Displaying publications 1 - 20 of 87 in total

Abstract:
Sort:
  1. Viswanathan G, Hsu YH, Voon SH, Imae T, Siriviriyanun A, Lee HB, et al.
    Macromol Biosci, 2016 06;16(6):882-95.
    PMID: 26900760 DOI: 10.1002/mabi.201500435
    Previously synthesized amphiphilic diblock copolymers with pendant dendron moieties have been investigated for their potential use as drug carriers to improve the delivery of an anticancer drug to human breast cancer cells. Diblock copolymer (P71 D3 )-based micelles effectively encapsulate the doxorubicin (DOX) with a high drug-loading capacity (≈95%, 104 DOX molecules per micelle), which is approximately double the amount of drug loaded into the diblock copolymer (P296 D1 ) vesicles. DOX released from the resultant P71 D3 /DOX micelles is approximately 1.3-fold more abundant, at a tumoral acidic pH of 5.5 compared with a pH of 7.4. The P71 D3 /DOX micelles also enhance drug potency in breast cancer MDA-MB-231 cells due to their higher intracellular uptake, by approximately twofold, compared with the vesicular nanocarrier, and free DOX. Micellar nanocarriers are taken up by lysosomes via energy-dependent processes, followed by the release of DOX into the cytoplasm and subsequent translocation into the nucleus, where it exert its cytotoxic effect.
    Matched MeSH terms: Surface-Active Agents/chemistry
  2. Abdi MM, Md Tahir P, Liyana R, Javahershenas R
    Molecules, 2018 Sep 26;23(10).
    PMID: 30261640 DOI: 10.3390/molecules23102470
    In this study a cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as a soft template for in situ chemical polymerization of aniline on the surface of microcrystalline cellulose (MCC). The morphology of the wire-like and porous nanostructure of the resulting composite was highly dependent on the MCC and CTAB concentrations. The effect of the MCC and CTAB concentrations on the electrochemical and morphological properties of the polyaniline (PAni) nanocomposite was studied. Cyclic voltammograms of modified PAni/MCC/CTAB electrode displayed a high current response and the effect of scan rate on the current response confirmed a diffusion controlled process on the surface of the electrode that makes it suitable for sensor applications. The overlapping characteristic peaks of pure PAni and MCC caused peak broadening at 3263 cm-1 in the IR spectra of PAni/MCC/CTAB nanocomposite that revealed the interaction between NH of PAni and OH group of MCC via electrostatic interactions. The addition of MCC to PAni through chemical polymerization decreased the thermal stability of composite compared to pure PAni. Lower crystallinity was observed in the XRD diffractogram, with 2 theta values of 22.8, 16.5, and 34.6 for PAni/MCC, confirming the formation of PAni on the MCC surface.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  3. Amid M, Murshid FS, Manap MY, Hussin M
    Biomed Res Int, 2015;2015:815413.
    PMID: 25756051 DOI: 10.1155/2015/815413
    A novel aqueous two-phase system composed of a surfactant and sorbitol was employed for the first time to purify pectinase from Psidium guajava. The influences of different parameters, including the type and concentration of the surfactant and the concentration and composition of the surfactant/sorbitol ratio, on the partitioning behavior and recovery of pectinase were investigated. Moreover, the effects of system pH and the crude load on purification fold and the yield of purified pectinase were studied. The experimental results indicated that the pectinase was partitioned into surfactant-rich top phase, and the impurities were partitioned into the sorbitol-rich bottom phase with the novel method involving an ATPS composed of 26% (w/w) Triton X-100 and 23% (w/w) sorbitol at 54.2% of the TLL crude load of 20% (w/w) at pH 6.0. The enzyme was successfully recovered by this method with a high purification factor of 15.2 and a yield of 98.3%, whereas the phase components were also recovered and recycled at rates above 96%. This study demonstrated that this novel ATPS method can be used as an efficient and economical alternative to the traditional ATPS for the purification and recovery of the valuable enzyme.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  4. Amid M, Manap Y, Azmira F, Hussin M, Sarker ZI
    PMID: 25973865 DOI: 10.1016/j.jchromb.2015.04.034
    Polygalacturonase is one of the important enzymes used in various industries such as food, detergent, pharmaceutical, textile, pulp and paper. A novel liquid/liquid extraction process composed of surfactant and acetonitrile was employed for the first time to purify polygalacturonase from Durio zibethinus. The influences of different parameters such as type and concentration of surfactants, concentrations of acetonitrile and composition of surfactant/acetonitrile on partitioning behavior and recovery of polygalacturonase was investigated. Moreover, the effect of pH of system and crude load on purification fold and yield of purified polygalacturonase were studied. The results of the experiment indicated the polygalacturonase was partitioned into surfactant top rich phase with impurities being partitioned into acetonitrile bottom rich phase in the novel method of liquid/liquid process composed of 23% (w/w) Triton X-100 and 19% (w/w) acetonitrile, at 55.6% of TLL (tie line length) crude load of 25% (w/w) at pH 6.0. Recovery and recycling of components also was measured in each successive step of liquid/liquid extraction process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 97.3% while phase components were also recovered and recycled above 95%. This study demonstrated that the novel method of liquid/liquid extraction process can be used as an efficient and economical extraction method rather than the traditional methods of extraction for the purification and recovery of the valuable enzyme.
    Matched MeSH terms: Surface-Active Agents/chemistry
  5. Nazar M, Ul Hassan Shah M, Ahmad A, Goto M, Zaireen Nisa Yahya W, Moniruzzaman M
    Chemosphere, 2023 Dec;344:140412.
    PMID: 37827466 DOI: 10.1016/j.chemosphere.2023.140412
    Chemical dispersants are extensively used for marine oil spill remediation. However, the increased toxicity and low biodegradability of these dispersants restrict their employment in the marine environment. Hence, in this work, we have developed an eco-friendly formulation composed of an ionic liquid,1-butyl-3-methylimidazolium lauroyl sarcosinate [BMIM][Lausar] and sorbitan monooleate (Span) 80. Micellar and interfacial parameters, dispersion effectiveness, as well as the toxicity and biodegradability of the developed formulation were investigated. Micellar properties confirmed a high degree of synergism among the surfactant molecules and the formation of stable micelle. The dispersion effectiveness, at dispersant-to-oil ratio (DOR) of 1:25 (v/v), against three crude oils (Arab, Ratawi, and Doba) was assessed. We achieved a dispersion effectiveness of 68.49%, 74.05%, and 83.43% for Ratawi, Doba, and Arab crude oil, respectively, using a 70:30 (w/w) ratio of Span 80 to [BMIM][Lausar]. Furthermore, the results obtained from optical microscopy and particle size analysis (PSA) indicated that the oil droplet size decreased with higher DOR. Additionally, acute toxicity experiments were conducted on zebrafish (Danio rerio) using the developed formulation, confirming its non-toxic behavior, with LC50 values of 800 mg/L after 96 h. The formulation also exhibited high biodegradability, with only 25.01% of the original quantity remaining after 28 days. Hence, these results suggest that the new formulation has the potential to be a highly effective and environmentally friendly dispersant for oil spill remediation.
    Matched MeSH terms: Surface-Active Agents/chemistry
  6. Ong WD, Tey BT, Quek SY, Tang SY, Chan ES
    J Food Sci, 2015 Jan;80(1):E93-E100.
    PMID: 25529579 DOI: 10.1111/1750-3841.12729
    Oil-in-water (O/W) emulsion-gel systems containing high oil payloads are of increasing interest for food applications because of the reduction in encapsulation cost, consumption frequency or volume of food products. This study shows a facile approach to prepare stable alginate-based O/W emulsions at high oil loading using a mixture of nonionic surfactants (Tween 80 and Span 20) as a template to form gelled-emulsions. The synergistic effects of alginate and surfactants on the O/W emulsion properties were evaluated in terms of oil droplet size and emulsion stability. At 2% (w/v) of alginate and 1% (w/v) of surfactants, the size distribution of oil droplets was narrow and monomodal, even at an oil loading of 70% (v/v). The emulsions formed were stable against phase separation. The oil droplet size could be further reduced to below 1 μm using a high-shear homogenizer. The emulsions formed could be easily molded and gelled into solids of different shapes via ionic gelation. The findings of this study create possible avenues for applications in food industries.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  7. Sani FA, Heidelberg T, Hashim R, Farhanullah
    Colloids Surf B Biointerfaces, 2012 Sep 1;97:196-200.
    PMID: 22609603 DOI: 10.1016/j.colsurfb.2012.03.030
    A series of glucose based surfactants varying in chain length and anomeric configuration were synthesized and investigated on their surfactant properties. The synthesis applied glycosylation of propargyl alcohol followed by cycloaddition with alkyl azides in CLICK chemistry fashion. This approach enables a homogeneous coupling of hydrophilic unprotected sugars and hydrophobic paraffin components in low molecular weight alcohols without solvent side reactions, as commonly found for APGs. The combination of alcohols as inert medium with practically quantitative coupling of the surfactant domains avoids particularly hydrophobic contaminations of the surfactant, thus providing access to pure surfactants. ATGs with chain lengths up to 12 carbons exhibit Krafft points below room temperature and no cloud points were detected. The values for the CMC of ATGs with 12 carbon alkyl chains and above were in good agreement with those of corresponding alkyl glucosides. However, lower homologues exhibited significantly smaller CMCs, and the trend of the CMC upon the chain length did not match common surfactant behavior. This deviation may be related to the triazole that links the two surfactant domains.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  8. Salman AA, Tabandeh M, Heidelberg T, Hussen RS, Ali HM
    Carbohydr Res, 2015 Aug 14;412:28-33.
    PMID: 26000863 DOI: 10.1016/j.carres.2015.04.022
    A series of surfactants combining carbohydrate and imidazolium head groups were prepared and investigated on their assembly behavior. The presence of the imidazolium group dominated the interactions of the surfactants, leading to high CMCs and large molecular surface areas, reflected in curved rather than lamellar surfactant assemblies. The carbohydrate, on the other hand, stabilized molecular assemblies slightly and reduced the surface tension of surfactant solutions considerably. A comparative emulsion study discourages the use of pure alkyl imidazolium glycosides owing to reduced assembly stabilities compared with APGs. However, the surfactants are believed to have potential as component in carbohydrate based surfactant mixtures.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  9. Sagisaka M, Ono S, James C, Yoshizawa A, Mohamed A, Guittard F, et al.
    Colloids Surf B Biointerfaces, 2018 Aug 01;168:201-210.
    PMID: 29276082 DOI: 10.1016/j.colsurfb.2017.12.012
    Previous work (M. Sagisaka, et al. Langmuir 31 (2015) 7479-7487), showed the most effective fluorocarbon (FC) and hydrocarbon (HC) chain lengths in the hybrid surfactants FCm-HCn (sodium 1-oxo-1-[4-(perfluoroalkyl)phenyl]alkane-2-sulfonates, where m = FC length and n = HC length) were m and n = 6 and 4 for water solubilization, whereas m 6 and n 6, or m 6 and n 5, were optimal chain lengths for reversed micelle elongation in supercritical CO2. To clarify why this difference of only a few methylene chain units is so effective at tuning the solubilizing power and reversed micelle morphology, nanostructures of water-in-CO2 (W/CO2) microemulsions were investigated by high-pressure small-angle neutron scattering (SANS) measurements at different water-to-surfactant molar ratios (W0) and surfactant concentrations. By modelling SANS profiles with cylindrical and ellipsoidal form factors, the FC6-HCn/W/CO2 microemulsions were found to increase in size with increasing W0 and surfactant concentration. Ellipsoidal cross-sectional radii of the FC6-HC4/W/CO2 microemulsion droplets increased linearly with W0, and finally reached ∼39 Å and ∼78 Å at W0 = 85 (close to the upper limit of solubilizing power). These systems appear to be the largest W/CO2 microemulsion droplets ever reported. The aqueous domains of FC6-HC6 rod-like reversed micelles increased in size by 3.5 times on increasing surfactant concentration from 35 mM to 50 mM: at 35 mM, FC6-HC5 formed rod-like reversed micelles 5.3 times larger than FC6-HC6. Interestingly, these results suggest that hybrid HC-chains partition into the microemulsion aqueous cores with the sulfonate headgroups, or at the W/CO2 interfaces, and so play important roles for tuning the W/CO2 interfacial curvature. The super-efficient W/CO2-type solubilizer FC6-HC4, and the rod-like reversed micelle forming surfactant FC6-HC5, represent the most successful cases of low fluorine content additives. These surfactants facilitate VOC-free, effective and energy-saving CO2 solvent systems for applications such as extraction, dyeing, dry cleaning, metal-plating, enhanced oil recovery and organic/inorganic or nanomaterial synthesis.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  10. Kamaruzzaman NF, Tan LP, Hamdan RH, Choong SS, Wong WK, Gibson AJ, et al.
    Int J Mol Sci, 2019 Jun 04;20(11).
    PMID: 31167476 DOI: 10.3390/ijms20112747
    Antimicrobial resistance is now considered a major global challenge; compromising medical advancements and our ability to treat infectious disease. Increased antimicrobial resistance has resulted in increased morbidity and mortality due to infectious diseases worldwide. The lack of discovery of novel compounds from natural products or new classes of antimicrobials, encouraged us to recycle discontinued antimicrobials that were previously removed from routine use due to their toxicity, e.g., colistin. Since the discovery of new classes of compounds is extremely expensive and has very little success, one strategy to overcome this issue could be the application of synthetic compounds that possess antimicrobial activities. Polymers with innate antimicrobial properties or that have the ability to be conjugated with other antimicrobial compounds create the possibility for replacement of antimicrobials either for the direct application as medicine or implanted on medical devices to control infection. Here, we provide the latest update on research related to antimicrobial polymers in the context of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. We summarise polymer subgroups: compounds containing natural peptides, halogens, phosphor and sulfo derivatives and phenol and benzoic derivatives, organometalic polymers, metal nanoparticles incorporated into polymeric carriers, dendrimers and polymer-based guanidine. We intend to enhance understanding in the field and promote further work on the development of polymer based antimicrobial compounds.
    Matched MeSH terms: Surface-Active Agents/chemistry
  11. Mukhopadhyay S, Mukherjee S, Hashim MA, Sen Gupta B
    Chemosphere, 2015 Jan;119:355-362.
    PMID: 25061940 DOI: 10.1016/j.chemosphere.2014.06.087
    Colloidal gas aphron dispersions (CGAs) can be described as a system of microbubbles suspended homogenously in a liquid matrix. This work examines the performance of CGAs in comparison to surfactant solutions for washing low levels of arsenic from an iron rich soil. Sodium Dodecyl Sulfate (SDS) and saponin, a biodegradable surfactant, obtained from Sapindus mukorossi or soapnut fruit were used for generating CGAs and solutions for soil washing. Column washing experiments were performed in down-flow and up flow modes at a soil pH of 5 and 6 using varying concentration of SDS and soapnut solutions as well as CGAs. Soapnut CGAs removed more than 70% arsenic while SDS CGAs removed up to 55% arsenic from the soil columns in the soil pH range of 5-6. CGAs and solutions showed comparable performances in all the cases. CGAs were more economical since it contains 35% of air by volume, thereby requiring less surfactant. Micellar solubilization and low pH of soapnut facilitated arsenic desorption from soil column. FT-IR analysis of effluent suggested that soapnut solution did not interact chemically with arsenic thereby facilitating the recovery of soapnut solution by precipitating the arsenic. Damage to soil was minimal arsenic confirmed by metal dissolution from soil surface and SEM micrograph.
    Matched MeSH terms: Surface-Active Agents/chemistry
  12. Ali MK, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M
    ACS Appl Mater Interfaces, 2021 May 05;13(17):19745-19755.
    PMID: 33891816 DOI: 10.1021/acsami.1c03111
    Chemotherapeutic cytotoxic agents such as paclitaxel (PTX) are considered essential for the treatment of various cancers. However, PTX injection is associated with severe systemic side effects and high rates of patient noncompliance. Micelle formulations (MFs) are nano-drug delivery systems that offer a solution to these problems. Herein, we report an advantageous carrier for the transdermal delivery of PTX comprising a new MF that consists of two biocompatible surfactants: cholinium oleate ([Cho][Ole]), which is a surface-active ionic liquid (SAIL), and sorbitan monolaurate (Span-20). A solubility assessment confirmed that PTX was readily solubilized in the SAIL-based micelles via multipoint hydrogen bonding and cation-π and π-π interactions between PTX and SAIL[Cho][Ole]. Dynamic light scattering (DLS) and transmission electron microscopy revealed that in the presence of PTX, the MF formed spherical PTX-loaded micelles that were well-distributed in the range 8.7-25.3 nm. According to DLS, the sizes and size distributions of the micelle droplets did not change significantly over the entire storage period, attesting to their physical stability. In vitro transdermal assessments using a Franz diffusion cell revealed that the MF absorbed PTX 4 times more effectively than a Tween 80-based formulation and 6 times more effectively than an ethanol-based formulation. In vitro and in vivo skin irritation tests revealed that the new carrier had a negligible toxicity profile compared with a conventional ionic liquid-based carrier. Based on these findings, we believe that the SAIL[Cho][Ole]-based MF has potential as a biocompatible nanocarrier for the effective transdermal delivery of poorly soluble chemotherapeutics such as PTX.
    Matched MeSH terms: Surface-Active Agents/chemistry
  13. Wong SP, Lim WH, Cheng SF, Chuah CH
    Colloids Surf B Biointerfaces, 2012 Jan 1;89:48-52.
    PMID: 21937202 DOI: 10.1016/j.colsurfb.2011.08.021
    Quaternary ammonium compounds (QACs) are commonly used as disinfectant in medical care, food industry, detergents and glue industries. This is due to a small concentration of QACs is sufficient to inhibit the growth of various bacteria strains. In this work, the inhibitive power of cationic surfactants, alkyltrimethylammonium bromide (C(n)TAB) in the presence of anionic surfactants, sodium alkyl methyl ester α-sulfonate (C(n)MES) was studied. The growth inhibition test with gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria were used to determine the toxicity of single and mixed surfactants. Results from this work showed that certain mixed surfactants have lower minimum inhibition concentration (MIC) as compared to the single C(n)TAB surfactants. Besides that, it was also found that alkyl chain length and the mixing ratios of the surfactants play a significant role in determining the mixture inhibitive power.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  14. Mehjabin JJ, Wei L, Petitbois JG, Umezawa T, Matsuda F, Vairappan CS, et al.
    J Nat Prod, 2020 06 26;83(6):1925-1930.
    PMID: 32432877 DOI: 10.1021/acs.jnatprod.0c00164
    Chemical investigation of the organic extract from Moorea bouillonii, collected in Sabah, Malaysia, led to the isolation of three new chlorinated fatty acid amides, columbamides F (1), G (2), and H (3). The planar structures of 1-3 were established by a combination of mass spectrometric and NMR spectroscopic analyses. The absolute configuration of 1 was determined by Marfey's analysis of its hydrolysate and chiral-phase HPLC analysis after conversion and esterification with Ohrui's acid, (1S,2S)-2-(anthracene-2,3-dicarboximido)cyclohexanecarboxylic acid. Compound 1 showed biosurfactant activity by an oil displacement assay. Related known fatty acid amides columbamide D and serinolamide C exhibited biosurfactant activity with critical micelle concentrations of about 0.34 and 0.78 mM, respectively.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  15. Doolaanea AA, Mansor N', Mohd Nor NH, Mohamed F
    J Microencapsul, 2014;31(6):600-8.
    PMID: 24697178 DOI: 10.3109/02652048.2014.898709
    The aim of this study is to investigate the cell uptake of Nigella sativa oil (NSO)-PLGA microparticle by neuron-like PC-12 cells in comparison to surfactants; hydrophilic (Tween 80 & Triton X100) and hydrophobic (Span 80). Solvent evaporation was used to precisely control the size, zeta potential and morphology of the particle. The results revealed varying efficiencies of the cell uptake by PC-12 cells, which may be partially attributed to the surface hydrophobicity of the microparticles. Interestingly, the uptake efficiency of PC-12 cells was higher with the more hydrophilic microparticle. NSO microparticle showed evidence of being preferably internalised by mitotic cells. Tween 80 microparticle showed the highest cell uptake efficiency with a concentration-dependent pattern suggesting its use as uptake enhancer for non-scavenging cells. In conclusion, PC-12 cells can take up NSO-PLGA microparticle which may have potential in the treatment of neurodegenerative disease.
    Matched MeSH terms: Surface-Active Agents/chemistry
  16. Salim MM, Malek NANN
    PMID: 26652350 DOI: 10.1016/j.msec.2015.09.099
    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550°C, 5h) and this material has excellent performance as an antibacterial agent after silver ions loading.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  17. Noorashikin MS, Raoov M, Mohamad S, Abas MR
    Int J Mol Sci, 2013;14(12):24531-48.
    PMID: 24351832 DOI: 10.3390/ijms141224531
    A cloud point extraction (CPE) process using non-ionic surfactant (DC193C) to extract selected paraben compounds from water samples was investigated using reversed phase high performance liquid chromatography (RP-HPLC). The CPE process with the presence of β-cyclodextrin (βCD) functionalized ionic liquid as a modifier (CPE-DC193C-βCD-IL) is a new extraction technique that has been applied on the optimization of parameters, i.e., pH, βCD-IL concentration and phase volume ratio. This CPE-DC193C-βCD-IL method is facilitated at 30 °C, showing great losses of water content in the surfactant-rich phase, resulting in a high pre-concentration factor and high distribution coefficient. The developed method CPE-DC193C-βCD-IL did show enhanced properties compared to the CPE method without the modifier (CPE-DC193C). The developed method of CPE-DC193C-βCD-IL gives an excellent performance on the detection of parabens from water samples with the limit of detection falling in the range of 0.013-0.038 µg mL-1. Finally, the inclusion complex formation, hydrogen bonding, and π-π interaction between the βCD-IL, benzyl paraben (ArP), and DC 193C were proven using 1H NMR and 2D NOESY spectroscopy.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  18. Pal P, Hasan SW, Abu Haija M, Sillanpää M, Banat F
    Crit Rev Biotechnol, 2023 Dec;43(7):971-981.
    PMID: 35968911 DOI: 10.1080/07388551.2022.2092716
    Colloidal gas aphrons (CGAs) are highly stable, spherical, micrometer-sized bubbles encapsulated by surfactant multilayers. They have several intriguing properties, including: high stability, large interfacial area, and the ability to maintain the same charge as their parent molecules. The physical properties of CGAs make them ideal for biotechnological applications such as the recovery of a variety of: biomolecules, particularly proteins, yeast, enzymes, and microalgae. In this review, the bio-application of CGAs for the recovery of natural components is presented, as well as: experimental results, technical challenges, and critical research directions for the future. Experimental results from the literature showed that the recovery of biomolecules was mainly determined by electrostatic or hydrophobic interactions between polyphenols and proteins (lysozyme, β-casein, β-lactoglobulin, etc.), yeast, biological molecules (gallic acid and norbixin), and microalgae with CGAs. Knowledge transfer is essential for commercializing CGA-based bio-product recovery, which will be recognized as a viable technology in the future.
    Matched MeSH terms: Surface-Active Agents/chemistry
  19. Ahmad MA, Yahya WJ, Ithnin AM, Hasannuddin AK, Bakar MAA, Fatah AYA, et al.
    Environ Sci Pollut Res Int, 2018 Aug;25(24):24266-24280.
    PMID: 29948709 DOI: 10.1007/s11356-018-2492-2
    Non-surfactant water-in-diesel emulsion fuel (NWD) is an alternative fuel that has the potential to reduce major exhaust emissions while simultaneously improving the combustion performance of a diesel engine. NWD comprises of diesel fuel and water (about 5% in volume) without any additional surfactants. This emulsion fuel is produced through an in-line mixing system that is installed very close to the diesel engine. This study focuses mainly on the performance and emission of diesel engine fuelled with NWD made from different water sources. The engine used in this study is a direct injection diesel engine with loads varying from 1 to 4 kW. The result shows that NWD made from tap water helps the engine to reduce nitrogen oxide (NOx) by 32%. Rainwater reduced it by 29% and seawater by 19%. In addition, all NWDs show significant improvements in engine performance as compared to diesel fuel, especially in the specific fuel consumption that indicates an average reduction of 6%. It is observed that all NWDs show compelling positive effects on engine performance, which is caused by the optimum water droplet size inside NWD.
    Matched MeSH terms: Surface-Active Agents/chemistry
  20. Mukhopadhyay S, Mohd AH, Sahu JN, Yusoff I, Sen GB
    J Environ Sci (China), 2013 Nov 01;25(11):2247-56.
    PMID: 24552053
    This study explores the possible application of a biodegradable plant based surfactant, obtained from Sapindus mukorossi, for washing low levels of arsenic (As) from an iron (Fe) rich soil. Natural association of As(V) with Fe(III) makes the process difficult. Soapnut solution was compared to anionic surfactant sodium dodecyl sulfate (SDS) in down-flow and a newly introduced suction mode for soil column washing. It was observed that soapnut attained up to 86% efficiency with respect to SDS in removing As. Full factorial design of experiment revealed a very good fit of data. The suction mode generated up to 83 kPa pressure inside column whilst down-flow mode generated a much higher pressure of 214 kPa, thus making the suction mode more efficient. Micellar solubilisation was found to be responsible for As desorption from the soil and it followed 1st order kinetics. Desorption rate coefficient of suction mode was found to be in the range of 0.005 to 0.01, much higher than down-flow mode values. Analysis of the FT-IR data suggested that the soapnut solution did not interact chemically with As, offering an option for reusing the surfactant. Soapnut can be considered as a soil washing agent for removing As even from soil with high Fe content.
    Matched MeSH terms: Surface-Active Agents/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links