Displaying publications 1 - 20 of 300 in total

Abstract:
Sort:
  1. Bang LT, Ramesh S, Purbolaksono J, Long BD, Chandran H, Ramesh S, et al.
    Biomed Mater, 2015 Aug;10(4):045011.
    PMID: 26225725 DOI: 10.1088/1748-6041/10/4/045011
    Interconnected porous tricalcium phosphate ceramics are considered to be potential bone substitutes. However, insufficient mechanical properties when using tricalcium phosphate powders remain a challenge. To mitigate these issues, we have developed a new approach to produce an interconnected alpha-tricalcium phosphate (α-TCP) scaffold and to perform surface modification on the scaffold with a composite layer, which consists of hybrid carbonate apatite / poly-epsilon-caprolactone (CO3Ap/PCL) with enhanced mechanical properties and biological performance. Different CO3Ap combinations were tested to evaluate the optimal mechanical strength and in vitro cell response of the scaffold. The α-TCP scaffold coated with CO3Ap/PCL maintained a fully interconnected structure with a porosity of 80% to 86% and achieved an improved compressive strength mimicking that of cancellous bone. The addition of CO3Ap coupled with the fully interconnected microstructure of the α-TCP scaffolds coated with CO3Ap/PCL increased cell attachment, accelerated proliferation and resulted in greater alkaline phosphatase (ALP) activity. Hence, our bone substitute exhibited promising potential for applications in cancellous bone-type replacement.
    Matched MeSH terms: Tensile Strength
  2. Khan MUA, Raza MA, Razak SIA, Abdul Kadir MR, Haider A, Shah SA, et al.
    J Tissue Eng Regen Med, 2020 10;14(10):1488-1501.
    PMID: 32761978 DOI: 10.1002/term.3115
    It is a challenging task to develop active biomacromolecular wound dressing materials that are biocompatible and possesses antibacterial properties against the bacterial strains that cause severe skin disease. This work is focused on the preparation of a biocompatible and degradable hydrogel for wound dressing application using arabinoxylan (ARX) and guar gum (GG) natural polymers. Fourier transform infrared spectroscopy (FT-IR) confirmed that both ARX and GG interacted well with each other, and their interactions further increased with the addition of crosslinker tetraethyl orthosilicate. Scanning electron microscope (SEM) micrographs showed uniform porous morphologies of the hydrogels. The porous morphologies and uniform interconnected pores are attributed to the increased crosslinking of the hydrogel. Elastic modulus, tensile strength, and fracture strain of the hydrogels significantly improved (from ATG-1 to ATG-4) with crosslinking. Degradability tests showed that hydrogels lost maximum weight in 7 days. All the samples showed variation in swelling with pH. Maximum swelling was observed at pH 7. The hydrogel samples showed good antibacterial activity against Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) in PBS, good drug release profile (92% drug release), and nontoxic cellular behavior. The cells not only retained their cylindrical morphologies onto the hydrogel but were also performing their normal activities. It is, therefore, believed that as-developed hydrogel could be a potential material for wound dressing application.
    Matched MeSH terms: Tensile Strength
  3. Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA, Namvar F
    Int J Nanomedicine, 2014;9:1909-17.
    PMID: 24790433 DOI: 10.2147/IJN.S60274
    A series of novel bionanocomposites were cast using different contents of zinc oxide-silver nanoparticles (ZnO-AgNPs) stabilized by cellulose nanocrystals (CNC) as multifunctional nanosized fillers in poly(vinyl alcohol)/chitosan (PVA/Cs) matrices. The morphological structure, mechanical properties, ultraviolet-visible absorption, and antimicrobial properties of the prepared films were investigated as a function of their CNC/ZnO-AgNP content and compared with PVA/chitosan/CNC bionanocomposite films. X-ray diffraction and field emission scanning electron microscopic analyses showed that the CNC/ZnO-AgNPs were homogeneously dispersed in the PVA/Cs matrix and the crystallinity increased with increasing nanosized filler content. Compared with pure PVA/Cs, the tensile strength and modulus in the films increased from 0.055 to 0.205 GPa and from 0.395 to 1.20 GPa, respectively. Ultraviolet and visible light can be efficiently absorbed by incorporating ZnO-AgNPs into a PVA/Cs matrix, suggesting that these bionanocomposite films show good visibility and ultraviolet-shielding effects. The bionanocomposite films had excellent antimicrobial properties, killing both Gram-negative Salmonella choleraesuis and Gram-positive Staphylococcus aureus. The enhanced physical properties achieved by incorporating CNC/ZnO-AgNPs could be beneficial in various applications.
    Matched MeSH terms: Tensile Strength
  4. Eng CC, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WM
    ScientificWorldJournal, 2014;2014:213180.
    PMID: 25254230 DOI: 10.1155/2014/213180
    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.
    Matched MeSH terms: Tensile Strength
  5. Ujang Z, Abdul Rashid AH, Suboh SK, Halim AS, Lim CK
    J Appl Biomater Funct Mater, 2014 Dec 30;12(3):155-62.
    PMID: 24700269 DOI: 10.5301/jabfm.5000190
    BACKGROUND: The physical and biological characteristics of oligochitosan (O-C) film, including its barrier and mechanical properties, in vitro cytotoxicity and in vivo biocompatibility, were studied to assess its potential use as a wound dressing.

    METHODS: Membrane films were prepared from water-soluble O-C solution blended with various concentrations of glycerol to modify the physical properties of the films. In vitro and in vivo biocompatibility evaluations were performed using primary human skin fibroblast cultures and subcutaneous implantation in a rat model, respectively.

    RESULTS: Addition of glycerol significantly influenced the barrier and mechanical properties of the films. Water absorption capacity was in the range of 80%-160%, whereas water vapor transmission rate varied from 1,180 to 1,618 g/m2 per day. Both properties increased with increasing glycerol concentration. Tensile strength decreased while elongation at break increased with the addition of glycerol. O-C films were found to be noncytotoxic to human fibroblast cultures and histological examination proved that films are biocompatible.

    CONCLUSION: These results indicate that the membrane film from O-C has potential application as a wound-dressing material.

    Matched MeSH terms: Tensile Strength
  6. Baharuddin MY, Salleh ShH, Hamedi M, Zulkifly AH, Lee MH, Mohd Noor A, et al.
    Biomed Res Int, 2014;2014:478248.
    PMID: 24800230 DOI: 10.1155/2014/478248
    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing.
    Matched MeSH terms: Tensile Strength
  7. Siyamak S, Ibrahim NA, Abdolmohammadi S, Yunus WM, Rahman MZ
    Molecules, 2012 Feb 16;17(2):1969-91.
    PMID: 22343368 DOI: 10.3390/molecules17021969
    In this work, the oil palm empty fruit bunch (EFB) fiber was used as a source of lignocellulosic filler to fabricate a novel type of cost effective biodegradable composite, based on the aliphatic aromatic co-polyester poly(butylene adipate-co-terephtalate) PBAT (Ecoflex™), as a fully biodegradable thermoplastic polymer matrix. The aim of this research was to improve the new biocomposites' performance by chemical modification using succinic anhydride (SAH) as a coupling agent in the presence and absence of dicumyl peroxide (DCP) and benzoyl peroxide (BPO) as initiators. For the composite preparation, several blends were prepared with varying ratios of filler and matrix using the melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 (wt %) and characterized. The effects of fiber loading and coupling agent loading on the thermal properties of biodegradable polymer composites were evaluated using thermal gravimetric analysis (TGA). Scanning Electron Microscopy (SEM) was used for morphological studies. The chemical structure of the new biocomposites was also analyzed using the Fourier Transform Infrared (FTIR) spectroscopy technique. The PBAT biocomposite reinforced with 40 (wt %) of EFB fiber showed the best mechanical properties compared to the other PBAT/EFB fiber biocomposites. Biocomposite treatment with 4 (wt %) succinic anhydride (SAH) and 1 (wt %) dicumyl peroxide (DCP) improved both tensile and flexural strength as well as tensile and flexural modulus. The FTIR analyses proved the mechanical test results by presenting the evidence of successful esterification using SAH/DCP in the biocomposites' spectra. The SEM micrograph of the tensile fractured surfaces showed the improvement of fiber-matrix adhesion after using SAH. The TGA results showed that chemical modification using SAH/DCP improved the thermal stability of the PBAT/EFB biocomposite.
    Matched MeSH terms: Tensile Strength
  8. Maizura M, Fazilah A, Norziah MH, Karim AA
    J Food Sci, 2007 Aug;72(6):C324-30.
    PMID: 17995673
    Edible films were prepared from a mixture of partially hydrolyzed sago starch and alginate (SA). Lemongrass oil (0.1% to 0.4%, v/w) and glycerol (0% and 20%, w/w) were incorporated in the films to act as natural antimicrobial agent and plasticizer, respectively. The films were characterized for antimicrobial activity, water vapor permeability (WVP), tensile strength (TS), percent elongation at break (%E), and water solubility (WS). Fourier transform infrared (FTIR) spectroscopy was conducted to determine functional group interactions between the matrix and lemongrass oil. The zone of inhibition was increased significantly (P < 0.05) by addition of lemongrass oil at all levels in the presence and the absence of glycerol. This indicates that the film containing lemongrass oil was effective against Escherichia coli O157:H7 at all levels. In the absence of glycerol, the tensile strength of film decreased as the oil content increased, but there was no significant (P > 0.05) difference in percent elongation. The percent elongation at break and WVP values for film with 20% glycerol was found to be increased significantly (P < 0.05) with an increase in lemongrass oil content. Addition of lemongrass oil did not have any interaction with the functional groups of films as measured by FTIR.
    Matched MeSH terms: Tensile Strength
  9. Tan HL, Nah SA, Budianto II, Sehat S, Tamba R
    J Pediatr Surg, 2012 Dec;47(12):2294-7.
    PMID: 23217892 DOI: 10.1016/j.jpedsurg.2012.09.022
    Octyl cyanoacrylate has been used for many years for simple skin closure, but its use in hypospadias repair and as a urethral stent fixator has not been previously reported. We report our experience.
    Matched MeSH terms: Tensile Strength
  10. Sulong MZ, Setchell DJ
    J Prosthet Dent, 1991 Dec;66(6):743-7.
    PMID: 1805022
    Adhesive bond strength studies for the tray adhesive of an addition vinyl polysiloxane (President) impression material were conducted with an acrylic resin, chromium-plated brass, and plastic trays. Tensile and shear stress studies were performed on the Instron Universal testing machine. Acrylic resin specimens roughened with 80-grit silicon carbide paper exhibited appreciably higher bond strengths compared with different types of tray material and methods of surface preparation.
    Matched MeSH terms: Tensile Strength
  11. Muthulakshmi L, Rajini N, Nellaiah H, Kathiresan T, Jawaid M, Rajulu AV
    Int J Biol Macromol, 2017 Feb;95:1064-1071.
    PMID: 27984140 DOI: 10.1016/j.ijbiomac.2016.09.114
    In the present work, copper nanoparticles (CuNPs) were in situ generated inside cellulose matrix using Terminalia catappa leaf extract as a reducing agent. During this process, some CuNPs were also formed outside the matrix. The CuNPs formed outside the matrix were observed with transmission electron microscope (TEM) and scanning electron microscope (SEM). Majority of the CuNPs formed outside the matrix were in the size range of 21-30nm. The cellulose/CuNP composite films were characterized by Fourier transform infrared spectroscopic, X-Ray diffraction and thermogravimetric techniques. The crystallinity of the cellulose/CuNP composite films was found to be lower than that of the matrix indicating rearrangement of cellulose molecules by in situ generated CuNPs. Further, the expanded diffractogram of the composite films indicated the presence of a mixture of Cu, CuO and Cu2O nanoparticles. The thermal stability of the composites was found to be lower than that of the composites upto 350°C beyond which a reverse trend was observed. This was attributed to the catalytic behaviour of CuNPs for early degradation of the composites. The composite films possessed sufficient tensile strength which can replace polymer packaging films like polyethylene. Further, the cellulose/CuNP composite films exhibited good antibacterial activity against E.coli bacteria.
    Matched MeSH terms: Tensile Strength
  12. Jiang H, Mani MP, Jaganathan SK
    Int J Nanomedicine, 2019;14:8149-8159.
    PMID: 31632024 DOI: 10.2147/IJN.S214646
    Introduction: Recently several new approaches were emerging in bone tissue engineering to develop a substitute for remodelling the damaged tissue. In order to resemble the native extracellular matrix (ECM) of the human tissue, the bone scaffolds must possess necessary requirements like large surface area, interconnected pores and sufficient mechanical strength.

    Materials and methods: A novel bone scaffold has been developed using polyurethane (PE) added with wintergreen (WG) and titanium dioxide (TiO2). The developed nanocomposites were characterized through field emission scanning electron microscopy (FESEM), Fourier transform and infrared spectroscopy (FTIR), X-ray diffraction (XRD), contact angle measurement, thermogravimetric analysis (TGA), atomic force microscopy (AFM) and tensile testing. Furthermore, anticoagulant assays, cell viability analysis and calcium deposition were used to investigate the biological properties of the prepared hybrid nanocomposites.

    Results: FESEM depicted the reduced fibre diameter for the electrospun PE/WG and PE/WG/TiO2 than the pristine PE. The addition of WG and TiO2 resulted in the alteration in peak intensity of PE as revealed in the FTIR. Wettability measurements showed the PE/WG showed decreased wettability and the PE/WG/TiO2 exhibited improved wettability than the pristine PE. TGA measurements showed the improved thermal behaviour for the PE with the addition of WG and TiO2. Surface analysis indicated that the composite has a smoother surface rather than the pristine PE. Further, the incorporation of WG and TiO2 improved the anticoagulant nature of the pristine PE. In vitro cytotoxicity assay has been performed using fibroblast cells which revealed that the electrospun composites showed good cell attachment and proliferation after 5 days. Moreover, the bone apatite formation study revealed the enhanced deposition of calcium content in the fabricated composites than the pristine PE.

    Conclusion: Fabricated nanocomposites rendered improved physico-chemical properties, biocompatibility and calcium deposition which are conducive for bone tissue engineering.

    Matched MeSH terms: Tensile Strength
  13. Liew KB, Tan YT, Peh KK
    Drug Dev Ind Pharm, 2014 Jan;40(1):110-9.
    PMID: 23311593 DOI: 10.3109/03639045.2012.749889
    Difficulty in swallowing tablets or capsules has been identified as one of the contributing factors to non-compliance of geriatric patients. Although orally disintegrating tablet was designed for fast disintegration in mouth, the fear of taking solid tablets and the risk of choking for certain patient populations still exist.
    Matched MeSH terms: Tensile Strength
  14. Khalajabadi SZ, Abu ABH, Ahmad N, Yajid MAM, Hj Redzuan NB, Nasiri R, et al.
    J Mech Behav Biomed Mater, 2018 Jan;77:360-374.
    PMID: 28985616 DOI: 10.1016/j.jmbbm.2017.09.032
    This study was aimed to improve of the corrosion resistance and mechanical properties of Mg/15TiO2/5HA nanocomposite by silicon and magnesium oxide coatings prepared using a powder metallurgy method. The phase evolution, chemical composition, microstructure and mechanical properties of uncoated and coated samples were characterized. Electrochemical and immersion tests used to investigate the in vitro corrosion behavior of the fabricated samples. The adhesion strength of ~36MPa for MgO and ~32MPa for Si/MgO coatings to substrate was measured by adhesion test. Fabrication a homogenous double layer coating with uniform thicknesses consisting micro-sized particles of Si as outer layer and flake-like particles of MgO as the inner layer on the surface of Mg/15TiO2/5HA nanocomposite caused the corrosion resistance and ductility increased whereas the ultimate compressive stress decreased. However, after immersion in SBF solution, Si/MgO-coated sample indicates the best mechanical properties compared to those of the uncoated and MgO-coated samples. The increase of cell viability percentage of the normal human osteoblast (NHOst) cells indicates the improvement in biocompatibility of Mg/15TiO2/5HA nanocomposite by Si/MgO coating.
    Matched MeSH terms: Tensile Strength
  15. Bhaskar HN, Udupa SL, Udupa AL
    Indian J Exp Biol, 2005 Mar;43(3):294-6.
    PMID: 15816421
    Effect of two calcium channel blockers (CCBs) nifedipine and amlodipine, was studied on normal and steroid depressed wound healing in albino rats, using the dead space wound model. The drugs enhanced normal healing as evidenced by increase in tensile strength of 10 days old granulation tissue. There was neither a significant change in the hydroxyproline level (or collagen) nor a change in the glycosaminoglycan content in granulation tissue. However, lysyloxidase level was increased significantly. The increase in tensile strength could thus be attributed to better cross-linking and maturation of collagen rather than collagen synthesis per se. The drugs were also able to overcome steroid depressed wound healing. It is likely that the prohealing effects may be related to the improved antioxidant status too, since superoxide dismutase levels were observed to be higher in the CCB- treated animals.
    Matched MeSH terms: Tensile Strength
  16. Asiri A, Saidin S, Sani MH, Al-Ashwal RH
    Sci Rep, 2021 Mar 11;11(1):5634.
    PMID: 33707606 DOI: 10.1038/s41598-021-85149-x
    In this study, single, mix, multilayer Polyvinyl alcohol (PVA) electrospun nanofibers with epidermal growth factor (EGF) and fibroblast growth factor (FGF) were fabricated and characterized as a biological wound dressing scaffolds. The biological activities of the synthesized scaffolds have been verified by in vitro and in vivo studies. The chemical composition finding showed that the identified functional units within the produced nanofibers (O-H and N-H bonds) are attributed to both growth factors (GFs) in the PVA nanofiber membranes. Electrospun nanofibers' morphological features showed long protrusion and smooth morphology without beads and sprayed with an average range of 198-286 nm fiber diameter. The fiber diameters decrement and the improvement in wettability and surface roughness were recorded after GFs incorporated within the PVA Nanofibers, which indicated potential good adoption as biological dressing scaffolds due to the identified mechanical properties (Young's modulus) in between 18 and 20 MPa. The MTT assay indicated that the growth factor release from the PVA nanofibers has stimulated cell proliferation and promoted cell viability. In the cell attachment study, the GFs incorporated PVA nanofibers stimulated cell proliferation and adhered better than the PVA control sample and presented no cytotoxic effect. The in vivo studies showed that compared to the control and single PVA-GFs nanofiber, the mix and multilayer scaffolds gave a much more wound reduction at day 7 with better wound repair at day 14-21, which indicated to enhancing tissue regeneration, thus, could be a projected as a suitable burn wound dressing scaffold.
    Matched MeSH terms: Tensile Strength
  17. Askari E, Mehrali M, Metselaar IH, Kadri NA, Rahman MM
    J Mech Behav Biomed Mater, 2012 Aug;12:144-50.
    PMID: 22732480 DOI: 10.1016/j.jmbbm.2012.02.029
    This study describes the synthesis of Al(2)O(3)/SiC/ZrO(2) functionally graded material (FGM) in bio-implants (artificial joints) by electrophoretic deposition (EPD). A suitable suspension that was based on 2-butanone was applied for the EPD of Al(2)O(3)/SiC/ZrO(2), and a pressureless sintering process was applied as a presintering. Hot isostatic pressing (HIP) was used to densify the deposit, with beneficial mechanical properties after 2 h at 1800 °C in Ar atmosphere. The maximum hardness in the outer layer (90 vol.% Al(2)O(3)+10 vol.% SiC) and maximum fracture toughness in the core layer (75 vol.% Al(2)O(3)+10 vol.% SiC + 15 vol.% ZrO(2)) composite were 20.8±0.3 GPa and 8±0.1 MPa m(1/2), respectively. The results, when compared with results from Al(2)O(3)/ZrO(2) FGM, showed that SiC increased the compressive stresses in the outer layers, while the inner layers were under a residual tensile stress.
    Matched MeSH terms: Tensile Strength
  18. Eili M, Shameli K, Ibrahim NA, Yunus WM
    Int J Mol Sci, 2012;13(7):7938-51.
    PMID: 22942682 DOI: 10.3390/ijms13077938
    Recent environmental problems and societal concerns associated with the disposal of petroleum based plastics throughout the world have triggered renewed efforts to develop new biodegradable products compatible with our environment. This article describes the preparation, characterization and biodegradation study of poly(lactic acid)/layered double hydroxide (PLA/LDH) nanocomposites from PLA and stearate-Zn(3)Al LDH. A solution casting method was used to prepare PLA/stearate-Zn(3)Al LDH nanocomposites. The anionic clay Zn(3)Al LDH was firstly prepared by co-precipitation method from a nitrate salt solution at pH 7.0 and then modified by stearate anions through an ion exchange reaction. This modification increased the basal spacing of the synthetic clay from 8.83 Å to 40.10 Å. The morphology and properties of the prepared PLA/stearate-Zn(3)Al LDH nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), thermogravimetric analysis (TGA), tensile tests as well as biodegradation studies. From the XRD analysis and TEM observation, the stearate-Zn(3)Al LDH lost its ordered stacking-structure and was greatly exfoliated in the PLA matrix. Tensile test results of PLA/stearate-Zn(3)Al LDH nanocomposites showed that the presence of around 1.0-3.0 wt % of the stearate-Zn(3)Al LDH in the PLA drastically improved its elongation at break. The biodegradation studies demonstrated a significant biodegradation rate improvement of PLA in the presence of stearate-Zn(3)Al LDH nanolayers. This effect can be caused by the catalytic role of the stearate groups in the biodegradation mechanism leading to much faster disintegration of nanocomposites than pure PLA.
    Matched MeSH terms: Tensile Strength
  19. Zainuddin Z, Wan Daud WR, Pauline O, Shafie A
    Bioresour Technol, 2011 Dec;102(23):10978-86.
    PMID: 21996481 DOI: 10.1016/j.biortech.2011.09.080
    In the organosolv pulping of the oil palm fronds, the influence of the operational variables of the pulping reactor (viz. cooking temperature and time, ethanol and NaOH concentration) on the properties of the resulting pulp (yield and kappa number) and paper sheets (tensile index and tear index) was investigated using a wavelet neural network model. The experimental results with error less than 0.0965 (in terms of MSE) were produced, and were then compared with those obtained from the response surface methodology. Performance assessment indicated that the neural network model possessed superior predictive ability than the polynomial model, since a very close agreement between the experimental and the predicted values was obtained.
    Matched MeSH terms: Tensile Strength
  20. Liew KB, Tan YT, Peh KK
    AAPS PharmSciTech, 2012 Mar;13(1):134-42.
    PMID: 22167416 DOI: 10.1208/s12249-011-9729-4
    The aim of this study was to develop a taste-masked oral disintegrating film (ODF) containing donepezil, with fast disintegration time and suitable mechanical strength, for the treatment of Alzheimer's disease. Hydroxypropyl methylcellulose, corn starch, polyethylene glycol, lactose monohydrate and crosspovidone served as the hydrophilic polymeric bases of the ODF. The uniformity, in vitro disintegration time, drug release and the folding endurance of the ODF were examined. The in vitro results showed that 80% of donepezil hydrochloride was released within 5 minutes with mean disintegration time of 44 seconds. The result of the film flexibility test showed that the number of folding time to crack the film was 40 times, an indication of sufficient mechanical property for patient use. A single-dose, fasting, four-period, eight-treatment, double-blind study involving 16 healthy adult volunteers was performed to evaluate the in situ disintegration time and palatability of ODF. Five parameters, namely taste, aftertaste, mouthfeel, ease of handling and acceptance were evaluated. The mean in situ disintegration time of ODF was 49 seconds. ODF containing 7 mg of sucralose were more superior than saccharin and aspartame in terms of taste, aftertaste, mouthfeel and acceptance. Furthermore, the ODF was stable for at least 6 months when stored at 40°C and 75% relative humidity.
    Matched MeSH terms: Tensile Strength
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links