Displaying publications 1 - 20 of 792 in total

Abstract:
Sort:
  1. Merican MI, bin Yon R
    Asia Pac J Public Health, 2002;14(1):17-22.
    PMID: 12597513
    Health care reform is an intentional, sustained and systematic process of structural change to one or more health subsystems to improve efficiency, effectiveness, patient choices and equity. Health care all over the world is continuously reforming with time. Health care reform has become an increasingly important agenda for policy change in both developed and developing countries including Malaysia. This paper provides an overview of the Malaysian health care system, its achievements, and issues and challenges leading to ongoing reform towards a more efficient and equitable health care system that possess a better quality of life for the population.
    Matched MeSH terms: Technology Assessment, Biomedical
  2. Qazi HH, Mohammad AB, Ahmad H, Zulkifli MZ
    Sensors (Basel), 2016 Sep 15;16(9).
    PMID: 27649195 DOI: 10.3390/s16091505
    A D-shaped polarization-maintaining fiber (PMF) as fiber optic sensor for the simultaneous monitoring of strain and the surrounding temperature is presented. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of the PMF in order to fabricate a D-shaped cross-section. Experimental results show that the proposed sensor has high sensitivity of 46 pm/µε and 130 pm/°C for strain and temperature, respectively, which is significantly higher than other recently reported work (mainly from 2013) related to fiber optic sensors. The easy fabrication method, high sensitivity, and good linearity make this sensing device applicable in various applications such as health monitoring and spatial analysis of engineering structures.
    Matched MeSH terms: Fiber Optic Technology
  3. Umar IA, Mohd Hanapi Z, Sali A, Zulkarnain ZA
    Sensors (Basel), 2016 Jun 22;16(6).
    PMID: 27338411 DOI: 10.3390/s16060943
    Resource bound security solutions have facilitated the mitigation of spatio-temporal attacks by altering protocol semantics to provide minimal security while maintaining an acceptable level of performance. The Dynamic Window Secured Implicit Geographic Forwarding (DWSIGF) routing protocol for Wireless Sensor Network (WSN) has been proposed to achieve a minimal selection of malicious nodes by introducing a dynamic collection window period to the protocol's semantics. However, its selection scheme suffers substantial packet losses due to the utilization of a single distance based parameter for node selection. In this paper, we propose a Fuzzy-based Geographic Forwarding protocol (FuGeF) to minimize packet loss, while maintaining performance. The FuGeF utilizes a new form of dynamism and introduces three selection parameters: remaining energy, connectivity cost, and progressive distance, as well as a Fuzzy Logic System (FLS) for node selection. These introduced mechanisms ensure the appropriate selection of a non-malicious node. Extensive simulation experiments have been conducted to evaluate the performance of the proposed FuGeF protocol as compared to DWSIGF variants. The simulation results show that the proposed FuGeF outperforms the two DWSIGF variants (DWSIGF-P and DWSIGF-R) in terms of packet delivery.
    Matched MeSH terms: Wireless Technology
  4. M. Hamid Ch, M. Ashraf, Qudsia Hamid, Syed Mansoor Sarwar, Zulfiqar Ahmad Saqib
    Sains Malaysiana, 2017;46:413-420.
    Remote Sensing (RS) and Geographical Information Systems (GIS) are widely used for change detection in rivers caused
    by erosion and accretion. Digital image processing techniques and GIS analysis capabilities are used for detecting
    temporal variations of erosion and accretion characteristics between the years 1999 and 2011 in a 40 km long Marala
    Alexandria reach of River Chenab. Landsat satellite images for the years 1999, 2007 and 2011 were processed to analyze
    the river channel migration, changes in the river width and the rate of erosion and accretion. Analyses showed that the
    right bank was under erosion in both time spans, however high rate of deposition is exhibited in middle reaches. The
    maximum erosion was 1569843 m2
    and 1486160 m2
    along the right bank at a distance of 24-28 km downstream of the
    Marala barrage in the time span of 1999-2007 and 2007-2011, respectively. Along right bank mainly there is trend of
    accretion but erosion is much greater between 20 and 28 km reach. Maximum accretion was 5144584 m2
    from 1999-2007
    and 2950110 m2
    from 2007-2011 on the right bank downstream of the Marala Barrage. The derived results of channel
    migration were validated by comparing with SRTM data to assess the accuracy of image classification. Integration of remote
    sensing data with GIS is efficient and economical technique to assess land losses and channel changes in large rivers.
    Matched MeSH terms: Remote Sensing Technology
  5. Mohd Muzammil Salahuddin, Zulfa Hanan Ashaari
    MyJurnal
    The use of remote sensing in detecting aerosol or air pollution is not widely applied in Malaysia. The large area of coverage provided by remote sensing satellite may well be the solution to the lack of spatial coverage by the local ground air quality monitoring stations. This article discusses the application of remote sensing instruments in air quality monitoring of Malaysia. The remote sensing data is validated using ground truths either from local ground air monitoring stations or the Aerosol Robotic Network (AERONET). The correlation between remote sensing is relatively good with R from 0.5 to 0.9 depending on the satellite used. The correlation is much improved using the mixed effects algorithm applied on MODIS Aerosol Optical Depth (AOD) data. Accuracy of predicted air quality data by remote sensing is generally tested using the Root Mean Squared Error (RMSE) against the ground truths data. Besides the Geographic Information System (GIS) tools are used in manipulating the data from both remote sensing and ground stations so as to produce meaningful results such as spatio-temporal pattern mapping of air pollution. Overall the results showed that the application of remote sensing instruments in air quality monitoring in Malaysia is very useful and can be improved further.
    Matched MeSH terms: Remote Sensing Technology
  6. Aburas, Maher Milad, Sabrina Ho Abdullah, Mohammad Firuz Ramli, Zulfa Hanan Ash'aari
    MyJurnal
    Remote sensing and geographic information system techniques are significant and popular approaches that have been used in recent years to measure and map urban growth patterns. This paper primarily aims to provide a basis for a literature review of urban growth measurement and mapping by using different methods. For this purpose, the general characteristics of measuring and mapping urban growth patterns are described and classified. The strengths and weaknesses of the various methods have been identified from an analysis and discussion of the characteristics of the techniques. Results of reviews confirm that combining quantitative and qualitative techniques, such as Shannon approach and change detection, to measure and map urban growth patterns will improve understanding of the phenomenon of urban growth. Moreover, using social and economic data such as population and income data will improve understanding of the relationships between causes and effects. The integration of social and economic factors with quantitative and qualitative techniques will contribute to a perfect evaluation of urban growth patterns and land use changes, taking technical, social, economic, spatial, and temporal factors into account.
    Matched MeSH terms: Remote Sensing Technology
  7. Al-Mekhlafi ZG, Hanapi ZM, Othman M, Zukarnain ZA
    PLoS One, 2017;12(1):e0167423.
    PMID: 28056020 DOI: 10.1371/journal.pone.0167423
    Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs.
    Matched MeSH terms: Wireless Technology/instrumentation*
  8. Schepaschenko D, Chave J, Phillips OL, Lewis SL, Davies SJ, Réjou-Méchain M, et al.
    Sci Data, 2019 10 10;6(1):198.
    PMID: 31601817 DOI: 10.1038/s41597-019-0196-1
    Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.
    Matched MeSH terms: Remote Sensing Technology*
  9. Shameli K, Bin Ahmad M, Jaffar Al-Mulla EA, Ibrahim NA, Shabanzadeh P, Rustaiyan A, et al.
    Molecules, 2012 Jul 16;17(7):8506-17.
    PMID: 22801364 DOI: 10.3390/molecules17078506
    Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extract has been reported. Characterizations of nanoparticles were done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDXF) spectrometry, zeta potential measurements and Fourier transform infrared (FT-IR) spectroscopy. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 456 nm. The TEM study showed that mean diameter and standard deviation for the formation of silver nanoparticles were 12.40 ± 3.27 nm. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The most needed outcome of this work will be the development of value added products from Callicarpa maingayi for biomedical and nanotechnology based industries.
    Matched MeSH terms: Green Chemistry Technology/methods*
  10. Alam I, Shichang L, Muneer S, Alshammary KM, Zia Ur Rehman M
    PLoS One, 2024;19(3):e0298545.
    PMID: 38507420 DOI: 10.1371/journal.pone.0298545
    Advances in financial inclusions have contributed to economic growth and poverty alleviation, addressing environmental implications and implementing measures to mitigate climate change. Financial inclusions force advanced countries to progress their policies in a manner that does not hinder developing countries' current and future development. Consequently, this research examined the asymmetric effects of information and communication technology (ICT), financial inclusion, consumption of primary energy, employment to population ratio, and human development index on CO2 emissions in oil-producing countries (UAE, Nigeria, Russia, Saudi Arabia, Norway, Kazakhstan, Kuwait, Iraq, USA, and Canada). The study utilizes annual panel data spanning from 1990 to 2021. In addition, this study investigates the validity of the Environmental Kuznets Curve (EKC) trend on the entire sample, taking into account the effects of energy consumption and population to investigate the impact of financial inclusion on environmental degradation. The study used quantile regression, FMOLS, and FE-OLS techniques. Preliminary outcomes revealed that the data did not follow a normal distribution, emphasizing the need to use quantile regression (QR). This technique can effectively detect outliers, data non-normality, and structural changes. The outcomes from the quantile regression analysis indicate that ICT consistently reduces CO2 emissions in all quantiles (ranging from the 1st to the 9th quantile). In the same way, financial inclusion, and employment to population ratio constrains CO2 emissions across each quantile. On the other side, primary energy consumption and Human development index were found to increase CO2 emissions in each quantile (1st to 9th). The findings of this research have implications for both the academic and policy domains. By unraveling the intricate interplay between financial inclusion, ICT, and environmental degradation in oil-producing nations, the study contributes to a nuanced understanding of sustainable development challenges. Ultimately, the research aims to guide the formulation of targeted policies that leverage financial inclusion and technology to foster environmentally responsible economic growth in oil-dependent economies.
    Matched MeSH terms: Technology
  11. Fang J, Liu C, Law CL, Mujumdar AS, Xiao HW, Zhang C
    Crit Rev Food Sci Nutr, 2023;63(27):8720-8736.
    PMID: 35389273 DOI: 10.1080/10408398.2022.2059440
    Heat processing is one of the most efficient strategies used in food industry to improve quality and prolong shelf life. However, conventional processing methods such as microwave heating, burning charcoal treatment, boiling, and frying are energy-inefficient and often lead to inferior product quality. Superheated steam (SHS) is an innovative technology that offers many potential benefits to industry and is increasingly used in food industry. Compared to conventional processing methods, SHS holds higher heat transfer coefficients, which can reduce microorganisms on surface of foodstuffs efficiently. Additionally, SHS generates a low oxygen environment, which prevents lipid oxidation and harmful compounds generation. Furthermore, SHS can facilitate development of desired product quality, such as protein denaturation with functional characteristics, proper starch gelatinization, and can also reduce nutrient loss, and improve the physicochemical properties of foodstuffs. The current work provides a comprehensive review of the impact of SHS on the nutritional, physicochemical, and safety properties of various foodstuffs including meat, fruits, and vegetables, cereals, etc. Additionally, it also provides food manufacturers and researchers with basic knowledge and practical techniques for SHS processing of foodstuffs, which may improve the current scope of SHS and transfer current food systems to a healthy and sustainable one.
    Matched MeSH terms: Technology
  12. Shameli K, Ahmad MB, Zamanian A, Sangpour P, Shabanzadeh P, Abdollahi Y, et al.
    Int J Nanomedicine, 2012;7:5603-10.
    PMID: 23341739 DOI: 10.2147/IJN.S36786
    Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries.
    Matched MeSH terms: Green Chemistry Technology/methods*
  13. Soliman MM, Chowdhury MEH, Khandakar A, Islam MT, Qiblawey Y, Musharavati F, et al.
    Sensors (Basel), 2021 May 02;21(9).
    PMID: 34063296 DOI: 10.3390/s21093163
    Implantable antennas are mandatory to transfer data from implants to the external world wirelessly. Smart implants can be used to monitor and diagnose the medical conditions of the patient. The dispersion of the dielectric constant of the tissues and variability of organ structures of the human body absorb most of the antenna radiation. Consequently, implanting an antenna inside the human body is a very challenging task. The design of the antenna is required to fulfill several conditions, such as miniaturization of the antenna dimension, biocompatibility, the satisfaction of the Specific Absorption Rate (SAR), and efficient radiation characteristics. The asymmetric hostile human body environment makes implant antenna technology even more challenging. This paper aims to summarize the recent implantable antenna technologies for medical applications and highlight the major research challenges. Also, it highlights the required technology and the frequency band, and the factors that can affect the radio frequency propagation through human body tissue. It includes a demonstration of a parametric literature investigation of the implantable antennas developed. Furthermore, fabrication and implantation methods of the antenna inside the human body are summarized elaborately. This extensive summary of the medical implantable antenna technology will help in understanding the prospects and challenges of this technology.
    Matched MeSH terms: Wireless Technology
  14. Goudarzi S, Haslina Hassan W, Abdalla Hashim AH, Soleymani SA, Anisi MH, Zakaria OM
    PLoS One, 2016;11(7):e0151355.
    PMID: 27438600 DOI: 10.1371/journal.pone.0151355
    This study aims to design a vertical handover prediction method to minimize unnecessary handovers for a mobile node (MN) during the vertical handover process. This relies on a novel method for the prediction of a received signal strength indicator (RSSI) referred to as IRBF-FFA, which is designed by utilizing the imperialist competition algorithm (ICA) to train the radial basis function (RBF), and by hybridizing with the firefly algorithm (FFA) to predict the optimal solution. The prediction accuracy of the proposed IRBF-FFA model was validated by comparing it to support vector machines (SVMs) and multilayer perceptron (MLP) models. In order to assess the model's performance, we measured the coefficient of determination (R2), correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE). The achieved results indicate that the IRBF-FFA model provides more precise predictions compared to different ANNs, namely, support vector machines (SVMs) and multilayer perceptron (MLP). The performance of the proposed model is analyzed through simulated and real-time RSSI measurements. The results also suggest that the IRBF-FFA model can be applied as an efficient technique for the accurate prediction of vertical handover.
    Matched MeSH terms: Wireless Technology*
  15. Zulkifley MA, Behjati M, Nordin R, Zakaria MS
    Sensors (Basel), 2021 Apr 18;21(8).
    PMID: 33919486 DOI: 10.3390/s21082848
    Conventional and license-free radio-controlled drone activities are limited to a line-of-sight (LoS) operational range. One of the alternatives to operate the drones beyond the visual line-of-sight (BVLoS) range is replacing the drone wireless communications system from the conventional industrial, scientific, and medical (ISM) radio band to a licensed cellular-connected system. The Long Term Evolution (LTE) technology that has been established for the terrestrial area allows command-and-control and payload communications between drone and ground station in real-time. However, with increasing height above the ground, the radio environment changes, and utilizing terrestrial cellular networks for drone communications may face new challenges. In this regard, this paper aims to develop an LTE-based control system prototype for low altitude small drones and investigate the feasibility and performance of drone cellular connectivity at different altitudes with measuring parameters such as latency, handover, and signal strength. The measurement results have shown that by increasing flight height from ground to 170 m the received signal power and the signal quality levels were reduced by 20 dBm and 10 dB respectively, the downlink data rate decreased to 70%, and latency increased up to 94 ms. It is concluded that although the existing LTE network can provide a minimum requirement for drone cellular connectivity, further improvements are still needed to enhance aerial coverage, eliminate interference, and reduce network latency.
    Matched MeSH terms: Technology
  16. Abd Majid M, Zainol Ariffin KA
    PLoS One, 2021;16(11):e0260157.
    PMID: 34797896 DOI: 10.1371/journal.pone.0260157
    Cyberattacks have changed dramatically and have become highly advanced. This latest phenomenon has a massive negative impact on organizations, such as financial losses and shutting-down of operations. Therefore, developing and implementing the Cyber Security Operations Centre (SOC) is imperative and timely. Based on previous research, there are no international guidelines and standards used by organizations that can contribute to the successful implementation and development of SOC. In this regard, this study focuses on highlighting the significant factors that will impact and contribute to the success of SOC. Simultaneously, it will further design a model for the successful development and implementation of SOC for the organization. The study was conducted quantitatively and involved 63 respondents from 25 ministries and agencies in Malaysia. The results of this study will enable the retrieval of ten success factors for SOC, and it specifically focuses on humans, processes, and technology. The descriptive analysis shows that the top management support factor is the most influential factor in the success of the development and implementation of SOC. The study also contributes to the empirical finding that technology and process factors are more significant in the success of SOCs. Based on the regression test, the technology factor has major impact on determining the success of SOC, followed by the process and human factors. Relevant organizations or agencies can use the proposed model to develop and implement SOCs, formulate policies and guidelines, strengthen human models, and enhance cyber security.
    Matched MeSH terms: Technology/legislation & jurisprudence
  17. Isha A, Yusof NA, Ahmad M, Suhendra D, Yunus WM, Zainal Z
    Spectrochim Acta A Mol Biomol Spectrosc, 2007 Aug;67(5):1398-402.
    PMID: 17141557
    Fatty hydroxamic acid (FHA) immobilized in polyvinyl chloride (PVC) has been studied as a sensor element of an optical fibre chemical sensor for V(V). By using this instrument, V(V) in solution has been determined in the log concentration range of 0-2.5 (i.e. 1.0-300 mg/L). The detection limit was 1.0 mg/L. The relative standard deviation (R.S.D.) of the method for the reproducibility study at V(V) concentration of 200 mg/L and 300 mg/L were calculated to be 2.9% and 2.0%, respectively. Interference from foreign ions was also studied at 1:1 mole ratio of V(V):foreign ions. It was found that, Fe(III) ion interfered most in the determination of vanadium(V). Excellent agreement with ICP-AES method was achieved when the proposed method was applied towards determination of V(V).
    Matched MeSH terms: Fiber Optic Technology/instrumentation*
  18. Usubamatov, R., Qasim, A.Y., Zain, Z.M.
    MyJurnal
    Wind energy has often been touted as one of the most reliable sources of renewable energy that should be used for people. Today, wind energy (mainly by propeller type wind turbines) produces less than one percent of the total energy used worldwide. Practically, a standard three-blade propellers efficiency of use of the wind energy is around twenty percents and this is due to its design and shape that use the wind lift force and a rotating turbine. In addition, these turbines are quite expensive due to the complex aerodynamic shape of the propellers which are made of composite materials. The new world boom for wind turbines obliges inventors to create new wind turbine designs that have high efficiency and are better than any known design. This paper proposes the new patented invention of the vane-type wind turbine which uses wind energy more efficiently and is only dependent on the acting area of the vanes. The vane wind turbine was designed to increase the output of a wind turbine that uses kinetic energy of the wind. Due to its high efficiency, simple construction and technology, the vane wind turbine can be used universally, apart from the fact that it is made from cheap materials. The new design of the vane-type wind turbine has quite small sizes than the propeller type one of same output power.
    Matched MeSH terms: Technology
  19. Khor HL, Liew SC, Zain JM
    Int J Biomed Imaging, 2016;2016:9583727.
    PMID: 26981111 DOI: 10.1155/2016/9583727
    With the advancement of technology in communication network, it facilitated digital medical images transmitted to healthcare professionals via internal network or public network (e.g., Internet), but it also exposes the transmitted digital medical images to the security threats, such as images tampering or inserting false data in the images, which may cause an inaccurate diagnosis and treatment. Medical image distortion is not to be tolerated for diagnosis purposes; thus a digital watermarking on medical image is introduced. So far most of the watermarking research has been done on single frame medical image which is impractical in the real environment. In this paper, a digital watermarking on multiframes medical images is proposed. In order to speed up multiframes watermarking processing time, a parallel watermarking processing on medical images processing by utilizing multicores technology is introduced. An experiment result has shown that elapsed time on parallel watermarking processing is much shorter than sequential watermarking processing.
    Matched MeSH terms: Technology
  20. Yu H, Zahidi I
    Sci Total Environ, 2023 Mar 15;864:161135.
    PMID: 36566867 DOI: 10.1016/j.scitotenv.2022.161135
    The over-exploitation of mineral resources has led to increasingly serious dust pollution in mines, resulting in a series of negative impacts on the environment, mine workers (occupational health) and nearby residents (public health). For the environment, mine dust pollution is considered a major threat on surface vegetation, landscapes, weather conditions and air quality, leading to serious environmental damage such as vegetation reduction and air pollution; for occupational health, mine dust from the mining process is also regarded as a major threat to mine workers' health, leading to occupational diseases such as pneumoconiosis and silicosis; for public health, the pollutants contained in mine dust may pollute surrounding rivers, farmlands and crops, which poses a serious risk to the domestic water and food security of nearby residents who are also susceptible to respiratory diseases from exposure to mine dust. Therefore, the second section of this paper combines literature research, statistical studies, and meta analysis to introduce the public mainly to the severity of mine dust pollution and its hazards to the environment, mine workers (occupational health), and residents (public health), as well as to present an outlook on the management of mine dust pollution. At the same time, in order to propose a method for monitoring mine dust pollution on a regional scale, based on the Dense Dark Vegetation (DDV) algorithm, the third section of this paper analysed the aerosol optical depth (AOD) change in Dexing City of China using the data of 2010, 2014, 2018 and 2021 from the NASA MCD19A2 Dataset to explore the mine dust pollution situation and the progress of pollution treatment in Dexing City from 2010 to 2021. As a discussion article, this paper aims to review the environmental and health risks caused by mine dust pollution, to remind the public to take mine dust pollution seriously, and to propose the use of remote sensing technologies to monitor mine dust pollution, providing suggestions for local governments as well as mines on mine dust monitoring measures.
    Matched MeSH terms: Remote Sensing Technology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links