Displaying publications 1 - 20 of 393 in total

Abstract:
Sort:
  1. Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, et al.
    mBio, 2017 06 27;8(3).
    PMID: 28655818 DOI: 10.1128/mBio.00543-17
    The mobile colistin resistance gene mcr-1 has attracted global attention, as it heralds the breach of polymyxins, one of the last-resort antibiotics for the treatment of severe clinical infections caused by multidrug-resistant Gram-negative bacteria. To date, six slightly different variants of mcr-1, and a second mobile colistin resistance gene, mcr-2, have been reported or annotated in the GenBank database. Here, we characterized a third mobile colistin resistance gene, mcr-3 The gene coexisted with 18 additional resistance determinants in the 261-kb IncHI2-type plasmid pWJ1 from porcine Escherichia colimcr-3 showed 45.0% and 47.0% nucleotide sequence identity to mcr-1 and mcr-2, respectively, while the deduced amino acid sequence of MCR-3 showed 99.8 to 100% and 75.6 to 94.8% identity to phosphoethanolamine transferases found in other Enterobacteriaceae species and in 10 Aeromonas species, respectively. pWJ1 was mobilized to an E. coli recipient by conjugation and contained a plasmid backbone similar to those of other mcr-1-carrying plasmids, such as pHNSHP45-2 from the original mcr-1-harboring E. coli strain. Moreover, a truncated transposon element, TnAs2, which was characterized only in Aeromonas salmonicida, was located upstream of mcr-3 in pWJ1. This ΔTnAs2-mcr-3 element was also identified in a shotgun genome sequence of a porcine E. coli isolate from Malaysia, a human Klebsiella pneumoniae isolate from Thailand, and a human Salmonella enterica serovar Typhimurium isolate from the United States. These results suggest the likelihood of a wide dissemination of the novel mobile colistin resistance gene mcr-3 among Enterobacteriaceae and aeromonads; the latter may act as a potential reservoir for mcr-3IMPORTANCE The emergence of the plasmid-mediated colistin resistance gene mcr-1 has attracted substantial attention worldwide. Here, we examined a colistin-resistant Escherichia coli isolate that was negative for both mcr-1 and mcr-2 and discovered a novel mobile colistin resistance gene, mcr-3 The amino acid sequence of MCR-3 aligned closely with phosphoethanolamine transferases from Enterobacteriaceae and Aeromonas species originating from both clinical infections and environmental samples collected in 12 countries on four continents. Due to the ubiquitous profile of aeromonads in the environment and the potential transfer of mcr-3 between Enterobacteriaceae and Aeromonas species, the wide spread of mcr-3 may be largely underestimated. As colistin has been and still is widely used in veterinary medicine and used at increasing frequencies in human medicine, the continuous monitoring of mobile colistin resistance determinants in colistin-resistant Gram-negative bacteria is imperative for understanding and tackling the dissemination of mcr genes in both the agricultural and health care sectors.
    Matched MeSH terms: Swine
  2. Suriya R, Hassan L, Omar AR, Aini I, Tan CG, Lim YS, et al.
    Zoonoses Public Health, 2008 Sep;55(7):342-51.
    PMID: 18667027 DOI: 10.1111/j.1863-2378.2008.01138.x
    Following a series of H5N1 cases in chickens and birds in a few states in Malaysia, there was much interest in the influenza A viruses subtypes that circulate among the local pig populations. Pigs may act as a mixing vessel for avian and mammal influenza viruses, resulting in new reassorted viruses. This study investigated the presence of antibodies against influenza H1N1 and H3N2 viruses in pigs from Peninsular Malaysia using Herdcheck Swine Influenza H1N1 and H3N2 Antibody Test Kits. At the same time, the presence of influenza virus was examined from the nasal swabs of seropositive pigs by virus isolation and real time RT-PCR. The list of pig farms was obtained from the headquarters of the Department of Veterinary Services, Malaysia, and pig herds were selected randomly from six of 11 states in Peninsular Malaysia. A total of 727 serum and nasal swab samples were collected from 4- to 6-month-old pigs between May and August 2005. By ELISA, the seroprevalences of swine influenza H1N1 and H3N2 among pigs were 12.2% and 12.1% respectively. Seropositivity for either of the virus subtypes was detected in less than half of the 41 sampled farms (41.4%). Combination of both subtypes was detected in 4% of all pigs and in 22% of sampled farms. However, no virus or viral nucleic acid was detected from nasal samples. This study identified that the seropositivity of pigs to H1N1 and H3N2 based on ELISA was significantly associated with factors such as size of farm, importation or purchase of pigs, proximity of farm to other pig farms and the presence of mammalian pets within the farm.
    Matched MeSH terms: Swine; Swine Diseases/epidemiology*; Swine Diseases/transmission
  3. Teoh JY, Cho CL, Wei Y, Isotani S, Tiong HY, Ong TA, et al.
    World J Urol, 2019 Sep;37(9):1879-1887.
    PMID: 30560297 DOI: 10.1007/s00345-018-2602-2
    PURPOSE: The Asian Urological Surgery Training & Education Group (AUSTEG) has been established to provide training and education to young urologists in Asia. We developed and validated a porcine bladder training model for transurethral resection of bladder tumour (TURBT).

    METHODS: Urology residents and specialists were invited to test the training model. They were asked to complete a pre-task questionnaire, to perform piecemeal and en bloc resection of 'bladder tumours' within the training model, and to complete a post-task questionnaire afterwards. Their performances were assessed by faculty members of the AUSTEG. For the face validity, a pre-task questionnaire consisting of six statements on TURBT and the training model were set. For the content validity, a post-task questionnaire consisting of 14 items on the details of the training model were set. For the construct validity, a Global Rating Scale was used to assess the participants' performances. The participants were stratified into two groups (junior surgeons and senior surgeons groups) according to their duration of urology training.

    RESULTS: For the pre-task questionnaire, a mean score of ≥ 4.0 out of 5.0 was achieved in 5 out of 6 statements. For the post-task questionnaire, a mean score of ≥ 4.5 out of 5.0 was achieved in every item. For the Global Rating Scale, the senior surgeons group had higher scores than the junior surgeons group in 8 out of 11 items as well as the total score.

    CONCLUSION: A porcine TURBT training model has been developed, and its face, content and construct validity has been established.

    Matched MeSH terms: Swine
  4. Yu J, Lv X, Yang Z, Gao S, Li C, Cai Y, et al.
    Viruses, 2018 10 19;10(10).
    PMID: 30347642 DOI: 10.3390/v10100572
    Nipah disease is a highly fatal zoonosis which is caused by the Nipah virus. The Nipah virus is a BSL-4 virus with fruit bats being its natural host. It is mainly prevalent in Southeast Asia. The virus was first discovered in 1997 in Negeri Sembilan, Malaysia. Currently, it is mainly harmful to pigs and humans with a high mortality rate. This study describes the route of transmission of the Nipah virus in different countries and analyzes the possibility of the primary disease being in China and the method of its transmission to China. The risk factors are analyzed for different susceptible populations to Nipah disease. The aim is to improve people's risk awareness and prevention and control of the disease and reduce its risk of occurring and spreading in China.
    Matched MeSH terms: Swine; Swine Diseases/epidemiology; Swine Diseases/virology*
  5. Vilcek S, Stadejek T, Ballagi-Pordány A, Lowings JP, Paton DJ, Belák S
    Virus Res, 1996 Aug;43(2):137-47.
    PMID: 8864203
    The genetic variability of classical swine fever virus was studied by comparative nucleotide sequence analysis of 76 virus isolates, collected during a half century from three continents. Parts of the E2 (gp55) and the polymerase gene coding regions of the viral genome were amplified by RT-PCR and DNA fragments of 254 and 207 bp, respectively, were sequenced. The comparative sequence analysis of the E2 region revealed two main phylogenetic groups of CSFV, indicating that the virus apparently evolved from two ancestor nodes. Group I (represented by Brescia strain) consisted of old and recent American and Asian viruses, as well as old English isolates from the 1950s. This group was subdivided into three subgroups, termed I.A-I.C. Group II (represented by Alfort strain) consisted of relatively recent isolates from Europe, together with strain Osaka, which was isolated in Japan from a pig of European origin. Based on genetic distances the group was divided into subgroups II.A and II.B. Malaysian isolates were branched into both groups, indicating multiple origins for contemporaneous outbreaks in that country. All ten vaccine strains tested were branched in group I, implying a common ancestor. The Japanese Kanagawa strain, isolated in 1974, and the British Congenital Tremor strain from 1964 were the most distinct variants of CSFV in our collection. The comparison of the nucleotide sequences of the polymerase coding region of 32 European strains distinguished subgroups II.A and II.B which were similar to the corresponding subgroups of the E2 phylogenetic tree. Thus, the results revealed that the E2 region and the polymerase coding regions seem to be appropriate for the grouping of CSFV isolates from all over the world, distinguishing two major groups of the virus. The reliability of these regions for phylogenetic analysis is indicated by the similarity of the results obtained from the two separate parts of the CSFV genome.
    Matched MeSH terms: Classical swine fever virus/classification; Classical swine fever virus/genetics*; Classical swine fever virus/isolation & purification
  6. Ksiazek TG, Rota PA, Rollin PE
    Virus Res, 2011 Dec;162(1-2):173-83.
    PMID: 21963678 DOI: 10.1016/j.virusres.2011.09.026
    The emergence of Hendra and Nipah viruses in the 1990s has been followed by the further emergence of these viruses in the tropical Old World. The history and current knowledge of the disease, the viruses and their epidemiology is reviewed in this article. A historical aside summarizes the role that Dr. Brian W.J. Mahy played at critical junctures in the early stories of these viruses.
    Matched MeSH terms: Swine; Swine Diseases/diagnosis; Swine Diseases/epidemiology; Swine Diseases/physiopathology; Swine Diseases/virology*
  7. Luo C, Wang Q, Guo R, Zhang J, Zhang J, Zhang R, et al.
    Virus Res, 2022 Dec;322:198937.
    PMID: 36174845 DOI: 10.1016/j.virusres.2022.198937
    Outbreaks of Pseudorabies (PR) by numerous highly virulent and antigenic variant Pseudorabies virus (PRV) strains have been causing severe economic losses to the pig industry in China since 2011. However, current commercial vaccines are often unable to induce thorough protective immunity. In this study, a TK/gI/gE deleted recombinant PRV expressing GM-CSF was developed by using the HDR-CRISPR/Cas9 system. Here, a four-sgRNA along with the Cas9D10A targeting system was utilized for TK/gI/gE gene deletion and GM-CSF insertion. Our study showed that the four-sgRNA targeting system appeared to have higher knock-in efficiency for PRVs editing. The replication of the recombinant PRVs were slightly lower than that of the parental strain, but they appeared to have similar properties in terms of growth curves and plaque morphology. The mice vaccinated with the recombinant PRV expressing GM-CSF via intramuscular injection showed no obvious clinical symptoms, milder pathological lesions, and were completely protected against wild-type PRV challenge. When compared to the triple gene-deleted PRV, the gB antibodies and neutralizing antibody titers were improved and the immunized mice appeared to have lower viral load and higher mRNA levels of IL-2, IL-4, IL-6, and IFN-γ in spleens. Our study offers a novel approach for recombinant PRV construction, and the triple gene-deleted PRV expressing GM-CSF could serve as a promising vaccine candidate for PR control.
    Matched MeSH terms: Swine; Swine Diseases*
  8. Jaganathan S, Toung OP, Yee PL, Yew TD, Yoon CP, Keong LB
    Virol J, 2011;8:437.
    PMID: 21914166 DOI: 10.1186/1743-422X-8-437
    Porcine circovirus type 2 is the primary etiological agent associated with a group of complex multi-factorial diseases classified as Porcine Circovirus Associated Diseases (PCVAD). Sporadic cases reported in Malaysia in 2007 caused major economic losses to the 2.2 billion Malaysian ringgit (MYR) (approximately 0.7 billion US dollar) swine industry. The objective of the present study was to determine the association between the presence of PCV2 and occurrences of PCVAD.
    Matched MeSH terms: Swine
  9. Tio PH, Jong WW, Cardosa MJ
    Virol J, 2005;2:25.
    PMID: 15790424
    The search for the dengue virus receptor has generated many candidates often identified only by molecular mass. The wide host range of the viruses in vitro combined with multiple approaches to identifying the receptor(s) has led to the notion that many receptors or attachment proteins may be involved and that the different dengue virus serotypes may utilize different receptors on the same cells as well as on different cell types.
    Matched MeSH terms: Swine
  10. Harcourt BH, Tamin A, Halpin K, Ksiazek TG, Rollin PE, Bellini WJ, et al.
    Virology, 2001 Aug 15;287(1):192-201.
    PMID: 11504554
    In 1998, Nipah virus (NV) emerged in peninsular Malaysia, causing fatal encephalitis in humans and a respiratory disease in swine. NV is most closely related to Hendra virus (HV), a paramyxovirus that was identified in Australia in 1994, and it has been proposed that HV and NV represent a new genus within the family Paramyxoviridae. This report describes the analysis of the sequences of the polymerase gene (L) and genomic termini of NV as well as a comparison of the full-length, genomic sequences of HV and NV. The L gene of NV is predicted to be 2244 amino acids in size and contains the six domains found within the L proteins of all nonsegmented, negative-stranded (NNS) RNA viruses. However, the GDNQ motif found in most NNS RNA viruses was replaced by GDNE in both NV and HV. The 3' and 5' termini of the NV genome are nearly identical to the genomic termini of HV and share sequence homology with the genomic termini of other members of the subfamily Paramyxovirinae. At 18,246 nucleotides, the genome of NV is 12 nucleotides longer than the genome of HV and they have the largest genomes within the family Paramyxoviridae. The comparison of the structures of the genomes of HV and NV is now complete and this information will help to establish the taxonomic position of these novel viruses within the family Paramyxoviridae.
    Matched MeSH terms: Swine
  11. Koh FX, Kho KL, Panchadcharam C, Sitam FT, Tay ST
    Vet Parasitol, 2016 Aug 30;227:73-6.
    PMID: 27523941 DOI: 10.1016/j.vetpar.2016.05.025
    Anaplasma spp. infects a wide variety of wildlife and domestic animals. This study describes the identification of a novel species of Anaplasma (Candidatus Anaplasma pangolinii) from pangolins (Manis javanica) and Anaplasma bovis from wild boars (Sus scrofa) in Malaysia. Based on 16S rRNA gene sequences, Candidatus Anaplasma pangolinii is identified in a distinct branch within the family Anaplasmataceae, exhibiting the closest sequence similarity with the type strains of Anaplasma bovis (97.7%) and Anaplasma phagocytophilum (97.6%). The sequence also aligned closely (99.9%) with that of an Anaplasma spp. (strain AnAj360) detected from Amblyomma javanense ticks. The nearly full length sequence of the 16S rRNA gene derived from two wild boars in this study demonstrated the highest sequence similarity (99.7%) to the A. bovis type strain. Partial 16S rRNA gene fragments of A. bovis were also detected from a small population of Haemaphysalis bispinosa cattle ticks in this study. Our finding suggests a possible spread of two Anaplasma species in the Malaysian wildlife and ticks. The zoonotic potential of the Anaplasma species identified in this study is yet to be determined.
    Matched MeSH terms: Swine; Swine Diseases/microbiology*; Swine Diseases/epidemiology
  12. Wekesa SN, Inoshima Y, Murakami K, Sentsui H
    Vet Microbiol, 2001 Nov 08;83(2):137-46.
    PMID: 11557154
    Using the reverse transcription-polymerase chain reaction (RT-PCR) and direct sequencing, capsid protein and non-structural protein 1 (nsP1) regions of Sagiyama virus and eight Getah virus strains were analysed. The viruses were isolated from Malaysia and various areas of Japan over a period of 30 years. Based on the available published sequence data, oligonucleotide primers were designed for RT-PCR and the sequences were determined. Our findings showed that though there were differences in the nucleotide sequences in the nsP1 region, there was 100% amino acid homology. On the other hand, in the capsid region, the nucleotide differences caused a major difference in the amino acid sequence. Therefore, the difference in the capsid region is one of the useful markers in the genetic classification between Sagiyama virus and strains of Getah virus, and might be responsible for the serological difference in complement fixation test. The genomic differences among the Getah virus strains are due to time factor rather than geographical distribution.
    Matched MeSH terms: Swine/virology
  13. Putsathit P, Neela VK, Joseph NMS, Ooi PT, Ngamwongsatit B, Knight DR, et al.
    Vet Microbiol, 2019 Oct;237:108408.
    PMID: 31585650 DOI: 10.1016/j.vetmic.2019.108408
    Information on the epidemiology of C. difficile infection (CDI) in South-East Asian countries is limited, as is data on possible animal reservoirs of C. difficile in the region. We investigated the prevalence and molecular epidemiology of C. difficile in piglets and the piggery environment in Thailand and Malaysia. Piglet rectal swabs (n = 224) and piggery environmental specimens (n = 23) were collected between 2015 and 2016 from 11 farms located in Thailand and Malaysia. All specimens were tested for the presence of C. difficile with toxigenic culture. PCR assays were performed on isolates to determine the ribotype (RT), and the presence of toxin genes. Whole genome sequencing was used on a subset of isolates to determine the evolutionary relatedness of RT038 (the most prevalent RT identified) common to pigs and humans from Thailand and Indonesia. C. difficile was recovered from 35% (58/165) and 92% (54/59) of the piglets, and 89% (8/9) and 93% (13/14) of the environmental specimens from Thailand and Malaysia, respectively. All strains from Thailand, and 30 strains from Malaysia (23 piglet and 7 environmental isolates) were non-toxigenic. To our knowledge, this is the first and only report with a complete lack of toxigenic C. difficile among piglets, a feature which could have a protective effect on the host. The most common strain belonged to RT038 (ST48), accounting for 88% (51/58) of piglet and 78% (7/9) of environmental isolates from Thailand, and all 30 isolates tested from Malaysia. Piglet RT038 isolates from Thailand and Malaysia differed by only 18 core-genome single nucleotide variants (cgSNVs) and both were, on average, 30 cgSNVs different from the human strains from Thailand and Indonesia, indicating a common ancestor in the last two decades.
    Matched MeSH terms: Swine; Swine Diseases/microbiology*
  14. Shuai L, Ge J, Wen Z, Wang J, Wang X, Bu Z
    Vet Microbiol, 2020 Feb;241:108549.
    PMID: 31928698 DOI: 10.1016/j.vetmic.2019.108549
    Nipah virus (NiV) is a re-emerging zoonotic pathogen that causes high mortality in humans and pigs. Oral immunization in free-roaming animals is one of the most practical approaches to prevent NiV pandemics. We previously generated a recombinant rabies viruses (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, rERAG333E, which contains a mutation from arginine to glutamic acid at residue 333 of glycoprotein (G333E) and serves as an oral vaccine for dog rabies. In this study, we generated two recombinant RABVs, rERAG333E/NiVG and rERAG333E/NiVF, expressing the NiV Malaysian strain attachment glycoprotein (NiV-G) or fusion glycoprotein (NiV-F) gene based on the rERAG333E vector platform. Both rERAG333E/NiVG and rERAG333E/NiVF displayed growth properties similar to those of rERAG333E and caused marked syncytia formation after co-infection in BSR cell culture. Adult and suckling mice intracerebrally inoculated with the recombinant RABVs showed NiV-G and NiV-F expression did not increase the virulence of rERAG333E. Oral vaccination with rERAG333E/NiVG either singularly or combined with rERAG333E/NiVF induced significant NiV neutralizing antibody against NiV and RABV, and IgG to NiV-G or NiV-F in mice and pigs. rERAG333E/NiVG and rERAG333E/NiVF thus appeared to be suitable candidates for further oral vaccines for potential animal targets in endemic areas of NiV disease and rabies.
    Matched MeSH terms: Swine
  15. Andrišić M, Žarković I, Šandor K, Vujnović A, Perak Junaković E, Bendelja K, et al.
    Vet Immunol Immunopathol, 2022 Jan;243:110365.
    PMID: 34920287 DOI: 10.1016/j.vetimm.2021.110365
    Aujeszky's disease (AD) is a viral infectious disease caused by Suid herpesvirus 1 (SuHV-1). Vaccination and eradication of AD in domestic pigs is possible using marker vaccines with attenuated or inactivated SuHV-1, or subunit vaccines. However, vaccines with attenuated SuHV-1 have shown to be more potent in inducing strong cell-mediated immune response. The studies have shown that Parapoxvirus ovis, as well as Propionibacterium granulosum with lipopolysacharides (LPS) of Escherichia coli have pronounced immunomodulatory effects and that in combination with the vaccines can induce stronger humoral and cellular immune responses than use of vaccines alone. In our study distribution of peripheral blood T cell subpopulations was analysed after administration of vaccine alone (attenuated SuHV-1), immunostimulators (inactivated Parapoxvirus ovis or combination of an inactivated P. granulosum and detoxified LPS of E. coli) and combinations of vaccine with each immunostimulator to the 12-week old piglets. Throughout the study no significant changes were found in the proportions of γδ and most αβ T cell subpopulations analysed. However, on the seventh day of the study combination of an inactivated P. granulosum and LPS of E. coli with vaccine induced transient but significant increase of the proportions of CD4+CD8α+ and CD4-CD8α+ αβ T cells, that have been strongly associated with early protection of SuHV-1 infected pigs. Our findings indicate that combination of inactivated P. granulosum and detoxified E. coli LPS could be used for enhancement of a cellular immune response induced by vaccines against AD.
    Matched MeSH terms: Swine
  16. Adeola OA, Adeniji JA
    Vet. Ital., 2010 Apr-Jun;46(2):147-53.
    PMID: 20560124
    The authors investigated the prevalence of haemagglutination inhibition (HI) antibodies to four strains of influenza viruses among handlers of live pigs in Ibadan, Nigeria. Venous blood specimens were collected from thirty pig handlers (out of a total of forty-eight) at three locations in Ibadan in April and May 2008. The overall prevalence of antibodies to influenza viruses was 100%, while those of influenza A and B viruses were 68.3% and 58.3%, respectively. The prevalence of influenza A/Brisbane/59/2007 (H1N1), A/Brisbane/10/2007 (H3N2), B/Shanghai/361/2002-like and B/Malaysia/2506/2004-like was 46.7%, 90.0%, 76.7% and 40.0%, respectively. A total of 96.7% (n = 30) of pig handlers tested had polytypic influenza antibody reactions. This is the first report to document the prevalence of influenza antibodies among pig handlers in Nigeria and shows that humans who have regular and direct contact with live pigs in Ibadan are exposed to different strains of influenza viruses.
    Matched MeSH terms: Swine
  17. Broder CC, Weir DL, Reid PA
    Vaccine, 2016 06 24;34(30):3525-34.
    PMID: 27154393 DOI: 10.1016/j.vaccine.2016.03.075
    Hendra virus (HeV) and Nipah virus (NiV) are zoonotic viruses that emerged in the mid to late 1990s causing disease outbreaks in livestock and people. HeV appeared in Queensland, Australia in 1994 causing a severe respiratory disease in horses along with a human case fatality. NiV emerged a few years later in Malaysia and Singapore in 1998-1999 causing a large outbreak of encephalitis with high mortality in people and also respiratory disease in pigs which served as amplifying hosts. The key pathological elements of HeV and NiV infection in several species of mammals, and also in people, are a severe systemic and often fatal neurologic and/or respiratory disease. In people, both HeV and NiV are also capable of causing relapsed encephalitis following recovery from an acute infection. The known reservoir hosts of HeV and NiV are several species of pteropid fruit bats. Spillovers of HeV into horses continue to occur in Australia and NiV has caused outbreaks in people in Bangladesh and India nearly annually since 2001, making HeV and NiV important transboundary biological threats. NiV in particular possesses several features that underscore its potential as a pandemic threat, including its ability to infect humans directly from natural reservoirs or indirectly from other susceptible animals, along with a capacity of limited human-to-human transmission. Several HeV and NiV animal challenge models have been developed which have facilitated an understanding of pathogenesis and allowed for the successful development of both active and passive immunization countermeasures.
    Matched MeSH terms: Swine
  18. Nagendrakumar SB, Hong NT, Geoffrey FT, Jacqueline MM, Andrew D, Michelle G, et al.
    Vaccine, 2015 Aug 26;33(36):4513-9.
    PMID: 26192355 DOI: 10.1016/j.vaccine.2015.07.014
    Pigs play a significant role during outbreaks of foot-and-mouth disease (FMD) due to their ability to amplify the virus. It is therefore essential to determine what role vaccination could play to prevent clinical disease and lower virus excretion into the environment. In this study we investigated the efficacy of the double oil emulsion A Malaysia 97 vaccine (>6PD50/dose) against heterologous challenge with an isolate belonging to the A SEA-97 lineage at 4 and 7 days post vaccination (dpv). In addition, we determined whether physical separation of pigs in the same room could prevent virus transmission. Statistically there was no difference in the level of protection offered by 4 and 7 dpv. However, no clinical disease or viral RNA was detected in the blood of pigs challenged 4 dpv, although three of the pigs had antibodies to the non-structural proteins (NSPs), indicating viral replication. Viral RNA was also detected in nasal and saliva swabs, but on very few occasions. Two of the pigs vaccinated seven days prior to challenge had vesicles distal from the injection site, but on the inoculated foot, and two pigs had viral RNA detected in the blood. One pig sero-converted to the NSPs. In contrast, all unvaccinated and inoculated pigs had evidence of infection. No infection occurred in any of the susceptible pigs in the same room, but separated from the infected pigs, indicating that strict biosecurity measures were sufficient under these experimental conditions to prevent virus transmission. However, viral RNA was detected in the nasal swabs of one group of pigs, but apparently not at sufficient levels to cause clinical disease. Vaccination led to a significant decrease in viral RNA in vaccinated pigs compared to unvaccinated and infected pigs, even with this heterologous challenge, and could therefore be considered as a control option during outbreaks.
    Matched MeSH terms: Swine; Swine Diseases/prevention & control*
  19. Pickering BS, Hardham JM, Smith G, Weingartl ET, Dominowski PJ, Foss DL, et al.
    Vaccine, 2016 09 14;34(40):4777-86.
    PMID: 27544586 DOI: 10.1016/j.vaccine.2016.08.028
    Hendra virus (HeV) and Nipah virus (NiV) are members of the genus Henipavirus, within the family Paramyxoviridae. Nipah virus has caused outbreaks of human disease in Bangladesh, Malaysia, Singapore, India and Philippines, in addition to a large outbreak in swine in Malaysia in 1998/1999. Recently, NiV was suspected to be a causative agent of an outbreak in horses in 2014 in the Philippines, while HeV has caused multiple human and equine outbreaks in Australia since 1994. A swine vaccine able to prevent shedding of infectious virus is of veterinary and human health importance, and correlates of protection against henipavirus infection in swine need to be better understood. In the present study, three groups of animals were employed. Pigs vaccinated with adjuvanted recombinant soluble HeV G protein (sGHEV) and challenged with HeV, developed antibody levels considered to be protective prior to the challenge (titers of 320). However, activation of the cell-mediated immune response was not detected, and the animals were only partially protected against challenge with 5×10(5) PFU of HeV per animal. In the second group, cross-neutralizing antibody levels against NiV in the sGHEV vaccinated animals did not reach protective levels, and with no activation of cellular immune memory, these animals were not protected against NiV. Only pigs orally infected with 5×10(4) PFU of NiV per animal were protected against nasal challenge with 5×10(5) PFU of NiV per animal. This group of pigs developed protective antibody levels, as well as cell-mediated immune memory. Peripheral blood mononuclear cells restimulated with UV-inactivated NiV upregulated IFN-gamma, IL-10 and the CD25 activation marker on CD4(+)CD8(+) T memory helper cells and to lesser extent on CD4(-)CD8(+) T cells. In conclusion, both humoral and cellular immune responses were required for protection of swine against henipaviruses.
    Matched MeSH terms: Swine/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links