Displaying publications 1 - 20 of 67 in total

Abstract:
Sort:
  1. Abdul Rahman NH, Chieng BW, Ibrahim NA, Abdul Rahman N
    Polymers (Basel), 2017 Nov 07;9(11).
    PMID: 30965890 DOI: 10.3390/polym9110588
    The aim was to explore the utilization of tea leaf waste fibers (TLWF) as a source for the production of cellulose nanocrystals (CNC). TLWF was first treated with alkaline, followed by bleaching before being hydrolyzed with concentrated sulfuric acid. The materials attained after each step of chemical treatments were characterized and their chemical compositions were studied. The structure analysis was examined by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). From FTIR analysis, two peaks at 1716 and 1207 cm-1-which represent C=O stretching and C⁻O stretching, respectively-disappeared in the spectra after the alkaline and bleaching treatments indicated that hemicellulose and lignin were almost entirely discarded from the fiber. The surface morphology of TLWF before and after chemical treatments was investigated by scanning electron microscopy (SEM) while the dimension of CNC was determined by transmission electron microscopy (TEM). The extraction of CNC increased the surface roughness and the crystallinity index of fiber from 41.5% to 83.1%. Morphological characterization from TEM revealed the appearance of needle-like shaped CNCs with average diameter of 7.97 nm. The promising results from all the analyses justify TLWF as a principal source of natural materials which can produce CNC.
    Matched MeSH terms: Sulfuric Acids
  2. Ahmad M, Hamzah H, Sufliza Marsom E
    Talanta, 1998 Oct;47(2):275-83.
    PMID: 18967326
    An optical sensor for Hg(II) monitoring using a complex of zinc dithizonate immobilised on XAD 7 which is based on reflectance spectrophotometry has been developed in this study. Measurements were made using a kinetic approach whereby the reflectance signal is measured at a fixed time of 5 min. The sensor could be regenerated using a saturated solution of KCl in 1 M sulphuric acid. The sensor was found to have an optimum response at pH 3.0 with respective measurement repeatability and probe-to-probe reproducibility of 1.53% and 5.26%. A linear response was observed in the Hg(II) concentration range of 0.0-180.0 ppm with a calculated limit of detection (LOD) of 0.05 ppm. The results obtained for aqueous Hg(II) determination using this probe were found to be comparable with the well-established method of atomic absorption spectrometry.
    Matched MeSH terms: Sulfuric Acids
  3. Aishah Faiqah Mohd Yusof, Prabhakaran P, Nur Diyana Azli, Norrakiah Abdullah Sani, Wan Syaidatul Aqma
    Sains Malaysiana, 2017;46:903-908.
    Pacifier nipples are in permanent contact with saliva and with the oral microflora therefore, act as a favoured site for the growth of biofilms. This research was conducted to identify the bacterial biofilms that has been found on the pacifiers that collected from local child nursery and to analyse the formation of biofilms by Cronobacter sp. during growth in infant formula milk. Pacifiers collected were analysed to obtain colony forming unit (CFU) and isolated bacteria were identified using several biochemical tests according to Bergey's Manual. Biofilm assay of three Cronobacter sp. were conducted using 24 wells microtiter plate and stained with 1% of crystal violet solution at different time interval: 6, 12, 18 and 24 h. The hydrophobicity of the bacterial cell suspension was evaluated using bacterial adhesion to hydrocarbons (BATH) method. Extracellular polymeric substances (EPS) analysis was done to identify percentage of carbohydrate and protein content by using phenol sulphuric acid method and Bradford method, respectively. The results obtained showed that the normal microflora bacteria were the most abundant microorganisms that were found on the pacifier with the main genus isolated was Staphylococcus sp., Enterobacteriaceae sp. and Clostridium sp. Based on biofilm and EPS analysis, Cronobacter sakazakii formed a strong biofilms after 18 h, with carbohydrate was identified as main component of EPS.
    Matched MeSH terms: Sulfuric Acids
  4. Al-Amiery AA, Kadhum AAH, Kadihum A, Mohamad AB, How CK, Junaedi S
    Materials (Basel), 2014 Jan 28;7(2):787-804.
    PMID: 28788488 DOI: 10.3390/ma7020787
    The efficiency of Schiff base derived from 4-aminoantipyrine, namely 2-(1,5-dimethyl-4-(2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-ylidene) hydrazinecarbothioamide as a corrosion inhibitor on mild steel in 1.0 M H2SO4 was investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PD) and electrochemical frequently modulation (EFM) in addition to the adsorption isotherm, corrosion kinetic parameters and scanning electron microscopy (SEM). The results showed that this inhibitor behaved as a good corrosion inhibitor, even at low concentration, with a mean efficiency of 93% and, also, a reduction of the inhibition efficiency as the solution temperature increases. A polarization technique and EIS were tested for different concentrations and different temperatures to reveal that this compound is adsorbed on the mild steel, therefore blocking the active sites, and the adsorption follows the Langmuir adsorption isotherm model. The excellent inhibition effectiveness of 2-(1,5-dimethyl-4-(2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-ylidene)hydrazinecarbothioamide was also verified by scanning electron microscope (SEM).
    Matched MeSH terms: Sulfuric Acids
  5. Ali Ahmadzadeh, Sarani Zakaria, Maisarah Yusoff
    The liquefaction of oil palm empty fruit bunch (EFB) in phenol was carried out in the presence of sulfuric acid as a catalyst in the reflux condenser system. The effect of initial phenol input and EFB on liquefaction reaction was investigated by measuring the reaction yield, EFB residue and combined phenol. The initial ratio of phenol to EFB has the greatest influence on the residue and reaction yield. The liquefaction products consist of some liquid by products with high amount of OH groups. The amount of this byproduct is 0.5 time of the solid product (phenolic resin).
    Matched MeSH terms: Sulfuric Acids
  6. Ali Ahmadzadeh, Sarani Zakaria, Rozaidi Rasid, Sharifah Nabihah
    Sains Malaysiana, 2008;37:233-237.
    Biofiber is used in the polymer based composite as a renewable resource due to its positive environmental benefits, biodegradable properties, low cost and high toughness. Biocomposite was fabricated using oil palm empty fruit bunch (EFB) as filler in phenolated EFB (PEFB) matrix. Phenolated EFB (PEFB) obtained from liquefaction of EFB in phenol was used as a biopolymer to replace novolak phenolic resin which is commonly used in composite materials. Sulfuric acid was used as a catalyst in the liquefaction reaction. The effect of thermal aging and blending ratio of PEFB matrix and EFB fibers on the mechanical properties of composites has been studied. The flexural data before and after thermal aging revealed the optimum amount of EFB filler is 50% . The result showed better compatibility between EFB and PEFB when compared with EFB and commercial novolak resin.
    Matched MeSH terms: Sulfuric Acids
  7. Alkarkhi AFM, Alqaraghuli WAA, Yusup Y, Abu Amr SS, Mahmud MN, Dewayantoa N
    Data Brief, 2019 Jun;24:103894.
    PMID: 31011604 DOI: 10.1016/j.dib.2019.103894
    This article presents data relating to the changes in absorbance of glucose during the acid hydrolysis of sugarcane bagasse using sulphuric acid. This dataset also contains the moisture content, volatile matter, and fixed carbon of the sugarcane bagasse. The results of the analysis of variance (ANOVA) and the interaction plots between reaction time, temperature, and ratio are also presented. The data revealed that absorbance of glucose is increasing by increasing the temperature and time. Moreover, the best ratio for the highest absorbance of glucose was achieved at 1:20.
    Matched MeSH terms: Sulfuric Acids
  8. Amin Yavari S, van der Stok J, Chai YC, Wauthle R, Tahmasebi Birgani Z, Habibovic P, et al.
    Biomaterials, 2014 Aug;35(24):6172-81.
    PMID: 24811260 DOI: 10.1016/j.biomaterials.2014.04.054
    The large surface area of highly porous titanium structures produced by additive manufacturing can be modified using biofunctionalizing surface treatments to improve the bone regeneration performance of these otherwise bioinert biomaterials. In this longitudinal study, we applied and compared three types of biofunctionalizing surface treatments, namely acid-alkali (AcAl), alkali-acid-heat treatment (AlAcH), and anodizing-heat treatment (AnH). The effects of treatments on apatite forming ability, cell attachment, cell proliferation, osteogenic gene expression, bone regeneration, biomechanical stability, and bone-biomaterial contact were evaluated using apatite forming ability test, cell culture assays, and animal experiments. It was found that AcAl and AnH work through completely different routes. While AcAl improved the apatite forming ability of as-manufactured (AsM) specimens, it did not have any positive effect on cell attachment, cell proliferation, and osteogenic gene expression. In contrast, AnH did not improve the apatite forming ability of AsM specimens but showed significantly better cell attachment, cell proliferation, and expression of osteogenic markers. The performance of AlAcH in terms of apatite forming ability and cell response was in between both extremes of AnH and AsM. AcAl resulted in significantly larger volumes of newly formed bone within the pores of the scaffold as compared to AnH. Interestingly, larger volumes of regenerated bone did not translate into improved biomechanical stability as AnH exhibited significantly better biomechanical stability as compared to AcAl suggesting that the beneficial effects of cell-nanotopography modulations somehow surpassed the benefits of improved apatite forming ability. In conclusion, the applied surface treatments have considerable effects on apatite forming ability, cell attachment, cell proliferation, and bone ingrowth of the studied biomaterials. The relationship between these properties and the bone-implant biomechanics is, however, not trivial.
    Matched MeSH terms: Sulfuric Acids/pharmacology
  9. Azmi, H., Mohd Kamil, H., Balkis, A.
    MyJurnal
    In July 1997 at 7 pm , 49 members 0f the public complained of dizziness, sore throat, eyes irritation and tightness of chest after exposed to sulphur dioxide while traveling on the road about 100 meter 90m the sulphuric acid factory in Teluk Kalong Kemaman. The incident was caused by leaking sulfur dioxide from return pipe of scrubber circulation. tank in the factory. The problem had occurred due to carelessness of the operator to inspect the level of water in the scrubber circulation tank during the operation.
    Matched MeSH terms: Sulfuric Acids
  10. Chan YF, Abu Bakar S
    Med J Malaysia, 2005 Jun;60(2):246-8.
    PMID: 16114171
    The efficacy of Virkon S, a commercial disinfectant as a virucidal spray against human enterovirus 71 (HEV71), the causative agent of the fatal form of hand, foot and mouth disease was examined. At least one log10 reduction of HEV71 titer was achieved when one spray of Virkon (1% or 2%) with ten minutes of contact time was applied. The infectivity was completely lost when four sprays of 1% or 2% Virkon were applied, suggesting that at least four sprays of 1% Virkon to the surface bound HEV71 was necessary to completely inactivate the virus. These findings suggest that Virkon S at the proper concentration is suitable to be used as an effective and easy to use disinfectant against HEV71.
    Matched MeSH terms: Sulfuric Acids/administration & dosage; Sulfuric Acids/therapeutic use*
  11. Che Marzuki NH, Mahat NA, Huyop F, Buang NA, Wahab RA
    Appl Biochem Biotechnol, 2015 Oct;177(4):967-84.
    PMID: 26267406 DOI: 10.1007/s12010-015-1791-z
    The chemical production of methyl oleate using chemically synthesized fatty acid alcohols and other toxic chemicals may lead to significant environmental hazards to mankind. Being a highly valuable fatty acid replacement raw material in oleochemical industry, the mass production of methyl oleate via environmentally favorable processes is of concern. In this context, an alternative technique utilizing Candida rugosa lipase (CRL) physically adsorbed on multi-walled carbon nanotubes (MWCNTs) has been suggested. In this study, the acid-functionalized MWCNTs prepared using a mixture of HNO3 and H2SO4 (1:3 v/v) was used as support for immobilizing CRL onto MWCNTs (CRL-MWCNTs) as biocatalysts. Enzymatic esterification was performed and the efficiency of CRL-MWCNTs was evaluated against the free CRL under varying conditions, viz. temperature, molar ratio of acid/alcohol, solvent log P, and enzyme loading. The CRL-MWCNTs resulted in 30-110 % improvement in the production of methyl oleate over the free CRL. The CRL-MWCNTs attained its highest yield (84.17 %) at 50 °C, molar ratio of acid/alcohol of 1:3, 3 mg/mL of enzyme loading, and iso-octane (log P 4.5) as solvent. Consequently, physical adsorption of CRL onto acid-functionalized MWCNTs has improved the activity and stability of CRL and hence provides an environmentally friendly means for the production of methyl oleate.
    Matched MeSH terms: Sulfuric Acids
  12. Chong C
    Talanta, 1986 Jan;33(1):91-4.
    PMID: 18964038
    A simple atomic-absorption spectrophotometry method is described for the determination of silver, bismuth, cadmium, copper, iron, nickel and zinc in lead- and tin-base solders and white-metal bearing alloys, with use of a single sample solution. The sample is dissolved in a mixture of hydrobromic acid and bromine, then fumed with sulphuric acid. The lead sulphate is dissolved in concentrated hydrochloric acid. The method is particularly suitable for the determination of silver and bismuth, which are co-precipitated with lead sulphate. The other elements can also be determined after removal of the lead sulphate by filtration.
    Matched MeSH terms: Sulfuric Acids
  13. Dasmawati Mohamad, Wan Suzaini Wan Hamzah, Wan Rosli Wan Daud, Zainul Ahmad Rajion, Wan Zaripah Wan Bakar, Mazlan Ibrahim
    MyJurnal
    The aims of this study were to fabricate cellulose acetate (CA) film from oil palm empty fruit bunch (OP-EPB), as well as to characterize and evaluate their biocompatibility. Several processes were carried out, and these included prehydrolysis-soda method, chlorine free bleaching method, including oxygen, ozone and peroxide, to produce the cellulose pulp. Then, a liquid phase acetylation method was applied through acetic acid-acetic anhydride-sulphuric acid. Triethyl citrate (TEC) ester was used as additive at different percentages of 10, 20, 30 and 40 wt%. The film produced was characterized by FTIR to identify the functional group of the CA film and their tensile properties were further characterized. Biocompatibility of the film was evaluated using cytotoxicity test. Stem cell derived from human deciduous teeth (SHED) was used with MTS assay. The results showed at 30% of TEC, the tensile strength and elongation of CA (OP-EFB) film was at the optimum and is therefore suitable to be used in dental application. The cytotoxicity evaluated showed that the fabricated CA (OP-EFB) films were non-toxic up to the concentration tested, and are thus compatible with SHED.
    Matched MeSH terms: Sulfuric Acids
  14. Ethaib, S., Omar, R., Mazlina, M., Radiah, A., Syafiie, S., Harun, M. Y.
    MyJurnal
    Agriculture residues are a promising feedstock for value-added products from lignocellulosic waste. However, pretreatment of lignocellulosic materials is essential to facilitate enzymatic
    hydrolysis and improve sugar yield. The objective of this study is to evaluate the effect of acid or alkali during microwave-assisted pretreatment of dragon fruit foliage (DFF) that
    would make hydrolysis process more efficient. In the present study, distilled water and three chemicals were examined for their effects on releasing monomeric sugar during microwave
    treatment. Microwave-assisted pretreatment namely microwave-distilled water (M-H2O) (control); microwave-sulfuric acid (M-H2SO4); microwave-sodium hydroxide (M-NaOH); and
    microwave-sodium bicarbonate (M-NaHCO3) pretreatment were performed using 5% (w/v) of DFF as substrate at 800 watt microwave power for 5 minutes exposure time. Highest yield
    of monomeric sugar was found at 15.56 mg/g using M-NaOH pretreatment at 0.1N NaOH. For M-H2SO4 pretreatment, 0.1N H2SO4 produced 8.2 mg/g of monomeric sugar. Application
    of M-NaHCO3 pretreatment using 0.05N NaHCO3 solution released 6.45 mg/g of monomeric sugar. While, soaking DFF in distilled water and subjecting to microwave irradiation released
    6.6 mg/g of monomeric sugar. Treatments with the lowest concentration (0.01 N) of the three chemicals released only small quantities of total monomeric sugars and less than that with distilled water. The changes in the physical structure of DFF prior to and after the microwaveassisted pretreatment are also reported.
    Matched MeSH terms: Sulfuric Acids
  15. Fan SP, Jiang LQ, Chia CH, Fang Z, Zakaria S, Chee KL
    Bioresour Technol, 2014 Feb;153:69-78.
    PMID: 24342947 DOI: 10.1016/j.biortech.2013.11.055
    Recent years, great interest has been devoted to the conversion of biomass-derived carbohydrate into sugars, such as glucose, mannose and fructose. These are important versatile intermediate products that are easily processed into high value-added biofuels. In this work, microwave-assisted dilute sulfuric acid hydrolysis of deproteinated palm kernel cake (DPKC) was systematically studied using Response Surface Methodology. The highest mannose yield (92.11%) was achieved at the optimized condition of 148°C, 0.75N H2SO4, 10min 31s and substrate to solvent (SS) ratio (w/v) of 1:49.69. Besides that, total fermentable sugars yield (77.11%), was obtained at 170°C, 0.181N H2SO4, 6min 6s and SS ratio (w/v) of 1:40. Ridge analysis was employed to further verify the optimum conditions. Thus, this work provides fundamental data of the practical use of DPKC as low cost, high yield and environmental-friendly material for the production of mannose and other sugars.
    Matched MeSH terms: Sulfuric Acids/pharmacology*
  16. Ferra Naidir, Robiah Yunus, Tinia Idaty Mohd. Ghazi, Irmawati Ramli
    MyJurnal
    Palm oil-based Trimethylolpropane ester (TMP ester), with an iodine value of 66.4 g/100g, was epoxidizedto produce epoxidized TMP esters. In situ epoxidation method was used with peracetic acid to eliminatefatty acid double bonds in palm oil-based TMP ester and change it into oxirane ring. This was done toimprove the oxidative stability of trimethylolpropane ester which is a key concern limiting the usefulservice life in lubricants. The epoxidation was performed by reacting acetic acid as active oxygen carrierwith concentrated hydrogen peroxide as oxygen donor and a small amount of homogeneous catalyst(sulphuric acid). The effects of various parameters on the rate of epoxidation (such as the ratio of moleacetic acid to ethylenic unsaturation, hydrogen peroxide to ethylenic unsaturation and acetic acid moleratio, and amount of catalyst) were studied. The rate of oxidation was investigated by the percentageof oxirane oxygen analysis and iodine value.
    Matched MeSH terms: Sulfuric Acids
  17. Gaaz TS, Sulong AB, Kadhum AAH, Nassir MH, Al-Amiery AA
    Materials (Basel), 2016 Jul 26;9(8).
    PMID: 28773741 DOI: 10.3390/ma9080620
    Halloysite (HNT) is treated with sulfuric acid and the physico-chemical properties of its morphology, surface activity, physical and chemical properties have been investigated when HNT is exposed to sulfuric acid with treatment periods of 1 h (H1), 3 h (H3), 8 h (H8), and 21 h (H21). The significance of this and similar work lies in the importance of using HNT as a functional material in nanocomposites. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR). The spectrum demonstrates that the hydroxyl groups were active for grafting modification using sulfuric acid, promoting a promising potential use for halloysite in ceramic applications as filler for novel clay-polymer nanocomposites. From the X-ray diffraction (XRD) spectrum, it can be seen that the sulfuric acid breaks down the HNT crystal structure and alters it into amorphous silica. In addition, the FESEM images reveal that the sulfuric acid treatment dissolves the AlO₆ octahedral layers and induces the disintegration of SiO₄ tetrahedral layers, resulting in porous nanorods. The Bruncher-Emmett-Teller (BET) surface area and total pore volume of HNTs showed an increase. The reaction of the acid with both the outer and inner surfaces of the nanotubes causes the AlO₆ octahedral layers to dissolve, which leads to the breakdown and collapse of the tetrahedral layers of SiO₄. The multi-fold results presented in this paper serve as a guide for further HNT functional treatment for producing new and advanced nanocomposites.
    Matched MeSH terms: Sulfuric Acids
  18. Goh, P.S., Ismail, A.F., Ng, B.C., Sumner, T.
    ASM Science Journal, 2014;8(2):125-133.
    MyJurnal
    This study was conducted to prepare a mixed matrix membrane (MMM) and to test the performance of the prepared MMM for CO2 and CH4 gas separation. MMM containing polyethersulfone (PES) and multi-walled carbon nanotubes (MWCNTs) was prepared by a dry-wet phase inversion technique using a pneumatically-controlled membrane casting machine. The surface modification was performed on MWCNTs in order to enhance the selectivity of CO2/CH4. The surface modification of MWCNTs using chemical and physical approaches has been adopted. Mixed acid (HNO3/H2SO4) and β-CD were used for chemical and physical approaches, respectively. Effects of surface modification on MWCNTs/PES MMM were investigated. MWCNTs/PES MMMs were characterised using scanning electron microscopy (SEM), the Fourier Transform Infrared (FT-IR) spectroscopy and pure gas permeation test. The permeability and selectivity, which are the parameters describing membrane performance were calculated via the data obtained from pure gas permeation test with the feed pressure difference from 3 to 7 bars. In this study, surface modified MWCNTs/PES MMM using mixed acid and β-CD has successfully enhanced the CO2/CH4 selectivity by 40.6% compared to that of neat PES.
    Matched MeSH terms: Sulfuric Acids
  19. Gunathilake TMSU, Ching YC, Uyama H, Nguyen DH, Chuah CH
    Int J Biol Macromol, 2021 Dec 15;193(Pt B):1522-1531.
    PMID: 34740692 DOI: 10.1016/j.ijbiomac.2021.10.215
    The investigation of protein-nanoparticle interactions contributes to the understanding of nanoparticle bio-reactivity and creates a database of nanoparticles for use in nanomedicine, nanodiagnosis, and nanotherapy. In this study, hen's egg white was used as the protein source to study the interaction of proteins with sulphuric acid hydrolysed nanocellulose (CNC). Several techniques such as FTIR, zeta potential measurement, UV-vis spectroscopy, compressive strength, TGA, contact angle and FESEM provide valuable information in the protein-CNC interaction study. The presence of a broader peak in the 1600-1050 cm-1 range of CNC/egg white protein FTIR spectrum compared to the 1600-1050 cm-1 range of CNC sample indicated the binding of egg white protein to CNC surface. The contact angle with the glass surface decreased with the addition of CNC to egg white protein. The FESEM EDX spectra showed a higher amount of N and Na on the surface of CNC. It indicates the density of protein molecules higher around CNC. The zeta potential of CNC changed from -26.7 ± 0.46 to -21.7 ± 0.2 with the introduction of egg white protein due to the hydrogen bonding, polar bonds and electrostatic interaction between surface CNC and protein. The compressive strength of the egg white protein films increased from 0.064 ± 0.01 to 0.36 ± 0.02 MPa with increasing the CNC concentration from 0 to 4.73% (w/v). The thermal decomposition temperature of CNC/egg white protein decreased compared to egg white protein thermal decomposition temperature. According to UV-Vis spectroscopy, the far-UV light (207-222nm) absorption peak slightly changed in the CNC/egg white protein spectrum compared to the egg white protein spectrum. Based on the results, the observations of protein nanoparticle interactions provide an additional understanding, besides the theoretical simulations from previous studies. Also, the results indicate to aim CNC for the application of nanomedicine and nanotherapy. A new insight given by us in this research assumes a reasonable solution to these crucial applications.
    Matched MeSH terms: Sulfuric Acids/chemistry*
  20. Hafid HS, Rahman NA, Md Shah UK, Baharudin AS
    J Environ Manage, 2015 Jun 1;156:290-8.
    PMID: 25900092 DOI: 10.1016/j.jenvman.2015.03.045
    The kitchen waste fraction in municipal solid waste contains high organic matter particularly carbohydrate that can contribute to fermentable sugar production for subsequent conversion to bioethanol. This study was carried out to evaluate the influence of single and combination pretreatments of kitchen waste by liquid hot water, mild acid pretreatment of hydrochloric acid (HCl) and sulphuric acid (H2SO4) and enzymatic hydrolysis (glucoamylase). The maximum total fermentable sugar produced after combination pretreatment by 1.5% HCl and glucoamylase consisted of 93.25 g/L glucose, 0.542 g/L sucrose, 0.348 g/L maltose, and 0.321 g/L fructose. The glucose released by the combination pretreatment method was 0.79 g glucose/g KW equivalent to 79% of glucose conversion. The effects of the pre-treatment on kitchen waste indicated that the highest solubilization was 40% by the combination method of 1.5% HCl and glucoamylase. The best combination pre-treatment gave concentrations of lactic acid, acetic acid, and propionic acid of 11.74 g/L, 6.77 g/L, and 1.02 g/L, respectively. The decrease of aliphatic absorbance bands of polysaccharides at 2851 and 2923 cm(-1) and the increase on structures of carbonyl absorbance bands at 1600 cm(-1) reflects the progress of the kitchen waste hydrolysis to fermentable sugars. Overall, 1.5% HCl and glucoamylase treatment was the most profitable process as the minimum selling price of glucose was USD 0.101/g kitchen waste. Therefore, the combination pretreatment method was proposed to enhance the production of fermentable sugar, particularly glucose from kitchen waste as the feedstock for bioethanol production.
    Matched MeSH terms: Sulfuric Acids/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links