Displaying publications 1 - 20 of 63 in total

Abstract:
Sort:
  1. Tam YJ, Zeenathul NA, Rezaei MA, Mustafa NH, Azmi MLM, Bahaman AR, et al.
    Biotechnol Appl Biochem, 2017 Sep;64(5):735-744.
    PMID: 27506960 DOI: 10.1002/bab.1528
    Limit of detection (LOD), limit of quantification, and the dynamic range of detection of hepatitis B surface antigen antibody (anti-HBs) using a surface plasmon resonance (SPR) chip-based approach with Pichia pastoris-derived recombinant hepatitis B surface antigen (HBsAg) as recognition element were established through the scouting for optimal conditions for the improvement of immobilization efficiency and in the use of optimal regeneration buffer. Recombinant HBsAg was immobilized onto the sensor surface of a CM5 chip at a concentration of 150 mg/L in sodium acetate buffer at pH 4 with added 0.6% Triton X-100. A regeneration solution of 20 mM HCl was optimally found to effectively unbind analytes from the ligand, thus allowing for multiple screening cycles. A dynamic range of detection of ∼0.00098-0.25 mg/L was obtained, and a sevenfold higher LOD, as well as a twofold increase in coefficient of variance of the replicated results, was shown as compared with enzyme-linked immunosorbent assay (ELISA). Evaluation of the assay for specificity showed no cross-reactivity with other antibodies tested. The ability of SPR chip-based assay and ELISA to detect anti-HBs in human serum was comparable, indicating that the SPR chip-based assay with its multiple screening capacity has greater advantage over ELISA.
    Matched MeSH terms: Surface Plasmon Resonance/methods*
  2. Menon PS, Said FA, Mei GS, Berhanuddin DD, Umar AA, Shaari S, et al.
    PLoS One, 2018;13(7):e0201228.
    PMID: 30052647 DOI: 10.1371/journal.pone.0201228
    This work investigates the surface plasmon resonance (SPR) response of 50-nm thick nano-laminated gold film using Kretschmann-based biosensing for detection of urea and creatinine in solution of various concentrations (non-enzymatic samples). Comparison was made with the presence of urease and creatininase enzymes in the urea and creatinine solutions (enzymatic samples), respectively. Angular interrogation technique was applied using optical wavelengths of 670 nm and 785 nm. The biosensor detects the presence of urea and creatinine at concentrations ranging from 50-800 mM for urea samples and 10-200 mM for creatinine samples. The purpose of studying the enzymatic sample was mainly to enhance the sensitivity of the sensor towards urea and creatinine in the samples. Upon exposure to 670 nm optical wavelength, the sensitivity of 1.4°/M was detected in non-enzymatic urea samples and 4°/M in non-enzymatic creatinine samples. On the other hand, sensor sensitivity as high as 16.2°/M in urea-urease samples and 10°/M in creatinine-creatininase samples was detected. The enhanced sensitivity possibly attributed to the increase in refractive index of analyte sensing layer due to urea-urease and creatinine-creatininase coupling activity. This work has successfully proved the design and demonstrated a proof-of-concept experiment using a low-cost and easy fabrication of Kretschmann based nano-laminated gold film SPR biosensor for detection of urea and creatinine using urease and creatininase enzymes.
    Matched MeSH terms: Surface Plasmon Resonance/instrumentation*; Surface Plasmon Resonance/methods
  3. Huang YL, Chang WS, Van CN, Liu HJ, Tsai KA, Chen JW, et al.
    Nanoscale, 2016 Aug 25;8(34):15795-801.
    PMID: 27533610 DOI: 10.1039/c6nr04997d
    Ferroelectric photoelectrodes, other than conventional semiconductors, are alternative photo-absorbers in the process of water splitting. However, the capture of photons and efficient transfer of photo-excited carriers remain as two critical issues in ferroelectric photoelectrodes. In this work, we overcome the aforementioned issues by decorating the ferroelectric BiFeO3 (BFO) surface with Au nanocrystals, and thus improving the photoelectrochemical (PEC) performance of BFO film. We demonstrate that the internal field induced by the spontaneous polarization of BFO can (1) tune the efficiency of the photo-excited carriers' separation and charge transfer characteristics in bare BFO photoelectrodes, and (2) modulate an extra optical absorption within the visible light region, created by the surface plasmon resonance excitation of Au nanocrystals to capture more photons in the Au/BFO heterostructure. This study provides key insights for understanding the tunable features of PEC performance, composed of the heterostructure of noble metals and ferroelectric materials.
    Matched MeSH terms: Surface Plasmon Resonance
  4. Kamal Eddin FB, Fen YW
    Molecules, 2020 Jun 15;25(12).
    PMID: 32549390 DOI: 10.3390/molecules25122769
    For a healthy life, the human biological system should work in order. Scheduled lifestyle and lack of nutrients usually lead to fluctuations in the biological entities levels such as neurotransmitters (NTs), proteins, and hormones, which in turns put the human health in risk. Dopamine (DA) is an extremely important catecholamine NT distributed in the central nervous system. Its level in the body controls the function of human metabolism, central nervous, renal, hormonal, and cardiovascular systems. It is closely related to the major domains of human cognition, feeling, and human desires, as well as learning. Several neurological disorders such as schizophrenia and Parkinson's disease are related to the extreme abnormalities in DA levels. Therefore, the development of an accurate, effective, and highly sensitive method for rapid determination of DA concentrations is desired. Up to now, different methods have been reported for DA detection such as electrochemical strategies, high-performance liquid chromatography, colorimetry, and capillary electrophoresis mass spectrometry. However, most of them have some limitations. Surface plasmon resonance (SPR) spectroscopy was widely used in biosensing. However, its use to detect NTs is still growing and has fascinated impressive attention of the scientific community. The focus in this concise review paper will be on the principle of SPR sensors and its operation mechanism, the factors that affect the sensor performance. The efficiency of SPR biosensors to detect several clinically related analytes will be mentioned. DA functions in the human body will be explained. Additionally, this review will cover the incorporation of nanomaterials into SPR biosensors and its potential for DA sensing with mention to its advantages and disadvantages.
    Matched MeSH terms: Surface Plasmon Resonance/methods*
  5. Singho ND, Johan MR, Lah NA
    Nanoscale Res Lett, 2014;9(1):42.
    PMID: 24450850 DOI: 10.1186/1556-276X-9-42
    Ag/PMMA nanocomposites were successfully synthesized by in-situ technique. Transmission electron microscopy (TEM) images show that the particles are spherical in shape and their sizes are dependent on temperature. The smallest particle achieved high stability as indicated from Zeta sizer analysis. The red shift of surface plasmon resonance (SPR) indicated the increases of particle sizes. X-ray diffraction (XRD) patterns exhibit a two-phase (crystalline and amorphous) structure of Ag/PMMA nanocomposites. The complexation of Ag/PMMA nanocomposites was confirmed using Raman spectroscopy. Fourier transform infrared spectroscopy spectra confirmed that the bonding was dominantly influenced by the PMMA and DMF solution. Finally, thermogravimetric analysis (TGA) results indicate that the total weight loss increases as the temperature increases.
    Matched MeSH terms: Surface Plasmon Resonance
  6. Chong SS, Aziz AR, Harun SW, Arof H
    Sensors (Basel), 2014;14(9):15836-48.
    PMID: 25166498 DOI: 10.3390/s140915836
    In this study, the construction and test of tapered plastic optical fiber (POF) sensors, based on an intensity modulation approach are described. Tapered fiber sensors with different diameters of 0.65 mm, 0.45 mm, and 0.35 mm, were used to measure various concentrations of Remazol black B (RBB) dye aqueous solutions at room temperature. The concentrations of the RBB solutions were varied from 0 ppm to 70 ppm. In addition, the effect of varying the temperature of the RBB solution was also investigated. In this case, the output of the sensor was measured at four different temperatures of 27 °C, 30 °C, 35 °C, and 40 °C, while its concentration was fixed at 50 ppm and 100 ppm. The experimental results show that the tapered POF with d = 0.45 mm achieves the best performance with a reasonably good sensitivity of 61 × 10(-4) and a linearity of more than 99%. It also maintains a sufficient and stable signal when heat was applied to the solution with a linearity of more than 97%. Since the transmitted intensity is dependent on both the concentration and temperature of the analyte, multiple linear regression analysis was performed to combine the two independent variables into a single equation. The resulting equation was then validated experimentally and the best agreement between the calculated and experimental results was achieved by the sensor with d = 0.45 mm, where the minimum discrepancy is less than 5%. The authors conclude that POF-based sensors are suitable for RBB dye concentration sensing and, with refinement in fabrication, better results could be achieved. Their low fabrication cost, simple configuration, accuracy, and high sensitivity would attract many potential applications in chemical and biological sensing.
    Matched MeSH terms: Surface Plasmon Resonance/instrumentation*
  7. Ashley J, Shukor Y, D'Aurelio R, Trinh L, Rodgers TL, Temblay J, et al.
    ACS Sens, 2018 02 23;3(2):418-424.
    PMID: 29333852 DOI: 10.1021/acssensors.7b00850
    Food recalls due to undeclared allergens or contamination are costly to the food manufacturing industry worldwide. As the industry strives for better manufacturing efficiencies over a diverse range of food products, there is a need for the development of new analytical techniques to improve monitoring of the presence of unintended food allergens during the food manufacturing process. In particular, the monitoring of wash samples from cleaning in place systems (CIP), used in the cleaning of food processing equipment, would allow for the effective removal of allergen containing ingredients in between food batches. Casein proteins constitute the biggest group of proteins in milk and hence are the most common milk protein allergen in food ingredients. As such, these proteins could present an ideal analyte for cleaning validation. In this work, molecularly imprinted polymer nanoparticles (nanoMIPs) with high affinity toward bovine α-casein were synthesized using a solid-phase imprinting method. The nanoMIPs were then characterized and incorporated into label free surface plasmon resonance (SPR) based sensor. The nanoMIPs demonstrated good binding affinity and selectivity toward α-casein (KD ∼ 10 × 10-9 M). This simple affinity sensor demonstrated the quantitative detection of α-casein achieving a detection limit of 127 ± 97.6 ng mL-1 (0.127 ppm) which is far superior to existing commercially available ELISA kits. Recoveries from spiked CIP wastewater samples were within the acceptable range (87-120%). The reported sensor could allow food manufacturers to adequately monitor and manage food allergen risk in food processing environments while ensuring that the food produced is safe for the consumer.
    Matched MeSH terms: Surface Plasmon Resonance
  8. Mohd Sultan N, Johan MR
    ScientificWorldJournal, 2014;2014:184604.
    PMID: 25215315 DOI: 10.1155/2014/184604
    Gold nanoparticles (AuNPs) had been synthesized with various molarities and weights of reducing agent, monosodium glutamate (MSG), and stabilizer chitosan, respectively. The significance of chitosan as stabilizer was distinguished through transmission electron microscopy (TEM) images and UV-Vis absorption spectra in which the interparticles distance increases whilst retaining the surface plasmon resonance (SPR) characteristics peak. The most stable AuNPs occurred for composition with the lowest (1 g) weight of chitosan. AuNPs capped with chitosan size stayed small after 1 month aging compared to bare AuNPs. The ability of chitosan capped AuNPs to uptake analyte was studied by employing amorphous carbon nanotubes (α-CNT), copper oxide (Cu2O), and zinc sulphate (ZnSO4) as the target material. The absorption spectra showed dramatic intensity increased and red shifted once the analyte was added to the chitosan capped AuNPs.
    Matched MeSH terms: Surface Plasmon Resonance
  9. Swamy MK, Akhtar MS, Mohanty SK, Sinniah UR
    PMID: 26186612 DOI: 10.1016/j.saa.2015.07.009
    Plant mediated synthesis of nanoparticles has been considered as green route and a reliable technique for the synthesis of nanoparticles due to its eco-friendly approach. In this study, we report a simple and eco-friendly approach for the synthesis of silver nanoparticles (AgNPs) using methanolic Momordica cymbalaria fruit extract as reducing agent. The fruit extract of M. cymbalaria exposed to AgNO3 solution showed the change in color from green to light yellow at room temperature within 1h of incubation confirms the synthesis of AgNPs. UV-vis spectra analysis revealed that the synthesized AgNPs had a sharp surface plasmon resonance at around 450 nm, while, the X-ray Diffraction (XRD) patterns confirmed distinctive peaks indices to the crystalline planes of the face centered cubic silver. The Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) analysis results confirmed the presence of spherical shaped AgNPs by a huge disparity in the particle size distribution with an average size of 15.5 nm. The synthesized AgNPs showed strong antibacterial activity against all the tested multidrug resistant human pathogenic bacterial strains and also exhibited highest free radical scavenging activity (74.2%) compared to fruit extract (60.4%). Moreover, both fruit extract and the synthesized AgNPs showed the cytotoxicity towards Rat L6 skeletal muscle cell line at different concentrations, but the highest inhibition percentage was recorded for AgNPs at concentration of 100 μg/ml.
    Matched MeSH terms: Surface Plasmon Resonance
  10. Abdi MM, Abdullah LC, Sadrolhosseini AR, Mat Yunus WM, Moksin MM, Tahir PM
    PLoS One, 2011;6(9):e24578.
    PMID: 21931763 DOI: 10.1371/journal.pone.0024578
    A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+) and Hg(2+) ions. The Pb(2+) ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+) compared to Hg(2+). The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.
    Matched MeSH terms: Surface Plasmon Resonance/methods*
  11. Yoke-Kqueen, C., Son, R.
    MyJurnal
    Application of surface plasmon resonance (SPR) biosensor in detection of genetically modified organism (GMO) is demonstrated. A total of four biotinylated probes namely Tnosb, P35Sb, LECb and TSQb were successfully immobilized onto the SA chip. Results analysis indicated that the SPR system with the sensor chip immobilized with the Tnosb, P35Sb, LECb and TSQb biotinylated probes potentially detect complementary standard fragments as low as 1 nM. Biospecific interaction analysis (BIA), employing surface plasmon resonance (SPR) and biosensor technologies provide easy, rapid and automatable approach in detection of GMOs. Short assay times, label free DNA hybridization reaction and no toxic compounds are required, i.e. ethidium bromide, and the reusability of the sensor surface are some of the factors that contribute to the general advantages of the surface plasmon resonance (SPR) biosensor system in detection of GMOs.
    Matched MeSH terms: Surface Plasmon Resonance
  12. Ng SS, Lee SC, Bakhori SK, Hassan Z, Abu Hassan H, Yakovlev VA, et al.
    Opt Express, 2010 May 10;18(10):10354-9.
    PMID: 20588890 DOI: 10.1364/OE.18.010354
    Surface phonon polariton (SPP) characteristics of In(0.04)Al(0.06)Ga(0.90)N/AlN/Al(2)O(3) heterostructure are investigated by means of p-polarized infrared (IR) attenuated total reflection spectroscopy. Two absorption dips corresponding to In(0.04)Al(0.06)Ga(0.90)N SPP modes are observed. In addition, two prominent dips and one relatively weak and broad dip corresponding to the Al(2)O(3) SPP mode, In(0.04)Al(0.06)Ga(0.90)N/Al(2)O(3) interface mode, and Al(2)O(3) bulk polariton mode, respectively, are clearly seen. No surface mode feature originating from the AlN layer is observed because it is too thin. Overall, the observations are in good agreement with the theoretical predictions.
    Matched MeSH terms: Surface Plasmon Resonance/methods*
  13. Masdor NA, Altintas Z, Shukor MY, Tothill IE
    Sci Rep, 2019 09 20;9(1):13642.
    PMID: 31541137 DOI: 10.1038/s41598-019-49672-2
    In this work, a subtractive inhibition assay (SIA) based on surface plasmon resonance (SPR) for the rapid detection of Campylobacter jejuni was developed. For this, rabbit polyclonal antibody with specificity to C. jejuni was first mixed with C. jejuni cells and unbound antibody was subsequently separated using a sequential process of centrifugation and then detected using an immobilized goat anti-rabbit IgG polyclonal antibody on the SPR sensor chip. This SIA-SPR method showed excellent sensitivity for C. jejuni with a limit of detection (LOD) of 131 ± 4 CFU mL-1 and a 95% confidence interval from 122 to 140 CFU mL-1. The method has also high specificity. The developed method showed low cross-reactivity to bacterial pathogens such as Salmonella enterica serovar Typhimurium (7.8%), Listeria monocytogenes (3.88%) and Escherichia coli (1.56%). The SIA-SPR method together with the culturing (plating) method was able to detect C. jejuni in the real chicken sample at less than 500 CFU mL-1, the minimum infectious dose for C. jejuni while a commercial ELISA kit was unable to detect the bacterium. Since the currently available detection tools rely on culturing methods, which take more than 48 hours to detect the bacterium, the developed method in this work has the potential to be a rapid and sensitive detection method for C. jejuni.
    Matched MeSH terms: Surface Plasmon Resonance
  14. Jahanshahi P, Ghomeishi M, Adikan FR
    ScientificWorldJournal, 2014;2014:503749.
    PMID: 24616635 DOI: 10.1155/2014/503749
    The most common permittivity function models are compared and identifying the best model for further studies is desired. For this study, simulations using several different models and an analytical analysis on a practical surface Plasmon structure were done with an accuracy of ∼ 94.4% with respect to experimental data. Finite element method, combined with dielectric properties extracted from the Brendel-Bormann function model, was utilized, the latter being chosen from a comparative study on four available models.
    Matched MeSH terms: Surface Plasmon Resonance/methods*
  15. Isa N, Osman MS, Abdul Hamid H, Inderan V, Lockman Z
    Int J Phytoremediation, 2023;25(5):658-669.
    PMID: 35858487 DOI: 10.1080/15226514.2022.2099345
    This study describes the synthesis of silver nanoparticles (AgNPs) using shortleaf spikesedge extract (SSE) to reduce AgNO3. Visual observation, in addition to analyses of UV-vis, EDX, XRD, FTIR, and TEM was employed to monitor the formation of AgNPs. The effects of SSE concentration, AgNO3 concentration, reaction time, pH, and temperature on the synthesis of AgNPs were studied based on the surface plasmon resonance (SPR) band. From the TEM image, highly-scattered AgNPs of quasi-spherical shape with an average particle size of 17.64 nm, were observed. For the catalytic study, the reduction of methylene blue (MB) was evaluated using two systems. A detailed batch study of the removal efficiency (%RE) and kinetics was done at an ambient temperature, various MB initial concentrations, and varying reaction time. Employing the electron relay effect in System 2, the batch study clearly highlighted the significant role of AgNPs in boosting the catalytic activity for MB removal. At 30-100 mg/L initial concentrations, MB was reduced by 100% in a very short reaction time between 1.5 and 5.0 mins. The kinetic data best fitted the pseudo-first-order model with a maximum reaction rate of 2.5715 min-1. These findings suggest the promising application of AgNPs in dye wastewater treatment.The SSE-driven AgNPs were prepared using unwanted dried biomass of shortleaf spikesedge extract (SSE) as a reducing as well as stabilizing agent. Employing the electron relay effect, the batch study clearly highlighted the significant role of SSE-driven AgNPs in boosting the catalytic activity for MB removal. At 30-100 mg/L initial concentrations, MB was reduced by 100% in a very short reaction time between 1.5 and 5.0 mins. In this sense, SSE-driven AgNPs acted as an electron relay point that behaves alternatively as acceptor and donor of electrons. The findings revealed the good catalytic performance of SSE-driven AgNPS, proving their viability for dye wastewater treatment.
    Matched MeSH terms: Surface Plasmon Resonance*
  16. Zhang X, Wu X, Centeno A, Ryan MP, Alford NM, Riley DJ, et al.
    Sci Rep, 2016;6:23364.
    PMID: 26997140 DOI: 10.1038/srep23364
    Copper zinc tin sulfide (CZTS) is a promising material for harvesting solar energy due to its abundance and non-toxicity. However, its poor performance hinders their wide application. In this paper gold (Au) nanoparticles are successfully incorporated into CZTS to form Au@CZTS core-shell nanostructures. The photocathode of Au@CZTS nanostructures exhibits enhanced optical absorption characteristics and improved incident photon-to-current efficiency (IPCE) performance. It is demonstrated that using this photocathode there is a significant increase of the power conversion efficiency (PCE) of a photoelectrochemical solar cell of 100% compared to using a CZTS without Au core. More importantly, the PCE of Au@CZTS photocathode improved by 15.8% compared to standard platinum (Pt) counter electrode. The increased efficiency is attributed to plasmon resonance energy transfer (PRET) between the Au nanoparticle core and the CZTS shell at wavelengths shorter than the localized surface plasmon resonance (LSPR) peak of the Au and the semiconductor bandgap.
    Matched MeSH terms: Surface Plasmon Resonance
  17. Syahir A, Kajikawa K, Mihara H
    Protein Pept Lett, 2018;25(1):34-41.
    PMID: 29237369 DOI: 10.2174/0929866525666171214111957
    BACKGROUND: Direct bio-monitoring essentially involves optical means since photon has insignificant effects over biomolecules. Over the years, laser induced surface Plasmon resonance method with various modifications as well as versatile localized Plasmon excited by incoherent light have facilitated in recording many nanobiological activities. Yet, monitoring interactions of small molecules including drugs requires signal amplification and improvement on signal-to-noise ratio.

    OBJECTIVES: This paper focused on how the refractive index based nanobio-sensoring gold platform can produce more efficient, adaptable and more practical detection techniques to observe molecular interactions at high degree of sensitivity. It discusses surface chemistry approach, optimisation of the refractive index of gold platform and manipulation of gold geometry augmenting signal quality.

    METHODS: In a normal-incidence reflectivity, r0 can be calculated using the Fresnel equation. Particularly at λ = 470 nm the ratio of r / r0 showed significant amplitude reduction mainly stemmed from the imaginary part of the Au refractive index. Hence, the fraction of reduction, Δr = 1 - r / r0. Experimentally, in a common reference frame reflectivity of a bare gold surface, R0 is compared with the reflectivity of gold surface in the presence of biolayer, R. The reduction rate (%) of reflectivity, ΔR = 1 - R / R0 is denoted as the AR signal. The method therefore enables quantitative measurement of the surface-bound protein by converting ΔR to the thickness, d, and subsequently the protein mass. We discussed four strategies to improve the AR signal by changing the effective refractive index of the biosensing platform. They are; a) Thickness optimisation of Au thin layer, b) Au / Ag bimetallic layer, c) composing alloy or Au composite, and d) Au thinlayer with nano or micro holes.

    RESULTS: As the result we successfully 'move' the refractive index, ε of the AR platform (gold only) to ε = -0.948 + 3.455i, a higher sensitivity platform. This was done by composing Au-Ag2O composite with ratio = 1:1. The results were compared to the potential sensitivity improvement of the AR substrate using other that could be done by further tailoring the ε advanced method.

    CONCLUSION: We suggested four strategies in order to realize this purpose. It is apparent that sensitivity has been improved through Au/Ag bimetallic layer or Au-Ag2O composite thin layer, This study is an important step towards fabrication of sensitive surface for detection of biomolecular interactions.

    Matched MeSH terms: Surface Plasmon Resonance/methods*
  18. Omar NAS, Fen YW, Abdullah J, Mustapha Kamil Y, Daniyal WMEMM, Sadrolhosseini AR, et al.
    Sci Rep, 2020 02 11;10(1):2374.
    PMID: 32047209 DOI: 10.1038/s41598-020-59388-3
    In this work, sensitive detection of dengue virus type 2 E-proteins (DENV-2 E-proteins) was performed in the range of 0.08 pM to 0.5 pM. The successful DENV detection at very low concentration is a matter of concern for targeting the early detection after the onset of dengue symptoms. Here, we developed a SPR sensor based on self-assembled monolayer/reduced graphene oxide-polyamidoamine dendrimer (SAM/NH2rGO/PAMAM) thin film to detect DENV-2 E-proteins. Surface characterizations involving X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) confirms the incorporation of NH2rGO-PAMAM nanoparticles in the prepared sensor films. The specificity, sensitivity, binding affinity, and selectivity of the SPR sensor were then evaluated. Results indicated that the variation of the sensing layer due to different spin speed, time incubation, and concentration provided a better interaction between the analyte and sensing layer. The linear dependence of the SPR sensor showed good linearity (R2 = 0.92) with the lowest detection of 0.08 pM DENV-2 E-proteins. By using the Langmuir model, the equilibrium association constant was obtained at very high value of 6.6844 TM-1 (R2 = 0.99). High selectivity of the SPR sensor towards DENV-2 E-proteins was achieved in the presence of other competitors.
    Matched MeSH terms: Surface Plasmon Resonance/methods*
  19. Citartan M, Tang TH
    Talanta, 2019 Jul 01;199:556-566.
    PMID: 30952298 DOI: 10.1016/j.talanta.2019.02.066
    Aptamers are nucleic acid-based molecular recognition elements that are specific and have high binding affinity against their respective targets. On account of their target recognition capacity, aptamers are widely utilized in a number of applications including diagnostics. This review aims to highlight the recent developments of aptasensors expedient for point-of-care (POC) diagnostics. Significant focus is given on the primary assay formats of aptamers such as fluorescence, electrochemical, surface plasmon resonance (SPR) and colorimetric assays. A potpourri of platforms such as paper-based device, lateral flow assay, portable electrodes, portable SPR and smart phones expedient for point-of-care (POC) diagnostics are discussed. Emphasis is also given on the technicalities and assay configurations associated with the sensors.
    Matched MeSH terms: Surface Plasmon Resonance
  20. Jahanshahi P, Zalnezhad E, Sekaran SD, Adikan FR
    Sci Rep, 2014 Jan 24;4:3851.
    PMID: 24458089 DOI: 10.1038/srep03851
    Surface plasmon resonance (SPR) is a medical diagnosis technique with high sensitivity and specificity. In this research, a new method based on SPR is proposed for rapid, 10-minute detection of the anti-dengue virus in human serum samples. This novel technique, known as rapid immunoglobulin M (IgM)-based dengue diagnostic test, can be utilized quickly and easily at the point of care. Four dengue virus serotypes were used as ligands on a biochip. According to the results, a serum volume of only 1 μl from a dengue patient (as a minimized volume) is required to indicate SPR angle variation to determine the ratio of each dengue serotype in samples with 83-93% sensitivity and 100% specificity.
    Matched MeSH terms: Surface Plasmon Resonance
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links