Displaying publications 1 - 20 of 92 in total

Abstract:
Sort:
  1. Chilakamarry CR, Mahmood S, Saffe SNBM, Arifin MAB, Gupta A, Sikkandar MY, et al.
    3 Biotech, 2021 May;11(5):220.
    PMID: 33968565 DOI: 10.1007/s13205-021-02734-7
    Over recent years, keratin has gained great popularity due to its exceptional biocompatible and biodegradable nature. It has shown promising results in various industries like poultry, textile, agriculture, cosmetics, and pharmaceutical. Keratin is a multipurpose biopolymer that has been used in the production of fibrous composites, and with necessary modifications, it can be developed into gels, films, nanoparticles, and microparticles. Its stability against enzymatic degradation and unique biocompatibility has found their way into biomedical applications and regenerative medicine. This review discusses the structure of keratin, its classification and its properties. It also covers various methods by which keratin is extracted like chemical hydrolysis, enzymatic and microbial treatment, dissolution in ionic liquids, microwave irradiation, steam explosion technique, and thermal hydrolysis or superheated process. Special emphasis is placed on its utilisation in the form of hydrogels, films, fibres, sponges, and scaffolds in various biotechnological and industrial sectors. The present review can be noteworthy for the researchers working on natural protein and related usage.
    Matched MeSH terms: Textiles
  2. Mamat, M., Abdullah, M.A.A., Jaafar, A.M., Soh, S.K.C., Lee, C.E.
    ASM Science Journal, 2018;11(101):105-113.
    MyJurnal
    As textile production flourishes nowadays, the amount of dyed wastewater entering the
    water body has also increased. Dyes could have serious negative impacts to the environment
    and also the human health, hence, they need to be removed from the water body. In this
    study, layered double hydroxide (LDH) of manganese/aluminium (MnAl) was synthesised
    to be used as a potential adsorbent to remove methyl orange (MO) dye due to its unique
    lamellar structure which provides LDH with high anion adsorption and exchange ability.
    MnAl was synthesized by using co-precipitation method and characterized by powder X-ray
    diffraction (PXRD), Fourier-Transform Infrared Spectroscopy (FTIR), Inductively coupled
    plasma atomic emission spectroscopy (ICP-AES) and Carbon, Hydrogen, Nitrogen, Sulphur
    (CHNS) elemental analysers, and Accelerated Surface Area and Porosity Analyzer (ASAP).
    Adsorption studies were conducted at different contact times and dosages of MnAl to evaluate
    the performance of MnAl in removing MO from water. Kinetic and isotherm models were
    tested using pseudo-first order, pseudo-second order, Langmuir isotherm and Freundlich
    isotherm. MnAl LDH was found to be perfectly fitted into pseudo-second order and Langmuir
    isotherm.
    Matched MeSH terms: Textiles
  3. Too CL, Muhamad NA, Ilar A, Padyukov L, Alfredsson L, Klareskog L, et al.
    Ann Rheum Dis, 2016 06;75(6):997-1002.
    PMID: 26681695 DOI: 10.1136/annrheumdis-2015-208278
    OBJECTIVES: Lung exposures including cigarette smoking and silica exposure are associated with the risk of rheumatoid arthritis (RA). We investigated the association between textile dust exposure and the risk of RA in the Malaysian population, with a focus on women who rarely smoke.

    METHODS: Data from the Malaysian Epidemiological Investigation of Rheumatoid Arthritis population-based case-control study involving 910 female early RA cases and 910 female age-matched controls were analysed. Self-reported information on ever/never occupationally exposed to textile dust was used to estimate the risk of developing anti-citrullinated protein antibody (ACPA)-positive and ACPA-negative RA. Interaction between textile dust and the human leucocyte antigen DR β-1 (HLA-DRB1) shared epitope (SE) was evaluated by calculating the attributable proportion due to interaction (AP), with 95% CI.

    RESULTS: Occupational exposure to textile dust was significantly associated with an increased risk of developing RA in the Malaysian female population (OR 2.8, 95% CI 1.6 to 5.2). The association between occupational exposure to textile dust and risk of RA was uniformly observed for the ACPA-positive RA (OR 2.5, 95% CI 1.3 to 4.8) and ACPA-negative RA (OR 3.5, 95% CI 1.7 to 7.0) subsets, respectively. We observed a significant interaction between exposure to occupational textile dust and HLA-DRB1 SE alleles regarding the risk of ACPA-positive RA (OR for double exposed: 39.1, 95% CI 5.1 to 297.5; AP: 0.8, 95% CI 0.5 to 1.2).

    CONCLUSIONS: This is the first study demonstrating that textile dust exposure is associated with an increased risk for RA. In addition, a gene-environment interaction between HLA-DRB1 SE and textile dust exposure provides a high risk for ACPA-positive RA.
    Matched MeSH terms: Textiles/adverse effects*
  4. Vigneswari S, Amelia TSM, Hazwan MH, Mouriya GK, Bhubalan K, Amirul AA, et al.
    Antibiotics (Basel), 2021 Feb 24;10(3).
    PMID: 33668352 DOI: 10.3390/antibiotics10030229
    Nanobiotechnology has undoubtedly influenced major breakthroughs in medical sciences. Application of nanosized materials has made it possible for researchers to investigate a broad spectrum of treatments for diseases with minimally invasive procedures. Silver nanoparticles (AgNPs) have been a subject of investigation for numerous applications in agriculture, water treatment, biosensors, textiles, and the food industry as well as in the medical field, mainly due to their antimicrobial properties and nanoparticle nature. In general, AgNPs are known for their superior physical, chemical, and biological properties. The properties of AgNPs differ based on their methods of synthesis and to date, the biological method has been preferred because it is rapid, nontoxic, and can produce well-defined size and morphology under optimized conditions. Nevertheless, the common issue concerning biological or biobased production is its sustainability. Researchers have employed various strategies in addressing this shortcoming, such as recently testing agricultural biowastes such as fruit peels for the synthesis of AgNPs. The use of biowastes is definitely cost-effective and eco-friendly; moreover, it has been reported that the reduction process is simple and rapid with reasonably high yield. This review aims to address the developments in using fruit- and vegetable-based biowastes for biologically producing AgNPs to be applied as antimicrobial coatings in biomedical applications.
    Matched MeSH terms: Textiles
  5. Bharathi D, Nandagopal JGT, Ranjithkumar R, Gupta PK, Djearamane S
    Arch Microbiol, 2022 Feb 14;204(3):169.
    PMID: 35157149 DOI: 10.1007/s00203-022-02767-3
    The coloured effluents produced from different industries, such as textile, plastics, printing, cosmetics, leather and paper, are extremely toxic and a tremendous threat to the aquatic organisms and human beings. The removal of coloured dye pollutants from the aqueous environment is a great challenge and a pressing task. The growing demand for low-cost and efficient treatment approaches has given rise to alternative and eco-friendly methods, such as biodegradation and microbial remediation. This work summarizes the overview and current research on the remediation of dye pollutants from the aqueous environment by microbial bio-sorbents, such as bacteria, fungi, algae, and yeast. In addition, dye degradation capabilities of microbial enzymes have been highlighted and discussed. Further, the influence of various experimental parameters, such as temperature, pH, and concentrations of nutrients, and dye, has been summarized. The proposed mechanism for dye removal by microorganisms is also discussed. The object of this review is to provide a state-of-the-art of microbial remediation technologies in eliminating dye pollutants from water resources.
    Matched MeSH terms: Textiles
  6. Kaewboonchoo O, Isahak M, Susilowati I, Phuong TN, Morioka I, Harncharoen K, et al.
    Asia Pac J Public Health, 2016 Jul;28(5):438-49.
    PMID: 27273897 DOI: 10.1177/1010539516651957
    Work ability is related to many factors that might influence one's capacity to work. This study aimed to examine the work ability and its related factors among small and medium enterprises (SME) workers in 4 Association of Southeast Asian Nations (ASEAN) countries. The participants in this study included 2098 workers from food and textile industries in Indonesia, Malaysia, Thailand, and Vietnam. A cross-sectional survey of anonymous self-administrated questionnaire was designed to collect information on sociodemographic factors, work environment and ergonomic condition, musculoskeletal disorders, and work ability. Bivariate correlation coefficient and multiple linear regression analyses were used to predict the work ability. Results of this study confirm that work ability in 4 ASEAN countries was similar to that in European countries, and that the sociodemographic factors, work environment and ergonomic condition, and musculoskeletal disorder (MSD) were associated with work ability. These factors are important for considering occupational health and safety policy to promote work ability in food, textile, and other SME workers.
    Matched MeSH terms: Textiles
  7. Shafqat SR, Bhawani SA, Bakhtiar S, Ibrahim MNM
    BMC Chem, 2020 Dec;14(1):27.
    PMID: 32266334 DOI: 10.1186/s13065-020-00680-8
    Congo red (CR) is an anionic azo dye widely used in many industries including pharmaceutical, textile, food and paint industries. The disposal of huge amount of CR into the various streams of water has posed a great threat to both human and aquatic life. Therefore, it has become an important aspect of industries to remove CR from different water sources. Molecular imprinting technology is a very slective method to remove various target pollutant from environment. In this study a precipitation polymerization was employed for the effective and selective removal of CR from contaminated aqueous media. A series of congo red molecularly imprinted polymers (CR-MIPs) of uniform size and shape was developed by changing the mole ratio of the components. The optimum ratio (0.1:4: 20, template, functional monomer and cross-linking monomer respectively) for CR1-MIP from synthesized polymers was able to rebind about 99.63% of CR at the optimum conditions of adsorption parameters (contact time 210 min, polymer dosage 0.5 g, concentration 20 ppm and pH 7). The synthesized polymers were characterized by various techniques such as Fourier Infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDX), and Brumauer-Emmett-Teller (BET). The polymer particles have successfully removed CR from different aqueous media with an efficiency of about ~ 90%.
    Matched MeSH terms: Textiles
  8. Hindatu Y, Annuar MSM, Subramaniam R, Gumel AM
    Bioprocess Biosyst Eng, 2017 Jun;40(6):919-928.
    PMID: 28341913 DOI: 10.1007/s00449-017-1756-4
    Insufficient power generation from a microbial fuel cell (MFC) hampers its progress towards utility-scale development. Electrode modification with biopolymeric materials could potentially address this issue. In this study, medium-chain-length poly-3-hydroxyalkanoates (PHA)/carbon nanotubes (C) composite (CPHA) was successfully applied to modify the surface of carbon cloth (CC) anode in MFC. Characterization of the functional groups on the anodic surface and its morphology was carried out. The CC-CPHA composite anode recorded maximum power density of 254 mW/m2, which was 15-53% higher than the MFC operated with CC-C (214 mW/m2) and pristine CC (119 mW/m2) as the anode in a double-chambered MFC operated with Escherichia coli as the biocatalyst. Electrochemical impedance spectroscopy and cyclic voltammetry showed that power enhancement was attributed to better electron transfer capability by the bacteria for the MFC setup with CC-CPHA anode.
    Matched MeSH terms: Textiles
  9. Mostafa AA, Elshikh MS, Al-Askar AA, Hadibarata T, Yuniarto A, Syafiuddin A
    Bioprocess Biosyst Eng, 2019 Sep;42(9):1483-1494.
    PMID: 31076865 DOI: 10.1007/s00449-019-02144-3
    Due to environmental concern, the research to date has tended to focus on how textile dye removal can be carried out in a greener manner. Therefore, this study aims to evaluate the decolorization and biotransformation pathway of Mordant Orange-1 (MO-1) by Cylindrocephalum aurelium RY06 (C. aurelium RY06). Decolorization study was conducted in a batch experiment including the investigation of the effects of physio-chemical parameters. Enzymatic activity of C. aurelium RY06 during the decolorization was also investigated. Moreover, transformation and biodegradation of MO-1 by C. aurelium RY06 were observed using the gas chromatography-mass spectrometry. Manganese peroxidase, lignin peroxidase, laccase, 1,2-dioxygenase, and 2,3-dioxygenase enzymes were detected during the decolorization. In general, the present work concluded that the MO-1 was successfully degraded by C. aurelium RY06 and transformed to be maleic acid and to be isophtalic acid.
    Matched MeSH terms: Textiles*
  10. Lim SL, Chu WL, Phang SM
    Bioresour Technol, 2010 Oct;101(19):7314-22.
    PMID: 20547057 DOI: 10.1016/j.biortech.2010.04.092
    The potential application of Chlorella vulgaris UMACC 001 for bioremediation of textile wastewater (TW) was investigated using four batches of cultures in high rate algae ponds (HRAP) containing textile dye (Supranol Red 3BW) or TW. The biomass attained ranged from 0.17 to 2.26 mg chlorophyll a/L while colour removal ranged from 41.8% to 50.0%. There was also reduction of NH(4)-N (44.4-45.1%), PO(4)-P (33.1-33.3%) and COD (38.3-62.3%) in the TW. Supplementation of the TW with nutrients of Bold's Basal Medium (BBM) increased biomass production but did not improve colour removal or reduction of pollutants. The mechanism of colour removal by C. vulgaris is biosorption, in accordance with both the Langmuir and Freundlich models. The HRAP using C. vulgaris offers a good system for the polishing of TW before final discharge.
    Matched MeSH terms: Textiles*
  11. Liew RK, Azwar E, Yek PNY, Lim XY, Cheng CK, Ng JH, et al.
    Bioresour Technol, 2018 Oct;266:1-10.
    PMID: 29936405 DOI: 10.1016/j.biortech.2018.06.051
    A micro-mesoporous activated carbon (AC) was produced via an innovative approach combining microwave pyrolysis and chemical activation using NaOH/KOH mixture. The pyrolysis was examined over different chemical impregnation ratio, microwave power, microwave irradiation time and types of activating agents for the yield, chemical composition, and porous characteristic of the AC obtained. The AC was then tested for its feasibility as textile dye adsorbent. About 29 wt% yield of AC was obtained from the banana peel with low ash and moisture (<5 wt%), and showed a micro-mesoporous structure with high BET surface area (≤1038 m2/g) and pore volume (≤0.80 cm3/g), indicating that it can be utilized as adsorbent to remove dye. Up to 90% adsorption of malachite green dye was achieved by the AC. Our results indicate that the microwave-activation approach represents a promising attempt to produce good quality AC for dye adsorption.
    Matched MeSH terms: Textiles
  12. Anasdass JR, Kannaiyan P, Gopinath SCB
    Biotechnol Appl Biochem, 2022 Dec;69(6):2780-2793.
    PMID: 35293654 DOI: 10.1002/bab.2323
    We demonstrate a green chemistry approach to synthesize narrow-sized zerovalent iron (nZVI) nanoparticles using Artocarpus heterophyllus Lam. leaf extract as reducing and capping agent. The produced nZVI was characterized by various instrumental methods including ultraviolet-visible spectra, transmission electron microscopy, vibrating sample magnetometer (VSM), X-ray diffraction, and Fourier transform infrared spectroscopy. Based on the electron microscopy observations, the particle size was estimated to be ∼30 nm. In VSM, the saturation point of magnetization was observed to be 0.6 emu g-1 under a magnetic field of 0 ± 30 kOe. The synthesized nZVI was amorphous in nature as per the XRD results. The catalytic activity of the nZVI was employed for the catalytic reduction of 4-nitrophenol (4-NP) and decoloration of textile dyes such as methylene blue, methyl orange, and malachite green, respectively. The proposed nZVI synthesis method exhibited better catalytic performance toward reduction of 4-NP and degradation of dyes within 4 min for 0.1 mg of catalyst. Moreover, the synthesized catalyst nZVI can be recoverable and reutilized in many cycles without loss of its significant catalytic activity. The synthesized nZVI could be a promising material to treat industrial wastewater via profitable, sustainable, and ecofriendly approaches.
    Matched MeSH terms: Textiles
  13. Aznin Baharudin, Nor Akmalazura Jani, Azyati Azreen, A. A. Assyura, Hawa Pornomo, M. Hafiz Mehat
    Borneo Akademika, 2020;4(1):1-12.
    MyJurnal
    This study is focused on formulating a natural-based fabric softener using baking
    soda and vinegar with the addition of insect repellent finish of citronella oil and
    vanillin. The effectiveness of the fabric softener was evaluated by conducting a fabric
    stiffness test on both untreated and treated fabric samples with the softener
    formulated in this study. The assessment for the efficacy of insect repellence was
    carried out using 3 human participants of the same gender and build but different
    blood type, positioned at a mosquito infested area. Three tests; negative, positive, and
    normal tests were conducted to evaluate the effectiveness of the formulated mosquito
    repellent finishes in the fabric softener. The results show that the formulated fabric
    softener is good mosquito repellent and it is good at giving a soft effect on the treated
    fabric.
    Matched MeSH terms: Textiles
  14. Ainil Huda Abu Talib, Siti Nuranis Syazana Misron, Nurul ‘izzah Mohd Fu’ad, Nurul Ariesha Zamri, Eryna Nasir
    Borneo Akademika, 2020;4(1):13-24.
    MyJurnal
    The Silver Reed Model LK150 knitting machine is a home knitting machine which is
    extremely lightweight and compact, making it preferable by most home knitters.
    There are various knitwears with interesting patterns can be made using this model. In
    the field of garments manufacturing by using flatbed knitting machines, it is
    important to understand the physical properties of fabric so that their impact on
    dimensional changes can be predicted to produce the most suitable end use. The
    samples were produced by using a blended bamboo/cotton yarn, with a composition
    of 30% cotton and 70% bamboo. The main objectives of this study are to to evaluate
    the physical properties of single jersey fabric knitted on home knitting machine by
    using different stitch dials and to relate the physical properties with different stitch
    lengths. Then, all tests were conducted to compare the physical properties of samples
    between three different stitch dials and the effects of before and after washing. The
    physical properties measured in this research were stitch length, stitch density, weight,
    thickness, absorbency and shrinkage. The result indicated that the longer the stitch
    length, the higher the percentage of the water impact penetration. Meanwhile, there
    was a slight reduction on the density, thickness and fabric weight. In addition, the
    result after three times washing showed that the samples only had slight changes in
    density, thickness, weight and stitch length, but has significant changes on the water
    impact penetration.
    Matched MeSH terms: Textiles
  15. Yashni G, Al-Gheethi A, Radin Mohamed RMS, Dai-Viet NV, Al-Kahtani AA, Al-Sahari M, et al.
    Chemosphere, 2021 Oct;281:130661.
    PMID: 34029959 DOI: 10.1016/j.chemosphere.2021.130661
    Textile industry is one of the most environmental unfriendly industrial processes due to the massive generation of colored wastewater contaminated with dyes and other chemical auxiliaries. These contaminants are known to have undesirable consequences to ecosystem. The present study investigated the best operating parameters for the removal of congo red (CR, as the model for dye wastewater) by orange peels extract biosynthesized zinc oxide nanoparticles (ZnO NPs) via photocatalysis in an aqueous solution. The response surface methodology (RSM) with ZnO NPs loadings (0.05-0.20 g), pH (3.00-11.00), and initial CR concentration (5-20 ppm) were used for the optimization process. The applicability of ZnO NPs in the dye wastewater treatment was evaluated based on the techno-economic analysis (TEA). ZnO NPs exhibited hexagonal wurtzite structure with = C-H, C-O, -C-O-C, CC, O-H as the main functional groups. The maximum degradation of CR was more than 96% with 0.171 g of ZnO NPs, at pH 6.43 and 5 ppm of CR and 90% of the R2 coefficient. The specific cost of ZnO NPs production is USD 20.25 per kg. These findings indicated that the biosynthesized ZnO NPs with orange peels extract provides alternative method for treating dye wastewater.
    Matched MeSH terms: Textiles
  16. Logroño W, Pérez M, Urquizo G, Kadier A, Echeverría M, Recalde C, et al.
    Chemosphere, 2017 Mar 01;176:378-388.
    PMID: 28278426 DOI: 10.1016/j.chemosphere.2017.02.099
    An air exposed single-chamber microbial fuel cell (SCMFC) using microalgal biocathodes was designed. The reactors were tested for the simultaneous biodegradation of real dye textile wastewater (RTW) and the generation of bioelectricity. The results of digital image processing revealed a maximum coverage area on the biocathodes by microalgal cells of 42%. The atmospheric and diffused CO2 could enable good algal growth and its immobilized operation on the cathode electrode. The biocathode-SCMFCs outperformed an open circuit voltage (OCV), which was 18%-43% higher than the control. Furthermore, the maximum volumetric power density achieved was 123.2 ± 27.5 mW m(-3). The system was suitable for the treatment of RTW and the removal/decrease of COD, colour and heavy metals. High removal efficiencies were observed in the SCMFCs for Zn (98%) and COD (92-98%), but the removal efficiencies were considerably lower for Cr (54-80%). We observed that this single chamber MFC simplifies a double chamber system. The bioelectrochemical performance was relatively low, but the treatment capacity of the system seems encouraging in contrast to previous studies. A proof-of-concept experiment demonstrated that the microalgal biocathode could operate in air exposed conditions, seems to be a promising alternative to a Pt cathode and is an efficient and cost-effective approach to improve the performance of single chamber MFCs.
    Matched MeSH terms: Textiles
  17. Al-Buriahi AK, Al-Gheethi AA, Senthil Kumar P, Radin Mohamed RMS, Yusof H, Alshalif AF, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132162.
    PMID: 34826899 DOI: 10.1016/j.chemosphere.2021.132162
    Rhodamine B (RhB) dye used in the textile industries is associated with carcinogenic and neurotoxic effects with a high potential to cause a variety of human diseases. Semiconductor photocatalysts synthesised through agriculture waste extracts exhibited high efficiency for RhB removal. The current review aimed to explore the efficiency and mechanism of RhB degradation using different photocatalysts that have been used in recent years, as well as the effect of various factors on the removal process. Zinc oxide nanoparticles (ZnO NPs) synthesised from plant extract is the most effective for the RhB degradation with the efficiency reaching 100% after 210 min. The photocatalysis process depends on the pH because pH changes the balance of water dissociation, which impacts the formation of hydroxyl radicals and the surface load of the catalyst. Analysis using Jupyter Notebook revealed a strong correlation between the concentration of ZnO NPs and the photocatalysis efficiency (R = 0.72). These findings reveal that man-sized photocatalysts have a high potential for removing RhB from the wastewater.
    Matched MeSH terms: Textiles
  18. Thoa LTK, Thao TTP, Nguyen-Thi ML, Chung ND, Ooi CW, Park SM, et al.
    Chemosphere, 2023 Jun;325:138392.
    PMID: 36921772 DOI: 10.1016/j.chemosphere.2023.138392
    The present study reported the improvement of biological treatment for the removal of recalcitrant dyes including aniline blue, reactive black 5, orange II, and crystal violet in contaminated water. The biodegradation efficiency of Fusarium oxysporum was significantly enhanced by the addition of mediators and by adjusting the biomass density and nutrient composition. A supplementation of 1% glucose in culture medium improved the biodegradation efficiency of aniline blue, reactive black 5, orange II, and crystal violet by 2.24, 1.51, 4.46, and 2.1 folds, respectively. Meanwhile, the addition of mediators to culture medium significantly increased the percentages of total removal for aniline blue, reactive black 5, orange II, and crystal violet, reaching 86.07%, 68.29%, 76.35%, and 95.3%, respectively. Interestingly, the fungal culture supplemented with 1% remazol brilliant blue R boosted the biodegradation up to 97.06%, 89.86%, 91.38%, and 86.67% for aniline blue, reactive black 5, orange II, and crystal violet, respectively. Under optimal culture conditions, the fungal culture could degrade these synthetic dyes concentration up to 104 mg/L. The present study demonstrated that different recalcitrant dye types can be efficiently degraded using microorganism such as F. oxysporum.
    Matched MeSH terms: Textiles
  19. Yadav S, Kataria N, Khyalia P, Rose PK, Mukherjee S, Sabherwal H, et al.
    Chemosphere, 2023 Jun;326:138495.
    PMID: 36963588 DOI: 10.1016/j.chemosphere.2023.138495
    Despite of our growing understanding of microplastic's implications, research on the effects of fibrous microplastic (FMPs) on the environment is still in its infancy. Some scientists have hypothesized the possibility of natural textile fibres, which may act as one of the emerging environmental pollutants prevalent among microplastic pollutants in the environment. Therefore, this review aims to critically evaluate the toxic effects of emerging FMPs, the presence, and sources of FMPs in the environment, identification and analytical techniques, and the potential impact or toxicity of the FMPs on the environment and human health. About175 publications (2011-2023) based on FMPs were identified and critically reviewed for transportation, analysis and ecotoxicological behaviours of FMPs in the environment. Textile industries, wastewater treatment plants, and household washing of clothes are significant sources of FMPs. In addition, various characterization techniques (e.g., FTIR, SEM, RAMAN, TGA, microscope, and X-Ray Fluorescence Spectroscopy) commonly used for the identification and analysis of FMPs are also discussed, which justifies the novelty aspects of this review. FMPs are pollutants of emerging concern due to their prevalence and persistence in the environment. FMPs are also found in the food chain, which is an alarming situation for living organisms, including effects on the nervous system, digestive system, circulatory system, and genetic alteration. This review will provide readers with a comparison of different analytical techniques, which will be helpful for researchers to select the appropriate analytical techniques for their study and enhance their knowledge about the harmful effects of FMPs.
    Matched MeSH terms: Textiles
  20. Aziz HA, Razak MHA, Rahim MZA, Kamar WISW, Abu Amr SS, Hussain S, et al.
    Data Brief, 2018 Jun;18:920-927.
    PMID: 29900259 DOI: 10.1016/j.dib.2018.03.113
    Wastewater treatment is a key challenge in the textile industry. The current treatment methods for textile wastewater are insufficient or ineffective for complex dyes generated from the textile industry. This study evaluated the performances of two novel inorganic coagulants with high cationic charges, namely, titanium tetrachloride (TiCl4) and zirconium tetrachloride (ZrCl4). They were utilised to treat textile industry wastewater. Both coagulation processes were performed under the same experimental operational conditions. Turbidity, suspended solids (SS), colour, chemical oxygen demand (COD) and ammonia were measured to assess the efficiencies of the coagulants. Results indicated that ZrCl4 and TiCl4 exhibited high potentials for textile wastewater treatment. ZrCl4 presented high removal efficiency in COD and SS, whereas TiCl4 showed excellent removal in ammonia.
    Matched MeSH terms: Textiles
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links