Displaying publications 1 - 20 of 85 in total

Abstract:
Sort:
  1. Aisyah HA, Paridah MT, Sapuan SM, Ilyas RA, Khalina A, Nurazzi NM, et al.
    Polymers (Basel), 2021 Feb 02;13(3).
    PMID: 33540731 DOI: 10.3390/polym13030471
    Over the last decade, the progressive application of natural fibres in polymer composites has had a major effect in alleviating environmental impacts. Recently, there is a growing interest in the development of green materials in a woven form by utilising natural fibres from lignocellulosic materials for many applications such as structural, non-structural composites, household utilities, automobile parts, aerospace components, flooring, and ballistic materials. Woven materials are one of the most promising materials for substituting or hybridising with synthetic polymeric materials in the production of natural fibre polymer composites (NFPCs). These woven materials are flexible, able to be tailored to the specific needs and have better mechanical properties due to their weaving structures. Seeing that the potential advantages of woven materials in the fabrication of NFPC, this paper presents a detailed review of studies related to woven materials. A variety of factors that influence the properties of the resultant woven NFRC such as yarn characteristics, fabric properties as well as manufacturing parameters were discussed. Past and current research efforts on the development of woven NFPCs from various polymer matrices including polypropylene, polylactic acid, epoxy and polyester and the properties of the resultant composites were also compiled. Last but not least, the applications, challenges, and prospects in the field also were highlighted.
    Matched MeSH terms: Textiles
  2. Lim, N.L., Mohd Sham Kasim
    MyJurnal
    The cost effectiveness of the use of disposable diapers was compared to that of cloth diapers in a neonatal unit of 65 beds. A total of 39 doctors and nurses participated in the study. It was found that a cost of RM4 .56 was incurred per baby per day when diapered with disposable diapers compared to RM4.29 when diapered with cloth diapers. However, all doctors and nurses preferred the disposable diaper system because of its significantly better qualities in providing hygiene and dryness, preventing leakage and contamination, and reducing the risk of diaper rashes. Disposable diapers were also easier to use and the volume of associated linen for laundering was reduced. The apparent RM0.27 extra cost per baby per day in the disposable diapering system is offset by its superior qualities and money saved in uncosted items like depreciation of laundering machines and nursing time saved. The disposable diapering system is therefore considered more cost-effective than the cloth diapers system.
    Matched MeSH terms: Textiles
  3. Yang Y, Wei X, Zhang N, Zheng J, Chen X, Wen Q, et al.
    Nat Commun, 2021 08 12;12(1):4876.
    PMID: 34385436 DOI: 10.1038/s41467-021-25075-8
    While the printed circuit board (PCB) has been widely considered as the building block of integrated electronics, the world is switching to pursue new ways of merging integrated electronic circuits with textiles to create flexible and wearable devices. Herein, as an alternative for PCB, we described a non-printed integrated-circuit textile (NIT) for biomedical and theranostic application via a weaving method. All the devices are built as fibers or interlaced nodes and woven into a deformable textile integrated circuit. Built on an electrochemical gating principle, the fiber-woven-type transistors exhibit superior bending or stretching robustness, and were woven as a textile logical computing module to distinguish different emergencies. A fiber-type sweat sensor was woven with strain and light sensors fibers for simultaneously monitoring body health and the environment. With a photo-rechargeable energy textile based on a detailed power consumption analysis, the woven circuit textile is completely self-powered and capable of both wireless biomedical monitoring and early warning. The NIT could be used as a 24/7 private AI "nurse" for routine healthcare, diabetes monitoring, or emergencies such as hypoglycemia, metabolic alkalosis, and even COVID-19 patient care, a potential future on-body AI hardware and possibly a forerunner to fabric-like computers.
    Matched MeSH terms: Textiles*
  4. Sinnapa S, Soon LS
    Med J Malaya, 1970 Jun;24(4):278-86.
    PMID: 4096943
    Matched MeSH terms: Textiles
  5. Birgani PM, Ranjbar N, Abdullah RC, Wong KT, Lee G, Ibrahim S, et al.
    J Environ Manage, 2016 Dec 15;184(Pt 2):229-239.
    PMID: 27717677 DOI: 10.1016/j.jenvman.2016.09.066
    Considering the chemical properties of batik effluents, an efficient and economical treatment process was established to treat batik wastewater containing not only high levels of Si and chemical oxygen demand (COD), but also toxic heavy metals. After mixing the effluents obtained from the boiling and soaking steps in the batik process, acidification using concentrated hydrochloric acid (conc. HCl) was conducted to polymerize the silicate under acidic conditions. Consequently, sludge was produced and floated. XRD and FT-IR analyses showed that wax molecules were coordinated by hydrogen bonding with silica (SiO2). The acidification process removed ∼78-95% of COD and ∼45-50% of Si, depending on the pH. In the next stage, magnesium oxide (MgO) was applied to remove heavy metals completely and almost 90% of the Si in the liquid phase. During this step, about 70% of COD was removed in the hydrogel that arose as a consequence of the crosslinking characteristics of the formed nano-composite, such as magnesium silicate or montmorillonite. The hydrogel was composed mainly of waxes with polymeric properties. Then, the remaining Si (∼300 mg/L) in the wastewater combined with the effluents from the rinsing steps was further treated using 50 mg/L MgO. As a final step, palm-shell activated carbon (PSAC) was used to remove the remaining COD to 
    Matched MeSH terms: Textiles*
  6. Koe WS, Lee JW, Chong WC, Pang YL, Sim LC
    Environ Sci Pollut Res Int, 2020 Jan;27(3):2522-2565.
    PMID: 31865580 DOI: 10.1007/s11356-019-07193-5
    Photocatalysis is an ecofriendly technique that emerged as a promising alternative for the degradation of many organic pollutants. The weaknesses of the present photocatalytic system which limit their industrial applications include low-usage of visible light, fast charge recombination, and low migration ability of the photo-generated electrons and holes. Therefore, various elements such as noble metals and transition metals as well as non-metals and metalloids (i.e., graphene, carbon nanotube, and carbon quantum dots) are doped into the photocatalyst as co-catalysts to enhance the photodegradation performance. The incorporation of the co-catalyst which alters the photocatalytic mechanism was discussed in detail. The application of photocatalysts in treating persistent organic pollutants such as pesticide, pharmaceutical compounds, oil and grease and textile in real wastewater was also discussed. Besides, a few photocatalytic reactors in pilot scale had been designed for the effort of commercializing the system. In addition, hybrid photocatalytic system integrating with membrane filtration together with their membrane fabrication methods had also been reviewed. This review outlined various types of heterogeneous photocatalysts, mechanism, synthesis methods of biomass supported photocatalyst, photocatalytic degradation of organic substances in real wastewater, and photocatalytic reactor designs and their operating parameters as well as the latest development of photocatalyst incorporated membrane.
    Matched MeSH terms: Textiles
  7. Abd Rahman NH, Yamada Y, Amin Nordin MS
    Materials (Basel), 2019 May 19;12(10).
    PMID: 31109128 DOI: 10.3390/ma12101636
    Previous works have shown that wearable antennas can operate ideally in free space; however, degradation in performance, specifically in terms of frequency shifts and efficiency was observed when an antenna structure was in close proximity to the human body. These issues have been highlighted many times yet, systematic and numerical analysis on how the dielectric characteristics may affect the technical behavior of the antenna has not been discussed in detail. In this paper, a wearable antenna, developed from a new electro-textile material has been designed, and the step-by-step manufacturing process is presented. Through analysis of the frequency detuning effect, the on-body behavior of the antenna is evaluated by focusing on quantifying the changes of its input impedance and near-field distribution caused by the presence of lossy dielectric material. When the antenna is attached to the top of the body fat phantom, there is an increase of 17% in impedance, followed by 19% for the muscle phantom and 20% for the blood phantom. These phenomena correlate with the electric field intensities (V/m) observed closely at the antenna through various layers of mediums (z-axis) and along antenna edges (y-axis), which have shown significant increments of 29.7% in fat, 35.3% in muscle and 36.1% in blood as compared to free space. This scenario has consequently shown that a significant amount of energy is absorbed in the phantoms instead of radiated to the air which has caused a substantial drop in efficiency and gain. Performance verification is also demonstrated by using a fabricated human muscle phantom, with a dielectric constant of 48, loss tangent of 0.29 and conductivity of 1.22 S/m.
    Matched MeSH terms: Textiles
  8. Malakahmad A, Abualqumboz MS, Kutty SRM, Abunama TJ
    Waste Manag, 2017 Dec;70:282-292.
    PMID: 28935377 DOI: 10.1016/j.wasman.2017.08.044
    Malaysian authorities has planned to minimize and stop when applicable unsanitary dumping of waste as it puts human health and the environment at elevated risk. Cost, energy and revenue are mostly adopted to draw the blueprint of upgrading municipal solid waste management system, while the carbon footprint emissions criterion rarely acts asa crucial factor. This study aims to alert Malaysian stakeholders on the uneven danger of carbon footprint emissions of waste technologies. Hence, three scenarios have been proposed and assessed mainly on the carbon footprint emissions using the 2006 IPCC methodology. The first scenario is waste dumping in sanitary landfills equipped with gas recovery system, while the second scenario includes anaerobic digestion of organics and recycling of recyclable wastes such as plastic, glass and textile wastes. The third scenario is waste incineration. Besides the carbon footprint emissions criterion, other environmental concerns were also examined. The results showed that the second scenario recorded the lowest carbon footprint emissions of 0.251t CO2 eq./t MSW while the third scenario had the highest emissions of 0.646t CO2 eq./t MSW. Additionally, the integration between anaerobic digestion and recycling techniques caused the highest avoided CO2 eq. emissions of 0.74t CO2 eq./t MSW. The net CO2 eq. emissions of the second scenario equaled -0.489t CO2 eq./t MSW due to energy recovery from the biogas and because of recycled plastic, glass and textile wastes that could replace usage of raw material. The outcomes also showed that the first scenario generates huge amount of leachate and hazardous air constituents. The study estimated that a ton of dumped waste inside the landfills generates approximately 0.88m3 of trace risky compounds and 0.188m3 of leachate. As for energy production, the results showed that the third scenario is capable of generating 639kWh/t MSW followed by the second scenario with 387.59kWh/t MSW. The first scenario produced 296.79kWh/t MSW. In conclusion, the outcomes of this study recommend an integrated scenario of anaerobic digestion and recycling techniques to be employed in Malaysia.
    Matched MeSH terms: Textiles
  9. Mohd. Asrul Hery Bin Ibrahim, Mustafa Mamat, Leong Wah June
    Sains Malaysiana, 2014;43:1591-1597.
    In this paper we present a new line search method known as the HBFGS method, which uses the search direction of the conjugate gradient method with the quasi-Newton updates. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) update is used as approximation of the Hessian for the methods. The new algorithm is compared with the BFGS method in terms of iteration counts and CPU-time. Our numerical analysis provides strong evidence that the proposed HBFGS method is more efficient than the ordinary BFGS method. Besides, we also prove that the new algorithm is globally convergent.
    Matched MeSH terms: Textiles
  10. Elias BBQ, Soh PJ, Al-Hadi AA, Akkaraekthalin P, Vandenbosch GAE
    Sensors (Basel), 2021 Apr 04;21(7).
    PMID: 33916507 DOI: 10.3390/s21072516
    This work presents the design and optimization of an antenna with defected ground structure (DGS) using characteristic mode analysis (CMA) to enhance bandwidth. This DGS is integrated with a rectangular patch with circular meandered rings (RPCMR) in a wearable format fully using textiles for wireless body area network (WBAN) application. For this integration process, both CMA and the method of moments (MoM) were applied using the same electromagnetic simulation software. This work characterizes and estimates the final shape and dimensions of the DGS using the CMA method, aimed at enhancing antenna bandwidth. The optimization of the dimensions and shape of the DGS is simplified, as the influence of the substrates and excitation is first excluded. This optimizes the required time and resources in the design process, in contrast to the conventional optimization approaches made using full wave "trial and error" simulations on a complete antenna structure. To validate the performance of the antenna on the body, the specific absorption rate is studied. Simulated and measured results indicate that the proposed antenna meets the requirements of wideband on-body operation.
    Matched MeSH terms: Textiles
  11. Krishnan, Jagannathan, Siti Rabiatul Adawiyah Ibrahim
    MyJurnal
    Mixed microbial culture used in this study was developed from sludge that was taken from local textile wastewater treatment tank. Acclimatization process was performed before starting the biodegradation experiment to obtain a microbial culture with high degradation properties. Kinetic studies by the mixed microbial culture were determined quantitatively for the model pollutant, Reactive Black 5 (RB 5). By using Michaelis-Menten model, the constants were found to be 11.15 mg l-1 h -1 and 29.18 mg l-1 for Vm and Km respectively. The values of kinetic constants for Monod model were found to be 33.11 mg l-1 cell h-1 for the maximum specific microbial growth rate, µm and 86.62 mg l-1 for Monod constant, Ks. The effects of process parameters such as pH, inoculum size and initial dye concentration on the biodegradation of azo dye, RB 5 were systematically investigated. Maximum removal efficiencies observed in this study were 75% for pH 6, 100% for 15% inoculum concentration and 75% for 20 ppm of initial dye concentration.
    Matched MeSH terms: Textiles
  12. Yashni G, Al-Gheethi A, Radin Mohamed RMS, Dai-Viet NV, Al-Kahtani AA, Al-Sahari M, et al.
    Chemosphere, 2021 Oct;281:130661.
    PMID: 34029959 DOI: 10.1016/j.chemosphere.2021.130661
    Textile industry is one of the most environmental unfriendly industrial processes due to the massive generation of colored wastewater contaminated with dyes and other chemical auxiliaries. These contaminants are known to have undesirable consequences to ecosystem. The present study investigated the best operating parameters for the removal of congo red (CR, as the model for dye wastewater) by orange peels extract biosynthesized zinc oxide nanoparticles (ZnO NPs) via photocatalysis in an aqueous solution. The response surface methodology (RSM) with ZnO NPs loadings (0.05-0.20 g), pH (3.00-11.00), and initial CR concentration (5-20 ppm) were used for the optimization process. The applicability of ZnO NPs in the dye wastewater treatment was evaluated based on the techno-economic analysis (TEA). ZnO NPs exhibited hexagonal wurtzite structure with = C-H, C-O, -C-O-C, CC, O-H as the main functional groups. The maximum degradation of CR was more than 96% with 0.171 g of ZnO NPs, at pH 6.43 and 5 ppm of CR and 90% of the R2 coefficient. The specific cost of ZnO NPs production is USD 20.25 per kg. These findings indicated that the biosynthesized ZnO NPs with orange peels extract provides alternative method for treating dye wastewater.
    Matched MeSH terms: Textiles
  13. Neoh CH, Lam CY, Lim CK, Yahya A, Bay HH, Ibrahim Z, et al.
    Environ Sci Pollut Res Int, 2015 Aug;22(15):11669-78.
    PMID: 25850745 DOI: 10.1007/s11356-015-4436-4
    Extensive use of recalcitrant azo dyes in textile and paper industries poses a direct threat to the environment due to the carcinogenicity of their degradation products. The aim of this study was to investigate the efficiency of Curvularia clavata NZ2 in decolorization of azo dyes. The ability of the fungus to decolorize azo dyes can be evaluated as an important outcome as existing effluent treatment is unable to remove the dyes effectively. C. clavata has the ability to decolorize Reactive Black 5 (RB5), Acid Orange 7 (AO7), and Congo Red azo dyes, utilizing these as sole sources of carbon and nitrogen. Ultraviolet-visible (UV-vis) spectroscopy and Fourier infrared spectroscopy (FTIR) analysis of the extracted RB5's metabolites along with desorption tests confirmed that the decolorization process occurred due to degradation and not merely by adsorption. Enzyme activities of extracellular enzymes such as carboxymethylcellulase (CMCase), xylanase, laccase, and manganese peroxidase (MnP) were also detected during the decolorization process. Toxicity expressed as inhibition of germination was reduced significantly in fungal-treated azo dye solution when compared with the control. The cultivation of C. clavata under sequential batch system also recorded a decolorization efficiency of above 90%. The crude enzyme secreted by C. clavata also showed excellent ability to decolorize RB5 solutions with concentrations of 100 ppm (88-92%) and 1000 ppm (70-77%) without redox mediator. This proved that extracellular enzymes produced by C. clavata played a major role in decolorization of RB5.
    Matched MeSH terms: Textiles
  14. Hossain K, Quaik S, Ismail N, Rafatullah M, Avasan M, Shaik R
    Iran J Biotechnol, 2016 Sep;14(3):154-162.
    PMID: 28959331 DOI: 10.15171/ijb.1216
    BACKGROUND: Application of membrane technology to wastewater treatment has expanded over the last decades due to increasingly stringent legislation, greater opportunities for water reuse/recycling processes and continuing advancement in membrane technology.

    OBJECTIVES: In the present study, a bench-scale submerged microfiltration membrane bioreactor (MBR) was used to assess the treatment of textile wastewater.

    MATERIALS AND METHODS: The decolorization capacity of white-rot fungus coriolus versicolor was confirmed through agar plate and liquid batch studies. The temperature and pH of the reactor were controlled at 29±1°C and 4.5±2, respectively. The bioreactor was operated with an average flux of 0.05 m.d(-1) (HRT=15hrs) for a month.

    RESULTS: Extensive growth of fungi and their attachment to the membrane led to its fouling and associated increase of the transmembrane pressure requiring a periodic withdrawal of sludge and membrane cleaning. However, stable decoloration activity (approx. 98%), BOD (40-50%), COD (50-67%) and total organic carbon (TOC) removal (>95%) was achieved using the entire system (fungi + membrane), while the contribution of the fungi culture alone for TOC removal, as indicated by the quality of the reactor supernatant, was 35-50% and 70%, respectively.

    CONCLUSIONS: The treated wastewater quality satisfied the requirement of water quality for dyeing and finishing process excluding light coloration. Therefore, textile wastewater reclamation and reuse is a promising alternative, which can both conserve or supplement the available water resource and reduce or eliminate the environmental pollution.

    Matched MeSH terms: Textiles
  15. Lim CK, Bay HH, Aris A, Abdul Majid Z, Ibrahim Z
    Environ Sci Pollut Res Int, 2013 Jul;20(7):5056-66.
    PMID: 23334551 DOI: 10.1007/s11356-013-1476-5
    Reactive dyes account for one of the major sources of dye wastes in textile effluent. In this study, decolorization of the monoazo dye, Acid Orange 7 (AO7) by the Enterococcus faecalis strain ZL that isolated from a palm oil mill effluent treatment plant has been investigated. Decolorization efficiency of azo dye is greatly affected by the types of nutrients and the size of inoculum used. In this work, one-factor-at-a-time (method and response surface methodology (RSM) was applied to optimize these operational factors and also to study the combined interaction between them. Analysis of AO7 decolorization was done using Fourier transform infrared (FTIR) spectroscopy, desorption study, UV-Vis spectral analysis, field emission scanning electron microscopy (FESEM), and high performance liquid chromatography (HPLC). The optimum condition via RSM for the color removal of AO7 was found to be as follows: yeast extract, 0.1% w/v, glycerol concentration of 0.1% v/v, and inoculum density of 2.5% v/v at initial dye concentration of 100 mg/L at 37 °C. Decolorization efficiency of 98% was achieved in only 5 h. The kinetic of AO7 decolorization was found to be first order with respect to dye concentration with a k value of 0.87/h. FTIR, desorption study, UV-Vis spectral analysis, FESEM, and HPLC findings indicated that the decolorization of AO7 was mainly due to the biosorption as well as biodegradation of the bacterial cells. In addition, HPLC analyses also showed the formation of sulfanilic acid as a possible degradation product of AO7 under facultative anaerobic condition. This study explored the ability of E. faecalis strain ZL in decolorizing AO7 by biosorption as well as biodegradation process.
    Matched MeSH terms: Textiles
  16. Anasdass JR, Kannaiyan P, Gopinath SCB
    Biotechnol Appl Biochem, 2022 Dec;69(6):2780-2793.
    PMID: 35293654 DOI: 10.1002/bab.2323
    We demonstrate a green chemistry approach to synthesize narrow-sized zerovalent iron (nZVI) nanoparticles using Artocarpus heterophyllus Lam. leaf extract as reducing and capping agent. The produced nZVI was characterized by various instrumental methods including ultraviolet-visible spectra, transmission electron microscopy, vibrating sample magnetometer (VSM), X-ray diffraction, and Fourier transform infrared spectroscopy. Based on the electron microscopy observations, the particle size was estimated to be ∼30 nm. In VSM, the saturation point of magnetization was observed to be 0.6 emu g-1 under a magnetic field of 0 ± 30 kOe. The synthesized nZVI was amorphous in nature as per the XRD results. The catalytic activity of the nZVI was employed for the catalytic reduction of 4-nitrophenol (4-NP) and decoloration of textile dyes such as methylene blue, methyl orange, and malachite green, respectively. The proposed nZVI synthesis method exhibited better catalytic performance toward reduction of 4-NP and degradation of dyes within 4 min for 0.1 mg of catalyst. Moreover, the synthesized catalyst nZVI can be recoverable and reutilized in many cycles without loss of its significant catalytic activity. The synthesized nZVI could be a promising material to treat industrial wastewater via profitable, sustainable, and ecofriendly approaches.
    Matched MeSH terms: Textiles
  17. Kristanti RA, Fikri Ahmad Zubir MM, Hadibarata T
    J Environ Manage, 2016 May 1;172:107-11.
    PMID: 26922501 DOI: 10.1016/j.jenvman.2015.11.017
    Cresol Red, a commercial dye that used widely to color nylon, wool, cotton, and polyacrylonitrile-modified nylon in the massive textile manufacture is toxic recalcitrant. Absidia spinosa M15, a novel fungal strain isolated from a tropical rain forest, was found to decolorize Cresol Red 65% within 30 d under agitation condition. UV-Vis spectroscopy, TLC analysis and mass spectra of samples after decolorization process in culture medium confirmed final decolorization of Cresol Red. Two metabolites were identified in the treated medium: benzeneacetic acid (tR 9.6 min and m/z 136) and benzoic acid (tR 5.7 min and m/z 122). Laccase showed the significant activity (133.8 U/L) in biomass obtained at the end of experiment demonstrates role of the enzyme in the decolorization process.
    Matched MeSH terms: Textiles
  18. Nur Amirah Fadzlena Md Fadzli, Wan Syazehan Ruznan, Suraya Ahmad Suhaimi, Mohd Azlin Mohd Nor, Suhaidi Ariffin, Mohd Rozi Ahmad, et al.
    MyJurnal
    Of late, dyeing fabrics with natural dyes have become an attraction because of its eco-friendly and less threatening disposition towards humankind. In the textile colouration industry, natural dyes play an important role because of the need for replacement synthetic dyes which have a great deal of tension with the environmental issues. This study focuses on the colour shade, colour coordinates, and fastness properties of dyed silk fabric from tagetes erecta (Mexican Marigold flower) using the water boiling extraction method. The dyeing was carried out using lemon juice as a natural mordant through the simultaneous mordanting method, using two different dyeing methods: infrared (IR) dyeing and exhaustion dyeing. The shades produced for exhaustion dyed fabric is light-yellow compared to the IR dyed fabric, which is medium-light yellow. These shades were confirmed with the CIELAB colour coordinates, L*a*b* values. The colourfastness to washing, perspiration, rubbing, and light of the fabrics were conducted to investigate the performance of the dye and mordant on the dyed silk fabrics. The colourfastness properties of the dyed silk fabric using infrared (IR) dyeing technique have better performance than using exhaustion dyeing technique.
    Matched MeSH terms: Textiles
  19. Ibrahim Z, Amin MF, Yahya A, Aris A, Umor NA, Muda K, et al.
    Water Sci Technol, 2009;60(3):683-8.
    PMID: 19657163 DOI: 10.2166/wst.2009.440
    Microbial flocs formed from raw textile wastewater in a prototype Aerobic Biofilm Reactor (ABR) system were characterised and studied for their potential use in the treatment of textile wastewater. After 90-100 days of operation, microbial flocs of loose irregular structures were obtained from the reactor with good settling velocity of 33 m/h and sludge volume index (SVI) of 48.2 mL/g. Molecular analysis of the flocs using PCR-amplified 16S rDNA sequence showed 98% homology to those of Bacillus sp, Paenibacillus sp and Acromobacter sp. Detection of Ca(2+)(131 mg/g) and Fe(2+)(131 mg/g) using atomic absorption spectrometer might be implicated with the flocs formation. In addition, presence of Co(2+) and Ni(2+) were indicative of the flocs ability to accumulate at least a fraction of the metals' present in the wastewater. When the flocs were used for the treatment of raw textile wastewater, they showed good removal of COD and colour about 55% and 70% respectively, indicating their potential application.
    Matched MeSH terms: Textiles*
  20. Ibrahim Z, Amin MF, Yahya A, Aris A, Muda K
    Water Sci Technol, 2010;61(5):1279-88.
    PMID: 20220250 DOI: 10.2166/wst.2010.021
    Textile wastewater, one of the most polluted industrial effluents, generally contains substantial amount of dyes and chemicals that will cause increase in the COD, colour and toxicity of receiving water bodies if not properly treated. Current treatment methods include chemical and biological processes; the efficiency of the biological treatment method however, remains uncertain since the discharged effluent is still highly coloured. In this study, granules consisting mixed culture of decolourising bacteria were developed and the physical and morphological characteristics were determined. After the sixth week of development, the granules were 3-10 mm in diameter, having good settling property with settling velocity of 70 m/h, sludge volume index (SVI) of 90 to 130 mL/g, integrity coefficient of 3.7, and density of 66 g/l. Their abilities to treat sterilised raw textile wastewater were evaluated based on the removal efficiencies of COD (initial ranging from 200 to 3,000 mg/L), colour (initial ranging from 450 to 2000 ADMI) of sterilised raw textile wastewater with pH from 6.8 to 9.4. Using a sequential anaerobic-aerobic treatment cycle with hydraulic retention time (HRT) of 24 h, maximum removal of colour and COD achieved was 90% and 80%, respectively.
    Matched MeSH terms: Textiles
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links