Displaying publications 1 - 20 of 60 in total

Abstract:
Sort:
  1. Zuhair, R.A., Aminah, A., Sahilah, A.M., Eqbal, D.
    MyJurnal
    Papaya (Carica papaya L. cv. Hongkong) is an economically important fruit crop grown in Malaysia. During its ripening stages, (C. papaya L.) exhibits different physicochemical properties, antioxidant capacities, and sensory quality results. The objective of this study was to elucidate in detail the antioxidant capacity of C. papaya as determined by total phenol content (TPC), total flavonoid content (TFC), ferric reducing antioxidant power (FRAP),2,2-diphenyl-1-picrylhydrazyl (DPPH) and scavenging systemand (ABTS). The study also aimed to study physicochemical changes of papaya fruits based on measured pH, titratable acidity (TA), total soluble solids (TSS), moisture and fruit color at five different stages of ripening. The fruits were harvested at five different, stages RS1, RS2, RS3, RS4, and RS5 corresponding to 12, 14, 16, 18, and 20 weeks after anthesis, respectively. Significant differences were found at different stages of ripening. The pH of the fruit decreased significantly (P < 0.05), whereas TA, moisture, and TSS increased significantly (P < 0.05) during the ripening process. The redness (a*) and yellowness (b*) values of fruit color both increased significantly (P < 0.05), whereas
    lightness (L*) varied. The total phenol content TPC, TFC, FRAP, DPPH and ABTS values increased significantly (P < 0.05) with the ripening process. Sensory evaluation based on the color, sweetness, sourness, flavor, and overall acceptance for the last three maturity stages was also performed. RS5 had a better score than RS3 or RS4. The results showed the important role of the ripening stage in increasing the antioxidant content of papaya fruits.
    Matched MeSH terms: Sulfonic Acids
  2. Zengin G, Rodrigues MJ, Abdallah HH, Custodio L, Stefanucci A, Aumeeruddy MZ, et al.
    Comput Biol Chem, 2018 Dec;77:178-186.
    PMID: 30336375 DOI: 10.1016/j.compbiolchem.2018.10.005
    The genus Silene is renowned in Turkey for its traditional use as food and medicine. Currently, there are 138 species of Silene in Turkey, amongst which have been several studies for possible pharmacological potential and application in food industry. However, there is currently a paucity of data on Silene salsuginea Hub.-Mor. This study endeavours to access its antioxidant, enzyme inhibitory, and anti-inflammatory properties. Besides, reversed-phase high-performance liquid chromatography-diode array detector (RP-HPLC-DAD) was used to detect phenolic compounds, and molecular docking was performed to provide new insights for tested enzymes and phenolics. High amounts of apigenin (534 μg/g extract), ferulic acid (452 μg/g extract), p-coumaric acid (408 μg/g extract), and quercetin (336 μg/g extract) were detected in the methanol extract while rutin (506 μg/g extract) was most abundant in the aqueous extract. As for their biological properties, the methanol extract exhibited the best antioxidant effect in the DPPH and CUPRAC assays, and also the highest inhibition against tyrosinase. The aqueous extract was the least active enzyme inhibitor but showed the highest antioxidant efficacy in the ABTS, FRAP, and metal chelating assays. At a concentration of 15.6 μg/mL, the methanol extract resulted in a moderate decrease (25.1%) of NO production in lipopolysaccharide-stimulated cells. Among the phenolic compounds, epicatechin, (+)-catechin, and kaempferol showed the highest binding affinity towards the studied enzymes in silico. It can be concluded that extracts of S. salsuginea are a potential source of functional food ingredients but need further analytical experiments to explore its complexity of chemical compounds and pharmacological properties as well as using in vivo toxicity models to establish its maximum tolerated dose.
    Matched MeSH terms: Sulfonic Acids/antagonists & inhibitors
  3. Yusof NZ, Azizul Hasan ZA, Abd Maurad Z, Idris Z
    Cutan Ocul Toxicol, 2018 Jun;37(2):103-111.
    PMID: 28693384 DOI: 10.1080/15569527.2017.1352595
    AIM: To evaluate eye irritation potential of palm-based methyl ester sulphonates (MES) of different chain lengths; C12, C14, C16, C16:18.

    METHODS: The Bovine Corneal Opacity and Permeability test method (BCOP), OECD Test Guideline 437, was used as an initial step to study the inducing effect of palm-based MES on irreversible eye damage. The second assessment involved the use of reconstructed human corneal-like epithelium test method, OECD Test Guideline 492 using SkinEthic™ Human Corneal Epithelium to study the potential effect of palm-based MES on eye irritancy. The palm-based MES were prepared in 10% solution (w/v) in deionized water and tested as a liquid and surfactant test substances whereby both test conducted according to the liquid/surfactant treatment protocol.

    RESULTS: The preliminary BCOP results showed that palm-based MES; C12, C14, C16, C16:18 were not classified as severe eye irritants test substances with in vitro irritancy score between 3 and the threshold level of 55. The second evaluation using SkinEthic™ HCE model showed that palm-based MES; C12, C14, C16, C16:18 and three commercial samples were potentially irritants to the eyes with mean tissue viability ≤ 60% and classified as Category 2 according to United Nations Globally Harmonized System of Classification and Labelling of Chemicals. However, there are some limitations of the proposed ocular irritation classification of palm-based MES due to insolubility of long chain MES in 10% solution (w/v) in deionized water.

    CONCLUSION: Therefore, future studies to clarify the eye irritation potential of the palm-based MES will be needed, and could include; methods to improve the test substance solubility, use of test protocol for solids, and/or inclusion of a benchmark anionic surfactant, such as sodium dodecyl sulphate within the study design.

    Matched MeSH terms: Sulfonic Acids/classification; Sulfonic Acids/toxicity*
  4. Yim HS, Chye FY, Rao V, Low JY, Matanjun P, How SE, et al.
    J Food Sci Technol, 2013 Apr;50(2):275-83.
    PMID: 24425917 DOI: 10.1007/s13197-011-0349-5
    Central composite design of response surface methodology (RSM) was employed to optimize the extraction time (X 1 : 99.5-290.5 min) and temperature (X 2 : 30.1-54.9 °C) of Schizophyllum commune aqueous extract with high antioxidant activities and total phenolic content (TPC). Results indicated that the data were adequately fitted into four second-order polynomial models. The extraction time and temperature were found to have significant linear, quadratic and interaction effects on antioxidant activities and TPC. The optimal extraction time and temperature were: 290.5 min and 35.7 °C (DPPH(•) scavenging ability); 180.7 min and 41.7 °C (ABTS(•+) inhibition ability); 185.2 min and 42.4 °C (ferric reducing antioxidant power, FRAP); 290.5 min and 40.3 °C (TPC). These optimum conditions yielded 85.10%; 94.31%; 0.74 mM Fe(2+) equivalent/100 g; 635.76 mg gallic acid equivalent/100 g, respectively. The yields of antioxidant activities and TPC obtained experimentally were close to its predicted values. The establishment of such model provides a good experimental basis employing RSM for optimizing the extraction time and temperature on antioxidants from S. commune aqueous extract.
    Matched MeSH terms: Sulfonic Acids
  5. Yim HS, Chye FY, Mah SY, Sia CM, Samuagam L, Ho CW
    Int J Med Mushrooms, 2013;15(1):9-19.
    PMID: 23510280
    Pleurotus porrigens is a well-known edible, wild mushroom enjoyed as a delicacy by aborigines in Sabah and as source of income for the aborigines who collect and sell them at tamu (local market). This study aimed to evaluate the antioxidant activity in vitro and identify potent antioxidative components of aqueous extracts of P. porrigens. The antioxidant activities were evaluated using DPPH radical scavenging ability, ABTS radical cation inhibition activity, ferric reducing/antioxidant power, and total phenolic content. Activity-guided purifications based on DPPH radical scavenging ability resulted in 5 subfractions (SF). The highest DPPH radical scavenging ability was found in SF-III and SF-IV, but all were lower than butylated hydroxyanisole (BHA) and α-tocopherol. Analysis with high-performance liquid chromatography-diode array detectors found presence of ascorbic acid and (+)-catechin in SFs of P. porrigens, as well as some unidentified components that may have contributed to the radical scavenging ability. In conclusion, aqueous extract of P. porrigens possesses promising antioxidant activities, although they are lesser in their partially purified SFs. Nonetheless, P. porrigens could be promoted as an antioxidant-rich food as part of a normal diet that provides antioxidative benefit.
    Matched MeSH terms: Sulfonic Acids
  6. Yida Z, Imam MU, Ismail M
    PMID: 25475744 DOI: 10.1186/1472-6882-14-468
    Edible birds' nest (EBN) is reported to be antioxidant-rich. However, the fate of its antioxidants after oral consumption is not yet reported. To explore this, we hypothesized that EBN antioxidants are released from their matrix when subjected to in vitro simulated gastrointestinal digestion.
    Matched MeSH terms: Sulfonic Acids/metabolism
  7. Woo, P.F., Yim, H.S., Khoo, H.E., Sia, C.M., Ang, Y.K.
    MyJurnal
    This study investigated the effects of different percentages of ethanol (0 - 100%), extraction times (1 - 5 h) and temperatures (25 - 60°C) on total phenolic content (TPC) and antioxidant activity (AA) of sapodilla pulp and peel. TPC was determined by Folin-Ciocalteu reagent method, while AA was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, 2,2-azino-bis-(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assay, ferric reducing antioxidant power (FRAP) assay and β-carotene bleaching (BCB) assay. Based on the optimal extraction conditions used, sapodilla pulp extract had TPC of 3.89 mg GAE/g, 63.20% of DPPH scavenging activity, 4.30% of ABTS scavenging activity, 19.17% of BCB activity, and FRAP value of 15.24 mg TE/g; while its peel extract had TPC of 9.23 mg GAE/g, 92.95% of DPPH scavenging activity, 5.36% of ABTS scavenging activity, 8.14% of BCB activity, and 27.85 mg TE/g (FRAP value). Using the optimal extraction conditions for sapodilla pulp (40% ethanol as extraction solvent that extracted at 60°C for 4 h) and sapodilla peel (80% ethanol and 2 h extraction time at 40°C), highest antioxidants can be extracted from the pulp and peel.
    Matched MeSH terms: Sulfonic Acids
  8. Wong, B.Y., Tan, C.P., Ho, C.W.
    MyJurnal
    The objective of this study was to evaluate the effects of solid-to-solvent ratio (1:5. 1:10, 1:15 and 1:20) on the extraction of phenolic compounds (TPC and TFC) and antioxidant capacity (ABTS and DPPH radical scavenging capacity) of P. niruri. Solid-to-solvent ratio showed a significant effect for both phenolic compounds (TPC and TFC) and antioxidant capacity (ABTS and DPPH radical scavenging capacity) with 1:20 was the condition for extracting the highest of phenolic compounds (TPC and TFC) with a value of 5788.7 mg GAE/100 g DW and 1906.5 mg CE/100 g DW, respectively and exhibited high antioxidant capacities (ABTS and DPPH radical scavenging capacities) with a value of 0.820 mM and 1.598 mM, respectively among the four levels studied. TPC was positively and significantly correlated with ABTS and DPPH (r=0.999 and r=0.999) under the effects of solid-to-solvent ratio as compared to TFC, positively and strongly correlated (r=0.865 and r=0.868) with ABTS and DPPH.
    Matched MeSH terms: Sulfonic Acids
  9. Wong YS, Sia CM, Khoo HE, Ang YK, Chang SK, Chang SK, et al.
    Acta Sci Pol Technol Aliment, 2014 Jul-Sep;13(3):257-65.
    PMID: 24887941
    As a by-product of tropical fruit juice industry, passion fruit peel is a valuable functional food. It is rich in antioxidants. To determine its potential antioxidant properties of passion fruit peel, this study aimed to evaluate the effect of extraction conditions on total phenolic content and antioxidant activity.
    Matched MeSH terms: Sulfonic Acids/analysis
  10. Thoo, Y.Y., Ng, S.Y., Khoo, M.Z., Wan Aida, W.M., Ho, C.W.
    MyJurnal
    The effects of ethanol concentration (0-100%, v/v), extraction time (60-300 min) and extraction temperature (25-65°C) on the extraction of phenolic antioxidants from Andrographis paniculata was evaluated using single-factor experiments. The following complementary assays were used to screen the antioxidant properties of the crude extracts: total phenolic content (TPC), total flavonoid content (TFC), condensed tannin content (CTC), 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical-scavenging capacity and 2,2’-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging capacity. The extraction conditions chosen had significant effects (p < 0.05) on the extraction of phenolic compounds and antioxidant capacity. The optimal conditions were 60% ethanol for 60 min at 65oC for phenolic compounds and at 25oC for antioxidant capacity. Strong negative significant (p < 0.05) correlations were observed between the phenolic compounds (TPC, TFC and CTC) and antioxidant capacity comprising ABTS (-0.924, -0.909, -0.887, respectively) and DPPH radical-scavenging capacities (-0.992, -0.938, -0.928, respectively) were determined under the influence of extraction temperature.
    Matched MeSH terms: Sulfonic Acids
  11. Tayyeb JZ, Priya M, Guru A, Kishore Kumar MS, Giri J, Garg A, et al.
    Mol Biol Rep, 2024 Mar 15;51(1):423.
    PMID: 38489102 DOI: 10.1007/s11033-024-09407-7
    BACKGROUND: Oral health remains a significant global concern with the prevalence of oral pathogens and the increasing incidence of oral cancer posing formidable challenges. Additionally, the emergence of antibiotic-resistant strains has complicated treatment strategies, emphasizing the urgent need for alternative therapeutic approaches. Recent research has explored the application of plant compounds mediated with nanotechnology in oral health, focusing on the antimicrobial and anticancer properties.

    METHODS: In this study, curcumin (Cu)-mediated zinc oxide nanoparticles (ZnO NPs) were synthesized and characterized using SEM, EDAX, UV spectroscopy, FTIR, and XRD to validate their composition and structural features. The antioxidant and antimicrobial activity of ZnO-CU NPs was investigated through DPPH, ABTS, and zone of inhibition assays. Apoptotic assays and gene expression analysis were performed in KB oral squamous carcinoma cells to identify their anticancer activity.

    RESULTS: ZnO-CU NPs showcased formidable antioxidant prowess in both DPPH and ABTS assays, signifying their potential as robust scavengers of free radicals. The determined minimal inhibitory concentration of 40 µg/mL against dental pathogens underscored the compelling antimicrobial attributes of ZnO-CU NPs. Furthermore, the interaction analysis revealed the superior binding affinity and intricate amino acid interactions of ZnO-CU NPs with receptors on dental pathogens. Moreover, in the realm of anticancer activity, ZnO-CU NPs exhibited a dose-dependent response against Human Oral Epidermal Carcinoma KB cells at concentrations of 10 µg/mL, 20 µg/mL, 40 µg/mL, and 80 µg/mL. Unraveling the intricate mechanism of apoptotic activity, ZnO-CU NPs orchestrated the upregulation of pivotal genes, including BCL2, BAX, and P53, within the KB cells.

    CONCLUSIONS: This multifaceted approach, addressing both antimicrobial and anticancer activity, positions ZnO-CU NPs as a compelling avenue for advancing oral health, offering a comprehensive strategy for tackling both oral infections and cancer.

    Matched MeSH terms: Sulfonic Acids*
  12. Tay BY
    Int J Cosmet Sci, 2013 Feb;35(1):57-63.
    PMID: 22994145 DOI: 10.1111/ics.12004
    A simple and rapid gas chromatography (GC) method with flame ionization detector was developed for detection of isopropyl para-toluenesulphonate (IPTS) in palm-based isopropyl palmitate (IPP) and isopropyl myristate (IPM). The method involved spiking the IPP/IPM samples with IPTS and directly injecting the spiked samples into GC without undergoing clean-up steps. The calibration curves for IPTS showed good linearity with coefficient correlation of 0.9999 for six-point calibration from 0.5 to 50 μg mL(-1) and 0.9996 for six-point calibration from 0.5 to 200 μg mL(-1) . IPTS recoveries from IPP were 98.6-103.5% with relative standard deviation (RSD) of 0.40-2.80%, whereas recoveries from IPM were 97.0-107.2% with RSD of 0.42-4.21%. The identity of IPTS recovered from the isopropyl esters was confirmed by a GC-mass spectrometer detector. The method was successfully applied to the analyses of IPTS in commercial samples. It was found that there were IPTS in the range of 34.8-1303.0 μg g(-1) in the palm-based esters for some of the samples analysed.
    Matched MeSH terms: Sulfonic Acids/analysis*
  13. Shaari N, Kamarudin SK, Basri S
    Heliyon, 2018 Sep;4(9):e00808.
    PMID: 30246163 DOI: 10.1016/j.heliyon.2018.e00808
    The influence of methanol as a solvent on the properties of sodium alginate/sulfonated graphene oxide (SA/SGO) membranes was explored in water-methanol mixed conditions with various methanol concentrations and temperatures through molecular dynamics simulations. The methanol uptake of the membrane showed an isolation phase determined from the simulation results. The distance between the sulfonic acid groups increased in higher methanol concentrations, as observed from S-S RDFs. Furthermore, the distance between the SA-chain RDFs and the solvent molecules was analysed to determine a) the affinity of water towards the sulfonic acid groups and b) the affinity of the aromatic backbone of the SA towards methanol molecules. A decrease in water molecule diffusion led to an increase in methanol diffusion and uptake. SA/SGO membranes exhibited a smaller diffusion coefficient than that for the Nafion membranes, as calculated from simulation results and compared to the experimental work. Additionally, the diffusion ability increased at higher temperatures for all permeants. The interaction information obtained is useful for DMFC applications.
    Matched MeSH terms: Sulfonic Acids
  14. Salar U, Khan KM, Jabeen A, Faheem A, Fakhri MI, Saad SM, et al.
    Bioorg Chem, 2016 12;69:37-47.
    PMID: 27669119 DOI: 10.1016/j.bioorg.2016.09.006
    Coumarin sulfonates 4-43 were synthesized by reacting 3-hydroxy coumarin 1, 4-hydroxy coumarin 2and6-hydroxy coumarin 3 with different substituted sulfonyl chlorides and subjected to evaluate for their in vitro immunomodulatory potential. The compounds were investigated for their effect on oxidative burst activity of zymosan stimulated whole blood phagocytes using a luminol enhanced chemiluminescence technique. Ibuprofen was used as standard drug (IC50=54.2±9.2μM). Eleven compounds 6 (IC50=46.60±14.6μM), 8 (IC50=11.50±6.5μM), 15 (IC50=21.40±12.2μM), 19 (IC50=5.75±0.86μM), 22 (IC50=10.27±1.06μM), 23 (IC50=33.09±5.61μM), 24 (IC50=4.93±0.58μM), 25 (IC50=21.96±14.74μM), 29 (IC50=12.47±9.2μM), 35 (IC50=20.20±13.4μM) and 37 (IC50=14.47±5.02μM) out of forty demonstrated their potential suppressive effect on production of reactive oxygen species (ROS) as compared to ibuprofen. All the synthetic derivatives 4-43 were characterized by different available spectroscopic techniques such as 1H NMR, 13C NMR, EIMS and HRMS. CHN analysis was also performed.
    Matched MeSH terms: Sulfonic Acids/chemical synthesis; Sulfonic Acids/pharmacology*; Sulfonic Acids/chemistry
  15. Razab R, Abdul-Aziz A
    Nat Prod Commun, 2010 Mar;5(3):441-5.
    PMID: 20420325
    Plants that contain high amounts of polyphenolic compounds are potential candidates for natural antioxidant sources. Studies are on going in the search for new sources of antioxidants. Not much data are available on the antioxidant capacity of tropical herbs. With this in mind, 19 commonly consumed Malaysian herbs were analyzed for their polyphenolic content and antioxidant activities. A majority of these plants have never been studied before with regards to their polyphenolic content and antioxidant activities. The shoots of Anacardium occidentale, the shoots and fruits of Barringtonia racemosa, Pithecellobium jiringa and Parkia speciosa had high polyphenolic contents (> 150 microg gallic acid equivalents/mg dried plant) and antioxidant activities when measured using the ferric reducing antioxidant power (FRAP) (>1.2 mM) and Trolox equivalent antioxidant capacity (TEAC) assays (>2.4 mM). A strong correlation was observed between the two antioxidant assays (FRAP vs TEAC) implying that the plants could both scavenge free radicals and reduce oxidants. There was also a strong correlation between the antioxidant activities and polyphenolic content suggesting the observed antioxidant activities were contributed mainly by the polyphenolics in the plants.
    Matched MeSH terms: Sulfonic Acids/chemistry
  16. Ravikumar OV, Marunganathan V, Kumar MSK, Mohan M, Shaik MR, Shaik B, et al.
    Mol Biol Rep, 2024 Feb 24;51(1):352.
    PMID: 38400866 DOI: 10.1007/s11033-024-09289-9
    BACKGROUND: Oral diseases are often attributed to dental pathogens such as S. aureus, S. mutans, E. faecalis, and C. albicans. In this research work, a novel approach was employed to combat these pathogens by preparing zinc oxide nanoparticles (ZnO NPs) capped with cinnamic acid (CA) plant compounds.

    METHODS: The synthesized ZnO-CA NPs were characterized using SEM, FTIR, and XRD to validate their composition and structural features. The antioxidant activity of ZnO-CA NPs was confirmed using DPPH and ABTS free radical scavenging assays. The antimicrobial effects of ZnO-CA NPs were validated using a zone of inhibition assay against dental pathogens. Autodock tool was used to identify the interaction of cinnamic acid with dental pathogen receptors.

    RESULTS: ZnO-CA NPs exhibited potent antioxidant activity in both DPPH and ABTS assays, suggesting their potential as powerful antioxidants. The minimal inhibitory concentration of ZnO-CA NPs against dental pathogens was found 25 µg/mL, indicating their effective antimicrobial properties. Further, ZnO-CA NPs showed better binding affinity and amino acid interaction with dental pathogen receptors. Also, the ZnO-CA NPs exhibited dose-dependent (5 µg/mL, 15 µg/mL, 25 µg/mL, and 50 µg/mL) anticancer activity against Human Oral Epidermal Carcinoma KB cells. The mechanism of action of apoptotic activity of ZnO-CA NPs on the KB cells was identified through the upregulation of BCL-2, BAX, and P53 genes.

    CONCLUSIONS: This research establishes the potential utility of ZnO-CA NPs as a promising candidate for dental applications. The potent antioxidant, anticancer, and effective antimicrobial properties of ZnO-CA NPs make them a valuable option for combating dental pathogens.

    Matched MeSH terms: Sulfonic Acids*
  17. Ramli NS, Ismail P, Rahmat A
    ScientificWorldJournal, 2014;2014:964731.
    PMID: 25379555 DOI: 10.1155/2014/964731
    The aim of this study was to examine the effects of extraction methods on antioxidant capacities of red dragon fruit peel and flesh. Antioxidant capacities were measured using ethylenebenzothiozoline-6-sulfonic acid (ABTS) radical cation assay and ferric reducing antioxidant power assay (FRAP). Total phenolic content (TPC) was determined using Folin-Ciocalteu reagent while quantitative determination of total flavonoid content (TFC) was conducted using aluminium trichloride colorimetric method. Betacyanin content (BC) was measured by spectrophotometer. Red dragon fruit was extracted using conventional (CV) and ultrasonic-assisted extraction (UE) technique to determine the most efficient way of extracting its antioxidant components. Results indicated that UE increased TFC, reduced the extraction yield, BC, and TPC, but exhibited the strongest scavenging activity for the peel of red dragon fruit. In contrast, UE reduced BC, TFC, and scavenging activity but increased the yield for the flesh. Nonetheless, UE slightly increases TPC in flesh. Scavenging activity and reducing power were highly correlated with phenolic and flavonoid compounds. Conversely, the scavenging activity and reducing power were weakly correlated with betacyanin content. This work gives scientific evidences for the consideration of the type of extraction techniques for the peel and flesh of red dragon fruit in applied research and food industry.
    Matched MeSH terms: Sulfonic Acids/chemistry
  18. Palanisamy UD, Ling LT, Manaharan T, Sivapalan V, Subramaniam T, Helme MH, et al.
    Int J Cosmet Sci, 2011 Jun;33(3):269-75.
    PMID: 21284663 DOI: 10.1111/j.1468-2494.2010.00637.x
    Syzygium aqueum, a species in the Myrtaceae family, commonly called the water jambu is native to Malaysia and Indonesia. It is well documented as a medicinal plant, and various parts of the tree have been used in traditional medicine, for instance as an antibiotic. In this study, we show S. aqueum leaf extracts to have a significant composition of phenolic compounds, protective activity against free radicals as well as low pro-oxidant capability. Its ethanolic extract, in particular, is characterized by its excellent radical scavenging activity of EC(50) of 133 μg mL(-1) 1,1-diphenyl-2-picryl-hydrazyl (DPPH), 65 μg mL(-1) 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and 71 μg mL(-1) (Galvinoxyl), low pro-oxidant capabilities and a phenolic content of 585-670 mg GAE g(-1) extract. The extract also displayed other activities, deeming it an ideal cosmetic ingredient. A substantial tyrosinase inhibition activity with an IC(50) of about 60 μg mL(-1) was observed. In addition, the extract was also found to have anti-cellulite activity tested for its ability to cause 98% activation of lipolysis of adipocytes (fat cells) at a concentration of 25 μg mL(-1). In addition, the extract was not cytotoxic to Vero cell lines up to a concentration of 600 μg mL(-1). Although various parts of this plant have been used in traditional medicine, this is the first time it has been shown to have cosmeceutical properties. Therefore, the use of this extract, alone or in combination with other active principles, is of interest to the cosmetic industry.
    Matched MeSH terms: Sulfonic Acids/metabolism
  19. Osman H, Rahim AA, Isa NM, Bakhir NM
    Molecules, 2009;14(3):970-8.
    PMID: 19305354 DOI: 10.3390/molecules14030970
    The antioxidant activity of fresh and dried plant extracts of Paederia foetida and Syzygium aqueum were studied using beta-carotene bleaching and the 2,2'-azinobis(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) radical cation assay. The percentage of antioxidant activity for all extract samples using both assays was between 58 and 80%. The fresh samples of both plants had higher antioxidant activity than the dried samples. The results of the beta-carotene bleaching assay were correlated (R(2) = 0.9849) with those of the ABTS assay.
    Matched MeSH terms: Sulfonic Acids
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links