Displaying publications 1 - 20 of 153 in total

Abstract:
Sort:
  1. Mohd Warikh Abd Rashid, Hutagalung, Sabar Derita, Zainal Arifin Ahmad
    MyJurnal
    A study on the effect of the modify values of x in CaCu3-xMn4+xO12 system has been carried out with x = 0.1, 0.3, 0.5, 0.7 and 0.9. The materials were prepared via solid-state reaction. The preparation conditions have been optimized using thermogravimetry analysis (TGA) technique. Material formations under the reported conditions have been confirmed by X-ray diffraction (XRD) studies. The results show that the formation of CaCu3Mn4O12 started at calcinations temperature of 600 0 C with the presence of raw material and was formed completely at 850 0 C. Field emission scanning electron microscopy (FESEM) analysis indicated that the increase of x value in the composition had changed the microstructures to be more faceted. The impedance spectrum is characterized by the appearance of two semicircle arcs whose pattern of evolution changes with rise of values x in the CaCu3-xMn4+xMn4O12 system. Bulk resistance (Rb) and grain boundary resistance (Rgb) of CaCu3- xMn4+xO12 decreases form 824.24 : to 98.68 : and 418.18 : to 2.20 : respectively, with the increasing of x value.
    Matched MeSH terms: Thermogravimetry
  2. Roslinda Shamsudin, Abdul Razak Daud, Muhammad Azmi Abdul Hamid, Saiful Rizam Shamsudin
    Sains Malaysiana, 2007;36:195-200.
    Nitridation behaviour of Al-Mg-Si alloys was studied as a function of temperature by means of thermogravimetry method. A reactive gas, N2-4%H2 at a rate of 10 ml/min was purged into the thermogravimetry analyser chamber. The Al alloys were heated from 25oC to 625oC at the heating rate of 15oC/min and then reduced to 3oC/min until it reached 1500oC. It was found that by varying the amount of Mg and Si in Al-Mg-Si alloys significantly influenced the growth of the composites. A differential thermogravimetric curve shows the Mg containing alloys experienced many steps of chemical reactions. This indicates that besides AlN presence as a major phase, other compounds also exist in the final product. The X-ray diffraction results confirmed the existence of oxide phases such as a-Al2O3, MgAl2O4 and MgO in addition to residual Si and Al metal. The presence of oxide compounds is believed to be due to the reaction between the alloying elements and residual oxygen gas left in the reaction atmosphere. It was also found that Si could play a role in promoting the weight gain of the composite produced. The heating rate has also a profound effect on the weight gain, whereby higher heating rate resulted in low yielded of AlN during the nitridation reaction of the Al-Mg-Si alloys.
    Matched MeSH terms: Thermogravimetry
  3. Toibah AR, Sopyan I, Mel M
    Med J Malaysia, 2008 Jul;63 Suppl A:83-4.
    PMID: 19024995
    The incorporation of magnesium ions into the calcium phosphate structure is of great interest for the development of artificial bone implants. This paper investigates the preparation of magnesium-doped biphasic calcium phosphate (Mg-BCP) via sol gel method at various concentrations of added Mg. The effect of calcinations temperature (ranging from 500 degrees C to 900 degrees C) and concentrations of Mg incorporated into BCP has been studied by the aid of XRD, TGA and infrared spectroscopy (IR) in transmittance mode analysis. The study indicated that the powder was pure BCP and Mg-BCP with 100% purity and high crystallinity. The results also indicated that beta-tricalcium phosphate (beta-TCP) phase can be observed when the powder was calcined at 800 degrees C and above.
    Matched MeSH terms: Thermogravimetry
  4. Dewo P, Sharma PK, van der Tas HF, van der Houwen EB, Timmer M, Magetsari R, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:21-2.
    PMID: 19024964
    The enormous need of orthopaedic (surgical) implants such as osteosynthesis plates is difficult to be fulfilled in developing countries commonly rely on imported ones. One of the alternatives is utilization of local resources, but only after they have been proven safe to use, to overcome this problem. Surface properties are some of the determining factors of safety for those implants. We have succeeded in developing prototype of osteosynthesis plate and the results indicate that Indonesian-made plates need improvement with regards to the surface quality of physical characterization.
    Matched MeSH terms: Thermogravimetry
  5. Saad B, Wai WT, Lim BP
    J Oleo Sci, 2008;57(4):257-61.
    PMID: 18332590
    A comparative study of oxidative decomposition behavior of a wide range of vegetable oils and its correlation to iodine value (IV) using thermogravimetric analysis (TGA) was described. The oxidative decomposition of saturated fatty acids shows weight loss before 385 degrees C while oxidative decomposition of unsaturated fatty acids shows lower rate of weight loss (dWt/dt) compared to saturated fatty acids due to the oxidation process ('up taking ' of oxygen) involving breaking down of double bond to form primary and secondary oxidation products, which leads to some weight gain in the sample before being decomposed. The relative differences in the dWt/dt (%/min) of the both fatty acids give different decomposition steps in TGA thermogram, enabling IV to be determined through the percentage weight loss of saturated fatty acids per 100% of total sample weight (excluding weight loss from moisture and volatile compounds). Therefore, TGA method can be used as an alternative method for IV determination with no sample pre-dilution and solvent consumption. Using the TGA methods, good correlation (r = 0.9889) with standard AOCS method was achieved.
    Matched MeSH terms: Thermogravimetry*
  6. Kusrini E, Saleh MI, Lecomte C
    Spectrochim Acta A Mol Biomol Spectrosc, 2009 Sep 15;74(1):120-6.
    PMID: 19560960 DOI: 10.1016/j.saa.2009.05.024
    (1)H NMR evidence for direct coordination between the Ln(III) ion and the oxygen atoms of the pentaethylene glycol (EO5) ligand and the picrate anion (Pic) in [Ln(Pic)(2)(EO5)][Pic] {Ln=Ce and Nd} complexes are confirmed by single X-ray diffraction. No dissociation of Ln-O bonds in dimethyl sulfoxide-d solution was observed in NMR studies conducted at different temperatures ranging 25-100 degrees C. The Ln(III) ion was chelated to nine oxygen atoms from the EO5 ligand in a hexadentate manner and the two Pic anions in each bidentate and monodentate modes. Both compounds are isostructural and crystallized in monoclinic with space group P2(1)/c. Coordination environment around the Ce1 and Nd1 atoms can be described as tricapped trigonal prismatic and monocapped square antiprismatic geometries, respectively. The crystal packing of the complexes have stabilized by one dimensional (1D) chains along the [001] direction to form intermolecular O-Hcdots, three dots, centeredO and C-Hcdots, three dots, centeredO hydrogen bonding. The molar conductance of the complexes in DMSO solution indicated that both compounds are ionic. The complexes had a good thermal stability. Under the UV-excitation, these complexes exhibited the red-shift emission.
    Matched MeSH terms: Thermogravimetry
  7. Bhat R, Karim AA
    Int J Food Sci Nutr, 2009;60 Suppl 4:9-20.
    PMID: 19462319 DOI: 10.1080/09637480802241626
    Radiation processing has been employed successfully for value addition of food and agricultural products. Preliminary studies were undertaken to evaluate the changes induced by ionizing radiation (up to 30 kGy), in the form of gamma irradiation and electron beam irradiation, on some quality attributes and nutritive values of nutraceutically valued lotus seeds. Significant loss in seed firmness was recorded between control and irradiated seeds, irrespective of radiation source. Similarly, the specific viscosity of irradiated lotus seeds decreased significantly up to a dose of 7.5 kGy. Starch increased after exposure to gamma or electron beam irradiation, whereas the total phenolic contents were decreased. Gamma irradiation revealed an enhancement in protein, while the electron beam showed a decrease. Partial oxidation of the seeds during radiation treatments might have occurred as evidenced from the decomposition profiles (thermogravimetry) during heating. It is evident that ionizing radiation brought about significant and variable changes in the quality and nutritive values of lotus seed. Further exploration of this technology for safety and quality is warranted.
    Matched MeSH terms: Thermogravimetry
  8. Idris SS, Abd Rahman N, Ismail K, Alias AB, Abd Rashid Z, Aris MJ
    Bioresour Technol, 2010 Jun;101(12):4584-92.
    PMID: 20153633 DOI: 10.1016/j.biortech.2010.01.059
    This study aims to investigate the behaviour of Malaysian sub-bituminous coal (Mukah Balingian), oil palm biomass (empty fruit bunches (EFB), kernel shell (PKS) and mesocarp fibre (PMF)) and their respective blends during pyrolysis using thermogravimetric analysis (TGA). The coal/palm biomass blends were prepared at six different weight ratios and experiments were carried out under dynamic conditions using nitrogen as inert gas at various heating rates to ramp the temperature from 25 degrees C to 900 degrees C. The derivative thermogravimetric (DTG) results show that thermal decomposition of EFB, PMF and PKS exhibit one, two and three distinct evolution profiles, respectively. Apparently, the thermal profiles of the coal/oil palm biomass blends appear to correlate with the percentage of biomass added in the blends, thus, suggesting lack of interaction between the coal and palm biomass. First-order reaction model were used to determine the kinetics parameters for the pyrolysis of coal, palm biomass and their respective blends.
    Matched MeSH terms: Thermogravimetry
  9. Siti Rohana Ahmad, Salmah Husseinsyah, Kamarudin Hussin
    MyJurnal
    In this study, dynamic vulcanization process was used to improve the thermal properties of calcium carbonate filled composites. The composites were prepared using a Z-blade mixer at 180oC and rotor speed 50rpm. Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC) techniques were used to analyze the thermal properties of the composites. The vulcanized and unvulcanized PP/EPDM composites were filled by CaCO3 at 0, 10, 20, 30, and 40 %wt. Meanwhile, thermogravimetric analysis indicates that the total weight loss of PP/EPDM/CaCO3 composites decreased with increasing filler loading. Dynamic vulcanized composites have higher thermal stability, while the crystallinity of PP/EPDM/CaCO3 composites were increased as compared to unvulcanized composites. Therefore, the thermal properties were improved by the presence of
    dynamic vulcanization process.
    Matched MeSH terms: Thermogravimetry
  10. Lahijani P, Zainal ZA
    Bioresour Technol, 2011 Jan;102(2):2068-76.
    PMID: 20980143 DOI: 10.1016/j.biortech.2010.09.101
    Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed.
    Matched MeSH terms: Thermogravimetry
  11. Mohamad S, Surikumaran H, Raoov M, Marimuthu T, Chandrasekaram K, Subramaniam P
    Int J Mol Sci, 2011;12(9):6329-45.
    PMID: 22016662 DOI: 10.3390/ijms12096329
    This study focuses on the synthesis and characterization of the inclusion complex of β-Cyclodextrin (β-CD) with dicationic ionic liquid, 3,3'-(1,4-Phenylenebis [methylene]) bis(1-methyl-1H-imidazol-3-ium) di(bromide) (PhenmimBr). The inclusion complex was prepared at room temperature utilizing conventional kneading technique. Proton ((1)H) NMR and 2D ((1)H-(1)H) COSY NMR were the primary characterization tools employed to verify the formation of the inclusion complex. COSY spectra showed strong correlations between protons of imidazolium and protons of β-CD which indicates that the imidazolium ring of PhenmimBr has entered the cavity of β-CD. UV absorption indicated that β-CD reacts with PhenmimBr to form a 2:1 β-CD-PhenmimBr complex with an apparent formation constant of 2.61 × 10(5) mol&(-2) L(2). Other characterization studies such as UV, FT-IR, XRD, TGA, DSC and SEM studies were also used to further support the formation of the β-CD-PhenmimBr inclusion complex.
    Matched MeSH terms: Thermogravimetry
  12. Ahmad MB, Gharayebi Y, Salit MS, Hussein MZ, Shameli K
    Int J Mol Sci, 2011;12(9):6040-50.
    PMID: 22016643 DOI: 10.3390/ijms12096040
    In this paper, Polyimide/Montmorillonite Nanocomposites (PI/MMT NCs), based on aromatic diamine (4-Aminophenyl sulfone) (APS) and aromatic dianhydride (3,3',4,4'-benzophenonetetracarboxylic dianhydride) (BTDA) were prepared using in situ polymerization and solution-dispersion techniques. The prepared PI/MMT NCs films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The XRD results showed that at the content of 1.0 wt % Organo Montmorillonite (OMMT) for two techniques and 3.0 wt % OMMT for the in situ polymerization technique, the OMMT was well-intercalated, exfoliated and dispersed into polyimide matrix. The OMMT agglomerated when its amount exceeded 10 wt % and 3.0 wt % for solution-dispersion and in situ polymerization techniques respectively. These results were confirmed by the TEM images of the prepared PI/MMT NCs. The TGA thermograms indicated that thermal stability of prepared PI/MMT NCs were increased with the increase of loading that, the effect is higher for the samples prepared by in situ polymerization technique.
    Matched MeSH terms: Thermogravimetry
  13. Yanty NA, Marikkar JM, Man YB, Long K
    J Oleo Sci, 2011;60(7):333-8.
    PMID: 21701095
    Lard being an edible fat could be used in different forms in food systems. In this study, composition and thermal analysis of lard stearin (LS) and lard olein (LO) were undertaken to determine some common parameters which would enable their detection in food. A sample of native lard was partitioned into LS and LO using acetone as solvent and the fractions were compared to the original sample with respect to basic physico-chemical parameters, fatty acid and triacylglycerol (TAG) composition, and thermal characteristics. Although LS and LO displayed wider variations in basic physico-chemical parameters, thermal properties and solidification behavior, they do possess some common characteristic features with regard to composition. In spite of the proportional differences in the major fatty acids, both LS and LO are found to possess extremely high amount of palmitic (C16:0) acid at the sn-2 positions of their TAG molecules. Similar to native lard, both LS and LO contained approximately equal proportions of TAG molecules namely, linoleoyl-palmitoyl-oleoyl glycerol (LPO) and dioleoyl-palmitoyl glycerol (OPO). Hence, the calculated LPO/OPO ratio for LS and LO are comparably similar to that of native lard.
    Matched MeSH terms: Thermogravimetry/methods
  14. Kalani M, Yunus R, Abdullah N
    Int J Nanomedicine, 2011;6:1101-5.
    PMID: 21698077 DOI: 10.2147/IJN.S18979
    The aim of this study was to optimize the different process parameters including pressure, temperature, and polymer concentration, to produce fine small spherical particles with a narrow particle size distribution using a supercritical antisolvent method for drug encapsulation. The interaction between different process parameters was also investigated.
    Matched MeSH terms: Thermogravimetry
  15. Hussein MZ, Al Ali SH, Zainal Z, Hakim MN
    Int J Nanomedicine, 2011;6:1373-83.
    PMID: 21796241 DOI: 10.2147/IJN.S21567
    An ellagic acid (EA)-zinc layered hydroxide (ZLH) nanohybrid (EAN) was synthesized under a nonaqueous environment using EA and zinc oxide (ZnO) as the precursors. Powder X-ray diffraction showed that the basal spacing of the nanohybrid was 10.4 Å, resulting in the spatial orientation of EA molecules between the interlayers of 22.5° from z-axis with two negative charges at 8,8' position of the molecules pointed toward the ZLH interlayers. FTIR study showed that the intercalated EA spectral feature is generally similar to that of EA, but with bands slightly shifted. This indicates that some chemical bonding of EA presence between the nanohybrid interlayers was slightly changed, due to the formation of host-guest interaction. The nanohybrid is of mesopores type with 58.8% drug loading and enhanced thermal stability. The release of the drug active, EA from the nanohybrid was found to be sustained and therefore has good potential to be used as a drug controlled-release formulation. In vitro bioassay study showed that the EAN has a mild effect on the hepatocytes cells, similar to its counterpart, free EA.
    Matched MeSH terms: Thermogravimetry
  16. Ebrahimiasl S, Yunus WM, Kassim A, Zainal Z
    Sensors (Basel), 2011;11(10):9207-16.
    PMID: 22163690 DOI: 10.3390/s111009207
    Nanocrystalline SnO(x) (x = 1-2) thin films were prepared on glass substrates by a simple chemical bath deposition method. Triethanolamine was used as complexing agent to decrease time and temperature of deposition and shift the pH of the solution to the noncorrosive region. The films were characterized for composition, surface morphology, structure and optical properties. X-ray diffraction analysis confirms that SnO(x) thin films consist of a polycrystalline structure with an average grain size of 36 nm. Atomic force microscopy studies show a uniform grain distribution without pinholes. The elemental composition was evaluated by energy dispersive X-ray spectroscopy. The average O/Sn atomic percentage ratio is 1.72. Band gap energy and optical transition were determined from optical absorbance data. The film was found to exhibit direct and indirect transitions in the visible spectrum with band gap values of about 3.9 and 3.7 eV, respectively. The optical transmittance in the visible region is 82%. The SnO(x) nanocrystals exhibit an ultraviolet emission band centered at 392 nm in the vicinity of the band edge, which is attributed to the well-known exciton transition in SnO(x). Photosensitivity was detected in the positive region under illumination with white light.
    Matched MeSH terms: Thermogravimetry
  17. Hussein Al Ali SH, Al-Qubaisi M, Hussein MZ, Zainal Z, Hakim MN
    Int J Nanomedicine, 2011;6:3099-111.
    PMID: 22163163 DOI: 10.2147/IJN.S24510
    A new simple preparation method for a hippurate-intercalated zinc-layered hydroxide (ZLH) nanohybrid has been established, which does not need an anion-exchange procedure to intercalate the hippurate anion into ZLH interlayers.
    Matched MeSH terms: Thermogravimetry
  18. Toussi SM, Fakhru’L-Razi A, Luqman Chuah A, Suraya A
    Single-walled carbon nanotubes (SWCNTs) were synthesized by catalytic chemical vapor deposition (CCVD) of ethanol (C2H5OH) over Fe-Mo-MgO catalyst by using argon as a carrier gas. The reaction conditions are important factors that influence the yield and quality of carbon nanotubes. The effects of temperature and flow rate of carrier gas were investigated to increase the yield of carbon nanotubes. The synthesized carbon nanotubes were characterized by scanning electron microscopy, transmission electron microscopy, X-Ray diffraction and thermo-gravimetric analysis. The results showed that the growth of carbon nanotubes was effectively influenced by the reaction ambience and the synthesis condition. The temperature and flow rate of carrier gas played a key role in the yield and quality of synthesized CNTs. The estimated yield of synthesized carbon nanotubes was almost over 70%.
    Matched MeSH terms: Thermogravimetry
  19. Siyamak S, Ibrahim NA, Abdolmohammadi S, Yunus WM, Rahman MZ
    Molecules, 2012 Feb 16;17(2):1969-91.
    PMID: 22343368 DOI: 10.3390/molecules17021969
    In this work, the oil palm empty fruit bunch (EFB) fiber was used as a source of lignocellulosic filler to fabricate a novel type of cost effective biodegradable composite, based on the aliphatic aromatic co-polyester poly(butylene adipate-co-terephtalate) PBAT (Ecoflex™), as a fully biodegradable thermoplastic polymer matrix. The aim of this research was to improve the new biocomposites' performance by chemical modification using succinic anhydride (SAH) as a coupling agent in the presence and absence of dicumyl peroxide (DCP) and benzoyl peroxide (BPO) as initiators. For the composite preparation, several blends were prepared with varying ratios of filler and matrix using the melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 (wt %) and characterized. The effects of fiber loading and coupling agent loading on the thermal properties of biodegradable polymer composites were evaluated using thermal gravimetric analysis (TGA). Scanning Electron Microscopy (SEM) was used for morphological studies. The chemical structure of the new biocomposites was also analyzed using the Fourier Transform Infrared (FTIR) spectroscopy technique. The PBAT biocomposite reinforced with 40 (wt %) of EFB fiber showed the best mechanical properties compared to the other PBAT/EFB fiber biocomposites. Biocomposite treatment with 4 (wt %) succinic anhydride (SAH) and 1 (wt %) dicumyl peroxide (DCP) improved both tensile and flexural strength as well as tensile and flexural modulus. The FTIR analyses proved the mechanical test results by presenting the evidence of successful esterification using SAH/DCP in the biocomposites' spectra. The SEM micrograph of the tensile fractured surfaces showed the improvement of fiber-matrix adhesion after using SAH. The TGA results showed that chemical modification using SAH/DCP improved the thermal stability of the PBAT/EFB biocomposite.
    Matched MeSH terms: Thermogravimetry/methods
  20. Mohammed MA, Salmiaton A, Wan Azlina WA, Mohamad Amran MS
    Bioresour Technol, 2012 Apr;110:628-36.
    PMID: 22326334 DOI: 10.1016/j.biortech.2012.01.056
    Empty fruit bunches (EFBs), a waste material from the palm oil industry, were subjected to pyrolysis and gasification. A high content of volatiles (>82%) increased the reactivity of EFBs, and more than 90% decomposed at 700°C; however, a high content of moisture (>50%) and oxygen (>45%) resulted in a low calorific value. Thermogravimetric analysis demonstrated that the higher the heating rate and the smaller the particle size, the higher the peak and final reaction temperatures. The least squares estimation for a first-order reaction model was used to study the degradation kinetics. The values of activation energy increased from 61.14 to 73.76 and from 40.06 to 47.99kJ/mol when the EFB particle size increased from 0.3 to 1.0mm for holocellulose and lignin degradation stages, respectively. The fuel characteristics of EFB are comparable to those of other biomasses and EFB can be considered a good candidate for gasification.
    Matched MeSH terms: Thermogravimetry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links