Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. van Velzen R, Holmer R, Bu F, Rutten L, van Zeijl A, Liu W, et al.
    Proc Natl Acad Sci U S A, 2018 May 15;115(20):E4700-E4709.
    PMID: 29717040 DOI: 10.1073/pnas.1721395115
    Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete Frankia as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using Parasponia species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between Parasponia andersonii and its nonnodulating relative Trema tomentosa demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of P. andersonii and the legume Medicago truncatula revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including NODULE INCEPTION (NIN) and RHIZOBIUM-DIRECTED POLAR GROWTH (RPG). Comparative analysis of genomes from three Parasponia species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of NIN, RPG, and NOD FACTOR PERCEPTION Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated ∼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants.
    Matched MeSH terms: Symbiosis*
  2. Yuejun He, Changhong Jiang, Hao Yang, Yongjian Wang, Zhangcheng Zhong
    Sains Malaysiana, 2017;46:1701-1708.
    How the composition of the arbuscular mycorrhizal (AM) fungal community affects plant traits of different plant species in karst environments is poorly understood. Broussonetia papyrifera (a woody shrub) and Bidens pilosa (a herbaceous plant) growing in pots in limestone soil were inoculated with an AM fungus, either Funneliformis mosseae (FM), Diversispora versiformis (DV) or Glomus diaphanum (GD) or with an inoculum mixture of all three AM fungi (bn). B. papyrifera and B. pilosa seedlings inoculated with AM fungi showed a significant increase in biomass and nitrogen and phosphorus acquisition compared with the controls, which lacked mycorrhiza. Mixed fungal inoculations significantly enhanced biomass and nitrogen and phosphorus acquisition by B. papyrifera seedlings compared with single fungal inoculations. Nitrogen and phosphorus acquisition by B. papyrifera mycorrhizal seedlings was significantly greater than that of B. pilosa mycorrhizal seedlings. Fungal composition significantly influenced the mycorrhizal benefits of biomass and phosphorus acquisition and mixed fungal inoculations enhanced nitrogen acquisition. Plant species significantly affected nitrogen acquisition but did not have an effect on biomass and phosphorus benefits. We concluded that AM fungal associations increased plant growth and nutrient absorption and that in general a mixed inoculation of AM fungi enhanced biomass and nutrient acquisition more than a single AM fungal inoculation. In addition, a mycorrhizal association was more beneficial for B. papyrifera seedlings in terms of biomass and nutrient acquisition than for B. pilosa seedlings.
    Matched MeSH terms: Symbiosis
  3. Wong WZ, H'ng PS, Chin KL, Sajap AS, Tan GH, Paridah MT, et al.
    Environ Entomol, 2015 Oct;44(5):1367-74.
    PMID: 26314017 DOI: 10.1093/ee/nvv115
    The lower termite, Coptotermes curvignathus, is one of the most prominent plantation pests that feed upon, digest, and receive nourishment from exclusive lignocellulose diets. The objective of this study was to examine the utilization of sole carbon sources by isolated culturable aerobic bacteria among communities from the gut and foraging pathway of C. curvignathus. We study the bacteria occurrence from the gut of C. curvignathus and its surrounding feeding area by comparing the obtained phenotypic fingerprint with Biolog's extensive species library. A total of 24 bacteria have been identified mainly from the family Enterobacteriaceae from the identification of Biolog Gen III. Overall, the bacteria species in the termite gut differ from those of foraging pathway within a location, except Acintobacter baumannii, which was the only bacteria species found in both habitats. Although termites from a different study area do not have the same species of bacteria in the gut, they do have a bacterial community with similar role in degrading certain carbon sources. Sugars were preferential in termite gut isolates, while nitrogen carbon sources were preferential in foraging pathway isolates. The preferential use of specific carbon sources by these two bacterial communities reflects the role of bacteria for regulation of carbon metabolism in the termite gut and foraging pathway.
    Matched MeSH terms: Symbiosis
  4. Uni S, Mat Udin AS, Agatsuma T, Junker K, Saijuntha W, Bunchom N, et al.
    Parasit Vectors, 2020 Feb 06;13(1):50.
    PMID: 32028994 DOI: 10.1186/s13071-020-3907-8
    BACKGROUND: The genus Onchocerca Diesing, 1841 includes species of medical importance, such as O. volvulus (Leuckart, 1893), which causes river blindness in the tropics. Recently, zoonotic onchocercosis has been reported in humans worldwide. In Japan, O. dewittei japonica Uni, Bain & Takaoka, 2001 from wild boars is a causative agent for this zoonosis. Many filarioid nematodes are infected with Wolbachia endosymbionts which exhibit various evolutionary relationships with their hosts. While investigating the filarial fauna of Borneo, we discovered an undescribed Onchocerca species in the bearded pig Sus barbatus Müller (Cetartiodactyla: Suidae).

    METHODS: We isolated Onchocerca specimens from bearded pigs and examined their morphology. For comparative material, we collected fresh specimens of O. d. dewittei Bain, Ramachandran, Petter & Mak, 1977 from banded pigs (S. scrofa vittatus Boie) in Peninsular Malaysia. Partial sequences of three different genes (two mitochondrial genes, cox1 and 12S rRNA, and one nuclear ITS region) of these filarioids were analysed. By multi-locus sequence analyses based on six genes (16S rDNA, ftsZ, dnaA, coxA, fbpA and gatB) of Wolbachia, we determined the supergroups in the specimens from bearded pigs and those of O. d. dewittei.

    RESULTS: Onchocerca borneensis Uni, Mat Udin & Takaoka n. sp. is described on the basis of morphological characteristics and its genetic divergence from congeners. Molecular characteristics of the new species revealed its close evolutionary relationship with O. d. dewittei. Calculated p-distance for the cox1 gene sequences between O. borneensis n. sp. and O. d. dewittei was 5.9%, while that between O. d. dewittei and O. d. japonica was 7.6%. No intraspecific genetic variation was found for the new species. Wolbachia strains identified in the new species and O. d. dewittei belonged to supergroup C and are closely related.

    CONCLUSIONS: Our molecular analyses of filarioids from Asian suids indicate that the new species is sister to O. d. dewittei. On the basis of its morphological and molecular characteristics, we propose to elevate O. d. japonica to species level as O. japonica Uni, Bain & Takaoka, 2001. Coevolutionary relationships exist between the Wolbachia strains and their filarial hosts in Borneo and Peninsular Malaysia.

    Matched MeSH terms: Symbiosis
  5. Tong CY, Honda K, Derek CJC
    Environ Res, 2023 Jul 01;228:115872.
    PMID: 37054838 DOI: 10.1016/j.envres.2023.115872
    Mass microalgal-bacterial co-cultures have come to the fore of applied physiological research, in particularly for the optimization of high-value metabolite from microalgae. These co-cultures rely on the existence of a phycosphere which harbors unique cross-kingdom associations that are a prerequisite for the cooperative interactions. However, detailed mechanisms underpinning the beneficial bacterial effects onto microalgal growth and metabolic production are rather limited at the moment. Hence, the main purpose of this review is to shed light on how bacteria fuels microalgal metabolism or vice versa during mutualistic interactions, building upon the phycosphere which is a hotspot for chemical exchange. Nutrients exchange and signal transduction between two not only increase the algal productivity, but also facilitate in the degradation of bio-products and elevate the host defense ability. Main chemical mediators such as photosynthetic oxygen, N-acyl-homoserine lactone, siderophore and vitamin B12 were identified to elucidate beneficial cascading effects from the bacteria towards microalgal metabolites. In terms of applications, the enhancement of soluble microalgal metabolites is often associated with bacteria-mediated cell autolysis while bacterial bio-flocculants can aid in microalgal biomass harvesting. In addition, this review goes in depth into the discussion on enzyme-based communication via metabolic engineering such as gene modification, cellular metabolic pathway fine-tuning, over expression of target enzymes, and diversion of flux toward key metabolites. Furthermore, possible challenges and recommendations aimed at stimulating microalgal metabolite production are outlined. As more evidence emerges regarding the multifaceted role of beneficial bacteria, it will be crucial to incorporate these findings into the development of algal biotechnology.
    Matched MeSH terms: Symbiosis
  6. Teoh MC, Furusawa G, Veera Singham G
    Arch Microbiol, 2021 Jul;203(5):1891-1915.
    PMID: 33634321 DOI: 10.1007/s00203-021-02230-9
    Insects and bacteria are the most widespread groups of organisms found in nearly all habitats on earth, establishing diverse interactions that encompass the entire range of possible symbiotic associations from strict parasitism to obligate mutualism. The complexity of their interactions is instrumental in shaping the roles of insects in the environment, meanwhile ensuring the survival and persistence of the associated bacteria. This review aims to provide detailed insight on the multifaceted symbiosis between one of the most versatile bacterial genera, Pseudomonas (Gammaproteobacteria: Pseudomonadaceae) and a diverse group of insect species. The Pseudomonas engages with varied interactions with insects, being either a pathogen or beneficial endosymbiont, as well as using insects as vectors. In addition, this review also provides updates on existing and potential applications of Pseudomonas and their numerous insecticidal metabolites as biocontrol agents against pest insects for the improvement of integrated pest management strategies. Here, we have summarized several known modes of action and the virulence factors of entomopathogenic Pseudomonas strains essential for their pathogenicity against insects. Meanwhile, the beneficial interactions between pseudomonads and insects are currently limited to a few known insect taxa, despite numerous studies reporting identification of pseudomonads in the guts and haemocoel of various insect species. The vector-symbiont association between pseudomonads and insects can be diverse from strict phoresy to a role switch from commensalism to parasitism following a dose-dependent response. Overall, the pseudomonads appeared to have evolved independently to be either exclusively pathogenic or beneficial towards insects.
    Matched MeSH terms: Symbiosis
  7. Séne S, Selosse MA, Forget M, Lambourdière J, Cissé K, Diédhiou AG, et al.
    ISME J, 2018 06;12(7):1806-1816.
    PMID: 29535364 DOI: 10.1038/s41396-018-0088-y
    Global trade increases plant introductions, but joint introduction of associated microbes is overlooked. We analyzed the ectomycorrhizal fungi of a Caribbean beach tree, seagrape (Coccoloba uvifera, Polygonacaeae), introduced pantropically to stabilize coastal soils and produce edible fruits. Seagrape displays a limited symbiont diversity in the Caribbean. In five regions of introduction (Brazil, Japan, Malaysia, Réunion and Senegal), molecular barcoding showed that seagrape mostly or exclusively associates with Scleroderma species (Basidiomycota) that were hitherto only known from Caribbean seagrape stands. An unknown Scleroderma species dominates in Brazil, Japan and Malaysia, while Scleroderma bermudense exclusively occurs in Réunion and Senegal. Population genetics analysis of S. bermudense did not detect any demographic bottleneck associated with a possible founder effect, but fungal populations from regions where seagrape is introduced are little differentiated from the Caribbean ones, separated by thousands of kilometers, consistently with relatively recent introduction. Moreover, dry seagrape fruits carry Scleroderma spores, probably because, when drying on beach sand, they aggregate spores from the spore bank accumulated by semi-hypogeous Scleroderma sporocarps. Aggregated spores inoculate seedlings, and their abundance may limit the founder effect after seagrape introduction. This rare pseudo-vertical transmission of mycorrhizal fungi likely contributed to efficient and repeated seagrape/Scleroderma co-introductions.
    Matched MeSH terms: Symbiosis*
  8. Sundram S, Meon S, Seman IA, Othman R
    J Microbiol, 2011 Aug;49(4):551-7.
    PMID: 21887636 DOI: 10.1007/s12275-011-0489-3
    Endophytic bacteria (Pseudomonas aeruginosa UPMP3 and Burkholderia cepacia UMPB3), isolated from within roots of oil palm (Elaeis guineensis Jacq.) were tested for their presymbiotic effects on two arbuscular mcorrhizal fungi, Glomus intraradices UT126 and Glomus clarum BR152B). These endophytic bacteria were also tested for antagonistic effects on Ganoderma boninense PER 71, a white wood rot fungal pathogen that causes a serious disease in oil palm. Spore germination and hyphal length of each arbuscular mycorrhizal fungal (AMF) pairing with endophytic bacteria was found to be significantly higher than spores plated in the absence of bacteria. Scanning electron microscopy (SEM) showed that the endophytic bacteria were scattered, resting or embedded on the surface hyaline layer or on the degraded walls of AMF spores, possibly feeding on the outer hyaline spore wall. The antagonistic effect of the endophytic bacteria was expressed as severe morphological abnormalities in the hyphal structures of G. boninense PER 71. The effects of the endophytic bacteria on G. boninense PER 71 hyphal structures were observed clearly under SEM. Severe inter-twisting, distortion, lysis and shriveling of the hyphal structures were observed. This study found that the effect of endophytic bacteria on G. intraradices UT126 and G. clarum BR152B resembled that of a mycorrhiza helper bacteria (MHB) association because the association significantly promoted AMF spore germination and hyphal length. However, the endophytic bacteria were extremely damaging to G. boninense PER 71.
    Matched MeSH terms: Symbiosis/physiology*
  9. Sim JH, Khoo CH, Lee LH, Cheah YK
    J Microbiol Biotechnol, 2010 Apr;20(4):651-8.
    PMID: 20467234
    Garcinia is commonly found in Malaysia, but limited information is available regarding endophytic fungi associated with this plant. In this study, 24 endophytic fungi were successfully recovered from different parts of two Garcinia species. Characterization of endophytic fungi was performed based on the conserved internal transcribed spacer (ITS) region sequence analysis and the antimicrobial properties. Results revealed that fruits of the plant appeared to be the highest inhabitation site (38 %) as compared with others. Glomerella sp., Guignardia sp., and Phomopsis sp. appeared to be the predominant endophytic fungi group in Garcinia mangostana and Garcinia parvifolia. Phylogenetic relationships of the isolated endophytic fungi were estimated from the sequences of the ITS region. On the other hand, antibacterial screening showed 11 of the isolates possessed positive response towards pathogenic and nonpathogenic bacteria. However, there was no direct association between certain antibacterial properties with the specific genus observed.
    Matched MeSH terms: Symbiosis
  10. Senthilkumar S
    Med J Malaysia, 2004 May;59 Suppl B:218-9.
    PMID: 15468896
    Matched MeSH terms: Symbiosis/physiology*
  11. Schöner MG, Schöner CR, Simon R, Grafe TU, Puechmaille SJ, Ji LL, et al.
    Curr Biol, 2015 Jul 20;25(14):1911-6.
    PMID: 26166777 DOI: 10.1016/j.cub.2015.05.054
    Mutualisms between plants and animals shape the world's ecosystems. In such interactions, achieving contact with the partner species is imperative. Plants regularly advertise themselves with signals that specifically appeal to the partner's perceptual preferences. For example, many plants have acquired traits such as brightly colored, fragrant flowers that attract pollinators with visual, olfactory, or--in the case of a few bat-pollinated flowers--even acoustic stimuli in the form of echo-reflecting structures. However, acoustic attraction in plants is rare compared to other advertisements and has never been found outside the pollination context and only in the Neotropics. We hypothesized that this phenomenon is more widespread and more diverse as plant-bat interactions also occur in the Paleotropics. In Borneo, mutualistic bats fertilize a carnivorous pitcher plant while roosting in its pitchers. The pitcher's orifice features a prolonged concave structure, which we predicted to distinctively reflect the bats' echolocation calls for a wide range of angles. This structure should facilitate the location and identification of pitchers even within highly cluttered surroundings. Pitchers lacking this structure should be less attractive for the bats. Ensonifications of the pitchers around their orifice revealed that this structure indeed acts as a multidirectional ultrasound reflector. In behavioral experiments where bats were confronted with differently modified pitchers, the reflector's presence clearly facilitated the finding and identification of pitchers. These results suggest that plants have convergently acquired reflectors in the Paleotropics and the Neotropics to acoustically attract bats, albeit for completely different ecological reasons.
    Matched MeSH terms: Symbiosis
  12. Sakai S, Kato M, Nagamasu H
    Am J Bot, 2000 Mar;87(3):440-5.
    PMID: 10719005
    A previously undescribed pollination system involving a monoecious tree species, Artocarpus integer (Moraceae), pollinator gall midges, and fungi is reported from a mixed dipterocarp forest in Sarawak, Borneo. The fungus Choanephora sp. (Choanephoraceae, Mucorales, Zygomycetes) infects male inflorescences of A. integer, and gall midges (Contarinia spp., Cecidomyiinae, Diptera) feed on the fungal mycelia and oviposit on the inflorescence. Their larvae also feed on the mycelia and pupate in the inflorescence. The gall midges are also attracted by female inflorescences lacking mycelia, probably due to a floral fragrance similar to that of male inflorescences. Because of the sticky pollen, dominance of Contarinia spp. in flower visitors, and pollen load observed on Contarinia spp. collected on both male and female inflorescences, Artocarpus integer is thought to be pollinated by the gall midges. Although several pathogenic fungi have been reported to have interactions with pollinators, this is the first report on a pollination mutualism in which a fungus plays an indispensable role. The pollination system described here suggests that we should be more aware of the roles fungi can play in pollinations.
    Matched MeSH terms: Symbiosis
  13. Rosland NA, Ikhsan N, Min CC, Yusoff FM, Karim M
    Curr Microbiol, 2021 Nov;78(11):3901-3912.
    PMID: 34522979 DOI: 10.1007/s00284-021-02642-2
    The emerging aquaculture industry is in need of non-antibiotic-based disease control approaches to minimize the risk of antibiotic-resistant bacteria. Bacterial infections mainly caused by Vibrio spp. have caused mass mortalities of fish especially during the larval stages. The objectives of this study were to verify the potential of symbiotic probiont strains, isolated from microalgae (Amphora, Chlorella, and Spirulina) for suppressing the growth of Vibrio spp. and at the same time ascertain their abilities to enhance microalgal biomass by mutualistic interactions through microalgae-bacteria symbiosis. In addition, in vivo studies on Artemia bioencapsulated with probiont strains (single strain and mix strains) and microalgae were evaluated. The selected potential probionts were identified as Lysinibacillus fusiformis strain A-1 (LFA-1), Bacillus sp. strain A-2 (BA-2), Lysinibacillus fusiformis strain Cl-3 (LFCl-3), and Bacillus pocheonensis strain S-2 (BPS-2) using 16s rRNA. The cell densities of Amphora culture supplemented with BA-2 and Chlorella culture supplemented with LFCl-3 were higher than those of the controls. Artemia bioencapsulated with mix strains (LFA-1 + BA-2 + LFCl-3 + BPS-2) and Amphora demonstrated the highest survival rate compared to the controls, after being challenged with V. harveyi (60 ± 4%) and V. parahaemolyticus (78 ± 2%). Our study postulated that BA-2 and LFCl-3 were found to be good promoting bacteria for microalgal growth and microalgae serve as a vector to transport probiotic into Artemia. Moreover, mixture of potential probionts is beneficial for Artemia supplementation in conferring protection to Artemia nauplii against pathogenic Vibrios.
    Matched MeSH terms: Symbiosis
  14. Quek SP, Davies SJ, Ashton PS, Itino T, Pierce NE
    Mol Ecol, 2007 May;16(10):2045-62.
    PMID: 17498231
    We investigate the geographical and historical context of diversification in a complex of mutualistic Crematogaster ants living in Macaranga trees in the equatorial rain forests of Southeast Asia. Using mitochondrial DNA from 433 ant colonies collected from 32 locations spanning Borneo, Malaya and Sumatra, we infer branching relationships, patterns of genetic diversity and population history. We reconstruct a time frame for the ants' diversification and demographic expansions, and identify areas that might have been refugia or centres of diversification. Seventeen operational lineages are identified, most of which can be distinguished by host preference and geographical range. The ants first diversified 16-20 Ma, not long after the onset of the everwet forests in Sundaland, and achieved most of their taxonomic diversity during the Pliocene. Pleistocene demographic expansions are inferred for several of the younger lineages. Phylogenetic relationships suggest a Bornean cradle and major axis of diversification. Taxonomic diversity tends to be associated with mountain ranges; in Borneo, it is greatest in the Crocker Range of Sabah and concentrated also in other parts of the northern northwest coast. Within-lineage genetic diversity in Malaya and Sumatra tends to also coincide with mountain ranges. A series of disjunct and restricted distributions spanning northern northwest Borneo and the major mountain ranges of Malaya and Sumatra, seen in three pairs of sister lineages, further suggests that these regions were rain-forest refuges during drier climatic phases of the Pleistocene. Results are discussed in the context of the history of Sundaland's rain forests.
    Matched MeSH terms: Symbiosis*
  15. Quek SP, Davies SJ, Itino T, Pierce NE
    Evolution, 2004 Mar;58(3):554-70.
    PMID: 15119439
    We investigate the evolution of host association in a cryptic complex of mutualistic Crematogaster (Decacrema) ants that inhabits and defends Macaranga trees in Southeast Asia. Previous phylogenetic studies based on limited samplings of Decacrema present conflicting reconstructions of the evolutionary history of the association, inferring both cospeciation and the predominance of host shifts. We use cytochrome oxidase I (COI) to reconstruct phylogenetic relationships in a comprehensive sampling of the Decacrema inhabitants of Macaranga. Using a published Macaranga phylogeny, we test whether the ants and plants have cospeciated. The COI phylogeny reveals 10 well-supported lineages and an absence of cospeciation. Host shifts, however, have been constrained by stem traits that are themselves correlated with Macaranga phylogeny. Earlier lineages of Decacrema exclusively inhabit waxy stems, a basal state in the Pachystemon clade within Macaranga, whereas younger species of Pachystemon, characterized by nonwaxy stems, are inhabited only by younger lineages of Decacrema. Despite the absence of cospeciation, the correlated succession of stem texture in both phylogenies suggests that Decacrema and Pachystemon have diversified in association, or codiversified. Subsequent to the colonization of the Pachystemon clade, Decacrema expanded onto a second clade within Macaranga, inducing the development of myrmecophytism in the Pruinosae group. Confinement to the aseasonal wet climate zone of western Malesia suggests myrmecophytic Macaranga are no older than the wet forest community in Southeast Asia, estimated to be about 20 million years old (early Miocene). Our calculation of COI divergence rates from several published arthropod studies that relied on tenable calibrations indicates a generally conserved rate of approximately 1.5% per million years. Applying this rate to a rate-smoothed Bayesian chronogram of the ants, the Decacrema from Macaranga are inferred to be at least 12 million years old (mid-Miocene). However, using the extremes of rate variation in COI produces an age as recent as 6 million years. Our inferred timeline based on 1.5% per million years concurs with independent biogeographical events in the region reconstructed from palynological data, thus suggesting that the evolutionary histories of Decacrema and their Pachystemon hosts have been contemporaneous since the mid-Miocene. The evolution of myrmecophytism enabled Macaranga to radiate into enemy-free space, while the ants' diversification has been shaped by stem traits, host specialization, and geographic factors. We discuss the possibility that the ancient and exclusive association between Decacrema and Macaranga was facilitated by an impoverished diversity of myrmecophytes and phytoecious (obligately plant inhabiting) ants in the region.
    Matched MeSH terms: Symbiosis*
  16. Perrineau MM, Le Roux C, Galiana A, Faye A, Duponnois R, Goh D, et al.
    Appl Environ Microbiol, 2014 Sep;80(18):5709-16.
    PMID: 25002434 DOI: 10.1128/AEM.02007-14
    Introducing nitrogen-fixing bacteria as an inoculum in association with legume crops is a common practice in agriculture. However, the question of the evolution of these introduced microorganisms remains crucial, both in terms of microbial ecology and agronomy. We explored this question by analyzing the genetic and symbiotic evolution of two Bradyrhizobium strains inoculated on Acacia mangium in Malaysia and Senegal 15 and 5 years, respectively, after their introduction. Based on typing of several loci, we showed that these two strains, although closely related and originally sampled in Australia, evolved differently. One strain was recovered in soil with the same five loci as the original isolate, whereas the symbiotic cluster of the other strain was detected with no trace of the three housekeeping genes of the original inoculum. Moreover, the nitrogen fixation efficiency was variable among these isolates (either recombinant or not), with significantly high, low, or similar efficiencies compared to the two original strains and no significant difference between recombinant and nonrecombinant isolates. These data suggested that 15 years after their introduction, nitrogen-fixing bacteria remain in the soil but that closely related inoculant strains may not evolve in the same way, either genetically or symbiotically. In a context of increasing agronomical use of microbial inoculants (for biological control, nitrogen fixation, or plant growth promotion), this result feeds the debate on the consequences associated with such practices.
    Matched MeSH terms: Symbiosis*
  17. Nurul-Laila S, Chai KS, Liza-Sharmini AT, Shatriah I
    Case Rep Ophthalmol Med, 2017;2017:1087821.
    PMID: 28546880 DOI: 10.1155/2017/1087821
    Kingella kingae had rarely been reported as a causative organism for corneal ulcer and had not been described before in vernal keratoconjunctivitis (VKC). Generally regarded as commensals of respiratory tract particularly in young children, it had however been isolated from the corneal ulcer scraping of both adult and children. We report a case of bacterial ulcer with isolation of Kingella kingae from the corneal scraping in a young child with underlying VKC.
    Matched MeSH terms: Symbiosis
  18. Nagymihály M, Vásarhelyi BM, Barrière Q, Chong TM, Bálint B, Bihari P, et al.
    Stand Genomic Sci, 2017;12:75.
    PMID: 29255570 DOI: 10.1186/s40793-017-0298-3
    Strain CCMM B554, also known as FSM-MA, is a soil dwelling and nodule forming, nitrogen-fixing bacterium isolated from the nodules of the legume Medicago arborea L. in the Maamora Forest, Morocco. The strain forms effective nitrogen fixing nodules on species of the Medicago, Melilotus and Trigonella genera and is exceptional because it is a highly effective symbiotic partner of the two most widely used accessions, A17 and R108, of the model legume Medicago truncatula Gaertn. Based on 16S rRNA gene sequence, multilocus sequence and average nucleotide identity analyses, FSM-MA is identified as a new Ensifer meliloti strain. The genome is 6,70 Mbp and is comprised of the chromosome (3,64 Mbp) harboring 3574 predicted genes and two megaplasmids, pSymA (1,42 Mbp) and pSymB (1,64 Mbp) with respectively 1481 and 1595 predicted genes. The average GC content of the genome is 61.93%. The FSM-MA genome structure is highly similar and co-linear to other E. meliloti strains in the chromosome and the pSymB megaplasmid while, in contrast, it shows high variability in the pSymA plasmid. The large number of strain-specific sequences in pSymA as well as strain-specific genes on pSymB involved in the biosynthesis of the lipopolysaccharide and capsular polysaccharide surface polysaccharides may encode novel symbiotic functions explaining the high symbiotic performance of FSM-MA.
    Matched MeSH terms: Symbiosis
  19. Moi IM, Roslan NN, Leow ATC, Ali MSM, Rahman RNZRA, Rahimpour A, et al.
    Appl Microbiol Biotechnol, 2017 Jun;101(11):4371-4385.
    PMID: 28497204 DOI: 10.1007/s00253-017-8300-y
    Photobacterium species are Gram-negative coccobacilli which are distributed in marine habitats worldwide. Some species are unique because of their capability to produce luminescence. Taxonomically, about 23 species and 2 subspecies are validated to date. Genomes from a few Photobacterium spp. have been sequenced and studied. They are considered a special group of bacteria because some species are capable of producing essential polyunsaturated fatty acids, antibacterial compounds, lipases, esterases and asparaginases. They are also used as biosensors in food and environmental monitoring and detectors of drown victim, as well as an important symbiont.
    Matched MeSH terms: Symbiosis
  20. Miler K, Yahya BE, Czarnoleski M
    Behav Processes, 2017 Nov;144:1-4.
    PMID: 28843392 DOI: 10.1016/j.beproc.2017.08.010
    Some ants display rescue behaviour, which is performed by nearby nestmates and directed at individuals in danger. Here, using several ant species, we demonstrate that rescue behaviour expression matches predicted occurrences based on certain aspects of species' ecological niches. Rescue occurred in sand-dwelling ants exposed both to co-occurring antlion larvae, representing the threat of being captured by a predator, and to nest cave-ins, representing the threat of being trapped in a collapsed nest chamber. Rescue also occurred in forest groundcover ants exposed to certain entrapment situations. However, rescue never occurred in species associated with open plains, which nest in hardened soils and forage largely on herbaceous plants, or in ants living in close mutualistic relationships with their host plants. In addition, because we tested each species in two types of tests, antlion larva capture tests and artificial entrapment tests, we highlight the importance of accounting for test context in studying rescue behaviour expression.
    Matched MeSH terms: Symbiosis/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links