into the glucose extender significantly increased total motility, forward motility, live spermatozoa, acrosome integrity and membrane integrity following cryopreservation (P<0.05). In conclusion, glucose had the better ability to support Boer sperm motility and movement patterns. Combination of monosaccharide (glucose) and disaccharide (trehalose) improved semen quality following cryopreservation. Trehalose supplementation at the concentration of 198.24mM to the glucose extender conferred the greater improvement of semen quality for Boer semen cryopreservation.
    Matched MeSH terms: Sucrose/pharmacology
  2. Mubbarakh SA, Rahmah S, Rahman ZA, Sah NN, Subramaniam S
    Appl Biochem Biotechnol, 2014 Jan;172(2):1131-45.
    PMID: 24146369 DOI: 10.1007/s12010-013-0597-0
    Cryopreservation is an alternative, safe, and cost-effective method for long-term plant genetic resource conservation. This study was conducted to optimize the conditions for cryopreserving the protocorm-like bodies (PLBs) of Brassidium Shooting Star orchid with the PVS3 vitrification method. Five parameters were assessed in this study: PLB size, sucrose concentration, preculture duration, PVS3 duration, and unloading duration. The viability of the cryopreserved PLBs was determined using the triphenytetrazolium chloride assay and growth recovery assessments. The optimum condition for the cryopreservation of the PLBs of Brassidium Shooting Star orchid is based on the size range between 3 and 4 mm precultured with half-strength semi-solid MS media supplemented with 0.25 M sucrose for 24 h, followed by treatment with loading solution mixture of 2 M glycerol and 0.4 M sucrose supplemented with half-strength liquid MS media at 25 °C for 20 min. The PLBs were then dehydrated with PVS3 at 0 °C for 20 min prior to immersion in liquid nitrogen; finally, the PLBs were immersed with half-strength liquid MS media supplemented with 1.2 M sucrose for 30 min. Histological analyses displayed denser cytoplasm and voluminous nucleus in the cryopreserved PLBs of Brassidium Shooting Star orchid.
    Matched MeSH terms: Sucrose/pharmacology
  3. Yap LV, Noor NM, Clyde MM, Chin HF
    Cryo Letters, 2011 May-Jun;32(3):188-96.
    PMID: 21766148
    The effects of sucrose preculture duration and loading treatment on tolerance of Garcinia cowa shoot tips to cryopreservation using the PVS2 vitrification solution were investigated. Ultrastructural changes in meristematic cells at the end of the preculture and loading steps were followed in an attempt to understand the effects of these treatments on structural changes in cell membranes and organelles. Increasing preculture duration on 0.3 M sucrose medium from 0 to 3 days enhanced tolerance to PVS2 solution from 5.6 percent (no preculture) to 49.2 percent (3-day preculture). However, no survival was observed after cryopreservation. Examination of meristematic cells by transmission electron microscopy revealed the progressive accumulation of an electron-dense substance in line with increasing exposure durations to 0.3 M sucrose preculture. Treatment with a loading solution (2 M glycerol + 0.4 M sucrose) decreased tolerance of shoot tips to PVS2 vitrification solution and had a deleterious effect on the ultrastructure of G. cowa meristematic cells. This study suggests that G. cowa meristematic cells may lose their structural integrity due to exposure to glycerol present in the loading solution at a 2 M concentration, either due to its high osmotic potential, or due to its cytotoxicity.
    Matched MeSH terms: Sucrose/pharmacology*
  4. Cho EG, Noor NM, Kim HH, Rao VR, Engelmann F
    Cryo Letters, 2002 Sep-Oct;23(5):309-16.
    PMID: 12447490
    The desiccation and freezing tolerance of seeds, with and without testas, and embryonic axes of Citrus aurantifolia were investigated. Seeds were desiccated with silica gel, under the laminar air flow cabinet or by placing them on a laboratory bench. Whatever the desiccation method employed, survival before and after cryopreservation was higher for seeds without testas. When freezing intact seeds, the highest survival percentage (41.3 %) was achieved after desiccation to 7.3 % moisture content (fresh weight basis) on the laboratory bench. Survival of seeds cryopreserved without testas could reach up to 85 % after desiccation under the laminar air flow cabinet or on the laboratory bench, corresponding to moisture contents of 7.1 and 4.5 %, respectively. After desiccation with silica gel, survival reached a maximum of 60.0 %, for a seed moisture content of 3.3 %. Survival of control embryonic axes was high (80-100 %) whatever the sucrose concentration in the preculture medium and the duration of the desiccation period. After cryopreservation, no survival was noted with embryonic axes, which had not been precultured nor desiccated. Survival of non-desiccated embryonic axes after cryopreservation increased progressively in line with increasing sucrose concentrations in the preculture medium, from 7.5 % with 0.1 M sucrose to 77.5 % with 0.7 M sucrose. Survival of desiccated and cryopreserved embryos was always high, whatever the preculture treatment and desiccation period, ranging from 55.8 % to 92.5 %.
    Matched MeSH terms: Sucrose/pharmacology
  5. Cho EG, Hor YL, Kim HH, Rao VR, Engelmann F
    Cryo Letters, 2001 Nov-Dec;22(6):391-6.
    PMID: 11788881
    The role of pregrowth and preculture treatments in terms of both medium composition and exposure duration on survival of embryonic axes of Citrus madurensis after cryopreservation using the vitrification procedure was investigated. The optimal pregrowth treatment for excised embryonic axes was a 3-day treatment with 0.1M sucrose. Preculture was also essential in increasing survival after cryopreservation. Among the various media and treatment durations evaluated, a 24h-preculture of embryonic axes on medium with 0.3M sucrose and 0.5M glycerol was found to be optimal. Using these pregrowth and preculture conditions followed by treatment at 25 degrees C for 20 min each with a loading solution (0.4M sucrose + 2.0M glycerol) and then the PVS2 vitrification solution, direct immersion in liquid nitrogen, rapid rewarming, unloading in a 1.2M sucrose solution for 20 min and transfer of embryonic axes on recovery medium, 82.5% survival and regrowth without intermediary callus formation were obtained with C. madurensis embryonic axes.
    Matched MeSH terms: Sucrose/pharmacology
  6. Ping KS, Poobathy RR, Zakaria R, Subramaniam S
    Cryo Letters, 2018 5 8;38(4):290-298.
    PMID: 29734430
      BACKGROUND: Conservation of commercially important ornamental plants is important to maintain its unique beauty to cater the market demands.

    OBJECTIVE: The main objective is to develop an efficient cryopreservation technique for Aranda Broga Blue orchid PLBs using droplet-vitrification method.

    MATERIALS AND METHODS: Several critical factors in cryopreservation were accessed such as preculture concentrations and durations, choice of vitrification solutions, two-step or three-step vitrification, growth recovery medium and PVS2 exposure duration.

    RESULTS: The best growth regeneration percentage (5%) was obtained when 3-4mm PLBs were precultured in 0.2M sucrose for 3 days, followed by osmoprotection for 20 minutes, dehydration in PVS2 for 20 minutes at 0 degree C, LN storage, thawed and unloading for 20 minutes, and growth regeneration in VW10 medium. PLBs were found to be very sensitive to osmotic stress imposed by high molecular weight cryoprotectant such as sucrose and glycerol. Osmotic potential of growth recovery medium is one of the main factors that affect growth recovery in cryopreserved PLBs.

    CONCLUSION: Current report showed possibilities in cryopreserving Aranda Broga Blue PLBs using droplet-vitrification technique. However, further improvement of growth recovery can be done by focussing on approaches that facilitate sufficient water removal from PLBs without causing severe osmotic injuries to the plant cells.

    Matched MeSH terms: Sucrose/pharmacology
  7. Mohd Sharifuddin M, Siti Azizah MN
    Cryobiology, 2014 Aug;69(1):1-9.
    PMID: 24726775 DOI: 10.1016/j.cryobiol.2014.04.001
    This paper reports the findings of the ongoing studies on cryopreservation of the snakehead, Channa striata embryos. The specific objective of this study was to collect data on the sensitivity of C. striata embryo hatching rate to low temperatures at two different developmental stages in the presence of four different cryoprotectants. Embryos at morula and heartbeat stages were selected and incubated in 1M dimethyl sulfoxide (Me2SO), 1M ethylene glycol (EG), 1M methanol (MeOH) and 0.1M sucrose solutions at different temperatures for a period of time. Embryos were kept at 24 °C (control), 15 °C, 4 °C and -2 °C for 5 min, 1h and 3h. Following these treatments, the embryos were then transferred into a 24 °C water bath until hatch to evaluate the hatching rate. The results showed that there was a significant decrease of hatching rate in both developmental stages following exposure to 4 °C and -2 °C at 1h and 3h exposure in each treatment. Heartbeat stage was more tolerant against chilling at -2 °C for 3h exposure in Me2SO followed by MeOH, sucrose and EG. Further studies will be conducted to find the best method to preserve embryos for long term storage.
    Matched MeSH terms: Sucrose/pharmacology
  8. Rahim ZH, Thurairajah N
    J Appl Oral Sci, 2011 Apr;19(2):137-46.
    PMID: 21552715
    INTRODUCTION: Previous studies have shown that Piper betle L. leaves extract inhibits the adherence of Streptococcus mutans to glass surface, suggesting its potential role in controlling dental plaque development.

    OBJECTIVES: In this study, the effect of the Piper betle L. extract towards S. mutans (with/without sucrose) using scanning electron microscopy (SEM) and on partially purified cell-associated glucosyltransferase activity were determined.

    MATERIAL AND METHODS: S. mutans were allowed to adhere to glass beads suspended in 6 different Brain Heart Infusion broths [without sucrose; with sucrose; without sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1)); with sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1))]. Positive control was 0.12% chlorhexidine. The glass beads were later processed for SEM viewing. Cell surface area and appearance and, cell population of S. mutans adhering to the glass beads were determined upon viewing using the SEM. The glucosyltransferase activity (with/without extract) was also determined. One- and two-way ANOVA were used accordingly.

    RESULTS: It was found that sucrose increased adherence and cell surface area of S. mutans (p<0.001). S. mutans adhering to 100 µm² glass surfaces (with/without sucrose) exhibited reduced cell surface area, fluffy extracellular appearance and cell population in the presence of the Piper betle L. leaves extract. It was also found that the extract inhibited glucosyltransferase activity and its inhibition at 2.5 mg mL(-1) corresponded to that of 0.12% chlorhexidine. At 4 mg mL(-1) of the extract, the glucosyltransferase activity was undetectable and despite that, bacterial cells still demonstrated adherence capacity.

    CONCLUSION: The SEM analysis confirmed the inhibitory effects of the Piper betle L. leaves extract towards cell adherence, cell growth and extracellular polysaccharide formation of S. mutans visually. In bacterial cell adherence, other factors besides glucosyltransferase are involved.

    Matched MeSH terms: Sucrose/pharmacology
  9. Nasran HS, Mohd Yusof H, Halim M, Abdul Rahman N
    Molecules, 2020 Jun 04;25(11).
    PMID: 32512825 DOI: 10.3390/molecules25112618
    Anthracnose is a fungal disease causing major losses in crop production. Chemical fungicides widely used in crop plantations to combat fungal infections can be a threat to the environment and humans in the long term. Recently, biofungicides have gained much interest as an alternative to chemical fungicides due to their environmentally friendly nature. Biofungicide products in powder form can be formulated using the freeze-drying technique to provide convenient storage. Protective agent formulation is needed in maintaining the optimal viable cells of biofungicide products. In this study, 8.10 log colony-forming unit (CFU)/mL was the highest cell viability of Paenibacillus polymyxa Kp10 at 22 h during incubation. The effects of several selected protective agents on the viability of P. polymyxa Kp10 after freeze-drying were studied. Response surface methodology (RSM) was used for optimizing formulation for the protective agents. The combination of lactose (10% w/v), skim milk (20% w/v), and sucrose (27.5% w/v) was found to be suitable for preserving P. polymyxa Kp10 during freeze-drying. Further, P. polymyxa Kp10 demonstrated the ability to inhibit fungal pathogens, Colletotrichum truncatum and C. gloeosporioides, at 60.18% and 66.52% of inhibition of radial growth, respectively.
    Matched MeSH terms: Sucrose/pharmacology
  10. Farshad Ashraf M, Abd Aziz M, Abdul Kadir M, Stanslas J, Farokhian E
    Plant Cell Physiol, 2013 Aug;54(8):1356-64.
    PMID: 23749812 DOI: 10.1093/pcp/pct083
    This study focuses on the establishment of in vitro tuberization of Chlorophytum borivilianum using solid and liquid culture systems. A high in vitro tuberization rate on solid and stationary liquid Murashige and Skoog media was observed in the presence of 60 g l⁻¹ sucrose with 950, 1,265 and 1,580 µM 2-chloroethyl-trimethylammonium chloride (CCC). Application of a higher sucrose concentration of 90 g l⁻¹ showed a negative interaction with CCC on in vitro tuber number and days to in vitro tuber induction. For economic feasibility, 950 µM CCC with 60 g l⁻¹ sucrose was chosen as the best combination for in vitro tuberization in both solid and stationary liquid media. For optimization of in vitro tuber production,a comparison between solid, stationary liquid and shake liquid culture was carried out. Liquid culture with shaking at 80 r.p.m. resulted in a >2.5-fold increase in in vitro tuber production compared with solid culture.
    Matched MeSH terms: Sucrose/pharmacology*
  11. See KS, Bhatt A, Keng CL
    Rev. Biol. Trop., 2011 Jun;59(2):597-606.
    PMID: 21717852
    Melastoma malabathricum, belongs to the Melastomaceae family, is an important medicinal plant widely distributed from Madagascar to Australia, that is used in traditional remedies for the treatment of various ailments. Besides its medicinal properties, it has been identified as a potential source of anthocyanin production. The present study was carried out to investigate the effect of sucrose and methyl jasmonate and feeding time on cell biomass yield and anthocyanin production in cell suspension culture of M. malabathricum. Addition of different concentrations of sucrose into the cell culture of M. malabathricum influenced cell biomass and pigment accumulation. The addition of methyl jasmonate was found to have no effect on cell biomass but the presence of higher amount (12.5-50 mg/L) had caused a reduction in anthocyanin production and accumulation. MS medium supplemented with 30 g/L sucrose and 3.5 mg/L of MeJA added on cero day and 3rd day produced high fresh cell mass at the end of nine days of culture but did not support the production of anthocyanins. However, cells cultured in the medium supplemented with 45 g/L sucrose without MeJA showed the highest pigment content (0.69 +/- 0.22 CV/g-FCM). The cells cultured in MS medium supplemented with 30 g/L sucrose with 3.5 mg/L MeJA added on the 3rd and 6th day of culture, showed the lowest pigment content (0.37-0.40 CV/g-FCM). This study indicated that MeJA was not necessary but sucrose was needed for the enhancement of cell growth and anthocyanin production in M. malabathricum cell cultures.
    Matched MeSH terms: Sucrose/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links