Displaying publications 1 - 20 of 154 in total

Abstract:
Sort:
  1. Saifullah B, Arulselvan P, El Zowalaty ME, Fakurazi S, Webster TJ, Geilich B, et al.
    ScientificWorldJournal, 2014;2014:401460.
    PMID: 25050392 DOI: 10.1155/2014/401460
    Tuberculosis is a lethal epidemic, difficult to control disease, claiming thousands of lives every year. We have developed a nanodelivery formulation based on para-aminosalicylic acid (PAS) and zinc layered hydroxide using zinc nitrate salt as a precursor. The developed formulation has a fourfold higher efficacy of PAS against mycobacterium tuberculosis with a minimum inhibitory concentration (MIC) found to be at 1.40 μg/mL compared to the free drug PAS with a MIC of 5.0 μg/mL. The newly developed formulation was also found active against Gram-positive bacteria, Gram-negative bacteria, and Candida albicans. The formulation was also found to be biocompatible with human normal lung cells MRC-5 and mouse fibroblast cells-3T3. The in vitro release of PAS from the formulation was found to be sustained in a human body simulated phosphate buffer saline (PBS) solution at pH values of 7.4 and 4.8. Most importantly the nanocomposite prepared using zinc nitrate salt was advantageous in terms of yield and free from toxic zinc oxide contamination and had higher biocompatibility compared to one prepared using a zinc oxide precursor. In summary, these promising in vitro results are highly encouraging for the continued investigation of para-aminosalicylic acid and zinc layered hydroxide nanocomposites in vivo and eventual preclinical studies.
    Matched MeSH terms: Thermogravimetry
  2. Hasan S, Al Ali H, Al-Qubaisi M, Zobir Hussein M, Ismail M, Zainal Z, et al.
    Int J Nanomedicine, 2012;7:3351-63.
    PMID: 22848164 DOI: 10.2147/IJN.S30809
    A controlled-release formulation of an antihistamine, cetirizine, was synthesized using zinc-layered hydroxide as the host and cetirizine as the guest. The resulting well-ordered nanolayered structure, a cetirizine nanocomposite "CETN," had a basal spacing of 33.9 Å, averaged from six harmonics observed from X-ray diffraction. The guest, cetirizine, was arranged in a horizontal bilayer between the zinc-layered hydroxide (ZLH) inorganic interlayers. Fourier transform infrared spectroscopy studies indicated that the intercalation takes place without major change in the structure of the guest and that the thermal stability of the guest in the nanocomposites is markedly enhanced. The loading of the guest in the nanocomposites was estimated to be about 49.4% (w/w). The release study showed that about 96% of the guest could be released in 80 hours by phosphate buffer solution at pH 7.4 compared with about 97% in 73 hours at pH 4.8. It was found that release was governed by pseudo-second order kinetics. Release of histamine from rat basophilic leukemia cells was found to be more sensitive to the intercalated cetirizine in the CETN compared with its free counterpart, with inhibition of 56% and 29%, respectively, at 62.5 ng/mL. The cytotoxicity assay toward Chang liver cells line show the IC₅₀ for CETN and ZLH are 617 and 670 μg/mL, respectively.
    Matched MeSH terms: Thermogravimetry
  3. Majeed S, Aripin FHB, Shoeb NSB, Danish M, Ibrahim MNM, Hashim R
    Mater Sci Eng C Mater Biol Appl, 2019 Sep;102:254-263.
    PMID: 31146998 DOI: 10.1016/j.msec.2019.04.041
    The aim of the current study was to biosynthesize the silver nanoparticles (AgNPs) from the bacterial strain of Bacillus cereus (ATCC 14579) extracellularly. When bacterial extract was challenged with 1 mM silver nitrate (AgNO3) the color of the extract changed into brown confirms the formation of nanoparticles. These nanoparticles were capped with bovine serum albumin (BSA). UV- visible spectroscopy showed the absorption peak at 420 nm indicates the formation of AgNPs. Fourier Infra -red (FTIR) attenuated total reflection (ATR) spectroscopy showed amide and amine group associated with AgNPs that stabilizes the nanoparticles. Energy dispersive x-ray spectroscopy (EDX) showed a strong peak of silver confirms the presence of silver. Thermo gravimetric analysis (TGA) analysis was used to determine the protein degradation showed less protein degradation at higher temperature confirms the stability of nanoparticles. Transmission electron microscopy (TEM) showed the AgNPs are well dispersed and spherical, and 5.37 nm to 17.19 whereas albumin coated nanoparticles are size ranges from 11.26 nm to 23.85 nm. The anticancer effect of capped AgNPs (cAgNPs) showed the IC50 value against breast cancer MCF-7 at 80 μg/mL, intestinal colon cancer HCT- 116 60 μg/mL, and bone cancer osteosarcoma MG-63 cell line80 μg/mL while against normal fibroblast cells 3T3 cells showed the IC50 value at 140 μg/mL. Lactate dehydrogenase assay (LDH) showed higher toxicity on MCF-7, HCT-116, and MG-63 cells. The apoptotic study clearly showed the blebbing of membrane, chromatin condensation due to the production of reactive oxygen species (ROS) by ethidium bromide and acridine orange dual staining method. The DNA analysis showed the complete fragmentation of the DNA of treated cells when compared with control cells.
    Matched MeSH terms: Thermogravimetry
  4. Mohammadi Arvanag F, Bayrami A, Habibi-Yangjeh A, Rahim Pouran S
    Mater Sci Eng C Mater Biol Appl, 2019 Apr;97:397-405.
    PMID: 30678925 DOI: 10.1016/j.msec.2018.12.058
    Green synthesis of ZnO nanoparticles (NPs) using the plants' extract and their potential application have driven a tremendous interest in recent years. This study reports a green microwave-assisted method for synthesis of ZnO NPs using Silybum marianum L. seed extract. Characteristics of the as-prepared sample was explored in terms of crystalline phase, morphology, composition, surface area, optical, and thermal properties. The particles of the biosynthesized sample (ZnO/extract) had smaller sizes than the chemically produced one (ZnO). The existence of biomolecules from Silybum marianum L seed extract linked to the ZnO/extract sample was approved by various analyses. The ZnO/extract sample was used for treating alloxan-induced diabetic rats and its efficiency was compared with ZnO, extract, and insulin treatments. For this purpose, the levels of blood glucose, insulin, total cholesterol, total triglyceride, and high-density lipoprotein were measured before and after treating with the studied treatment agents and compared with each other. Moreover, the antibacterial activities of both ZnO samples were investigated against E. coli to assess their potential antibacterial application. From the results, ZnO/extract NPs represented an outstanding performance in overcoming the diabetic disorders and good antibacterial activity against the studied bacteria.
    Matched MeSH terms: Thermogravimetry
  5. Eng CC, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WM
    ScientificWorldJournal, 2014;2014:213180.
    PMID: 25254230 DOI: 10.1155/2014/213180
    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.
    Matched MeSH terms: Thermogravimetry
  6. Hussein-Al-Ali SH, El Zowalaty ME, Kura AU, Geilich B, Fakurazi S, Webster TJ, et al.
    Biomed Res Int, 2014;2014:651831.
    PMID: 24900976 DOI: 10.1155/2014/651831
    Nystatin is a tetraene diene polyene antibiotic showing a broad spectrum of antifungal activity. In the present study, we prepared a nystatin nanocomposite (Nyst-CS-MNP) by loading nystatin (Nyst) on chitosan (CS) coated magnetic nanoparticles (MNPs). The magnetic nanocomposites were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), vibrating sample magnetometer (VSM), and scanning electron microscopy (SEM). The XRD results showed that the MNPs and nanocomposite are pure magnetite. The FTIR analysis confirmed the binding of CS on the surface of the MNPs and also the loading of Nyst in the nanocomposite. The Nyst drug loading was estimated using UV-Vis instrumentation and showing a 14.9% loading in the nanocomposite. The TEM size image of the MNPs, CS-MNP, and Nyst-CS-MNP was 13, 11, and 8 nm, respectively. The release profile of the Nyst drug from the nanocomposite followed a pseudo-second-order kinetic model. The antimicrobial activity of the as-synthesized Nyst and Nyst-CS-MNP nanocomposite was evaluated using an agar diffusion method and showed enhanced antifungal activity against Candida albicans. In this manner, this study introduces a novel nanocomposite that can decrease fungus activity on-demand for numerous medical applications.
    Matched MeSH terms: Thermogravimetry
  7. Saifullah B, Hussein MZ, Hussein-Al-Ali SH, Arulselvan P, Fakurazi S
    Drug Des Devel Ther, 2013;7:1365-75.
    PMID: 24255593 DOI: 10.2147/DDDT.S50665
    We report the intercalation and characterization of para-amino salicylic acid (PASA) into zinc/aluminum-layered double hydroxides (ZLDHs) by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D) and PASA nanocomposite prepared by an indirect method (PASA-I). Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation) between ZLDH interlayers. Drug loading was estimated to be 22.8% and 16.6% for PASA-D and PASA-I, respectively. The in vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assays) was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours.
    Matched MeSH terms: Thermogravimetry
  8. Hussein MZ, Al Ali SH, Zainal Z, Hakim MN
    Int J Nanomedicine, 2011;6:1373-83.
    PMID: 21796241 DOI: 10.2147/IJN.S21567
    An ellagic acid (EA)-zinc layered hydroxide (ZLH) nanohybrid (EAN) was synthesized under a nonaqueous environment using EA and zinc oxide (ZnO) as the precursors. Powder X-ray diffraction showed that the basal spacing of the nanohybrid was 10.4 Å, resulting in the spatial orientation of EA molecules between the interlayers of 22.5° from z-axis with two negative charges at 8,8' position of the molecules pointed toward the ZLH interlayers. FTIR study showed that the intercalated EA spectral feature is generally similar to that of EA, but with bands slightly shifted. This indicates that some chemical bonding of EA presence between the nanohybrid interlayers was slightly changed, due to the formation of host-guest interaction. The nanohybrid is of mesopores type with 58.8% drug loading and enhanced thermal stability. The release of the drug active, EA from the nanohybrid was found to be sustained and therefore has good potential to be used as a drug controlled-release formulation. In vitro bioassay study showed that the EAN has a mild effect on the hepatocytes cells, similar to its counterpart, free EA.
    Matched MeSH terms: Thermogravimetry
  9. Hussein Al Ali SH, Al-Qubaisi M, Hussein MZ, Zainal Z, Hakim MN
    Int J Nanomedicine, 2011;6:3099-111.
    PMID: 22163163 DOI: 10.2147/IJN.S24510
    A new simple preparation method for a hippurate-intercalated zinc-layered hydroxide (ZLH) nanohybrid has been established, which does not need an anion-exchange procedure to intercalate the hippurate anion into ZLH interlayers.
    Matched MeSH terms: Thermogravimetry
  10. Bhat R, Karim AA
    Int J Food Sci Nutr, 2009;60 Suppl 4:9-20.
    PMID: 19462319 DOI: 10.1080/09637480802241626
    Radiation processing has been employed successfully for value addition of food and agricultural products. Preliminary studies were undertaken to evaluate the changes induced by ionizing radiation (up to 30 kGy), in the form of gamma irradiation and electron beam irradiation, on some quality attributes and nutritive values of nutraceutically valued lotus seeds. Significant loss in seed firmness was recorded between control and irradiated seeds, irrespective of radiation source. Similarly, the specific viscosity of irradiated lotus seeds decreased significantly up to a dose of 7.5 kGy. Starch increased after exposure to gamma or electron beam irradiation, whereas the total phenolic contents were decreased. Gamma irradiation revealed an enhancement in protein, while the electron beam showed a decrease. Partial oxidation of the seeds during radiation treatments might have occurred as evidenced from the decomposition profiles (thermogravimetry) during heating. It is evident that ionizing radiation brought about significant and variable changes in the quality and nutritive values of lotus seed. Further exploration of this technology for safety and quality is warranted.
    Matched MeSH terms: Thermogravimetry
  11. Samrot AV, Kudaiyappan T, Bisyarah U, Mirarmandi A, Faradjeva E, Abubakar A, et al.
    Int J Nanomedicine, 2020;15:7097-7115.
    PMID: 33061370 DOI: 10.2147/IJN.S259653
    Background: Plant gums consist of polysaccharides which can be used in the preparation of nanocarriers and provide a wide application in pharmaceutical applications including as drug delivery agents and the matrices for drug release. The objectives of the study were to collect plant gums from Araucaria heterophylla L and Prosopis chilensis L and to extract and characterize their polysaccharides. Then to utilize these plant gum-derived polysaccharides for the formulation of nanocarriers to use for drug loading and to examine their purpose in drug delivery in vitro.

    Methods: Plant gum was collected, polysaccharide was extracted, purified, characterized using UV-Vis, FTIR, TGA and GCMS and subjected to various bioactive studies. The purified polysaccharide was used for making curcumin-loaded nanocarriers using STMP (sodium trimetaphosphate). Bioactivities were performed on the crude, purified and drug-loaded nanocarriers. These polysaccharide-based nanocarriers were characterized using UV-Vis spectrophotometer, FTIR, SEM, and AFM. Drug release kinetics were performed for the drug-loaded nanocarriers.

    Results: The presence of glucose, xylose and sucrose was studied from the UV-Vis and GCMS analysis. Purified polysaccharides of both the plants showed antioxidant activity and also antibacterial activity against Bacillus sp. Purified polysaccharides were used for nanocarrier synthesis, where the size and shape of the nanocarriers were studied using SEM analysis and AFM analysis. The size of the drug-loaded nanocarriers was found to be around 200 nm. The curcumin-loaded nanocarriers were releasing curcumin slow and steady.

    Conclusion: The extracted pure polysaccharide of A. heterophylla and P. chilensis acted as good antioxidants and showed antibacterial activity against Bacillus sp. These polysaccharides were fabricated into curcumin-loaded nanocarriers whose size was below 200 nm. Both the drug-loaded nanocarriers synthesized using A. heterophylla and P. chilensis showed antibacterial activity with a steady drug release profile. Hence, these natural exudates can serve as biodegradable nanocarriers in drug delivery.

    Matched MeSH terms: Thermogravimetry
  12. Bera H, Abbasi YF, Gajbhiye V, Ping LL, Salve R, Kumar P, et al.
    Int J Biol Macromol, 2021 Jun 30;181:169-179.
    PMID: 33775757 DOI: 10.1016/j.ijbiomac.2021.03.152
    Curdlan (CN)-doped montmorillonite/poly(N-isopropylacrylamide-co-N,N'-methylene-bis-acrylamide) [CN/MT/P(NIPA-co-MBA)] smart nanocomposites (NCs) were developed for efficient erlotinib HCl (ERL) delivery to lung cancer cells. The placebo NCs demonstrated excellent biodegradability, pH/thermo-responsive swelling profiles and declined molar mass (M¯c) between the crosslinks with increasing temperature. The XRD, FTIR, DSC, TGA, and SEM analyses revealed the architectural chemistry of these NC scaffolds. The NCs loaded with ERL (F-1-F-3) displayed acceptable diameter (734-1120 nm) and zeta potential (+1.16 to -11.17 mV), outstanding drug entrapping capability (DEE, 78-99%) and sustained biphasic ERL elution patterns (Q8h, 53-91%). The ERL release kinetics of the optimal matrices (F-3) obeyed Higuchi model and their transport occurred through anomalous diffusion. The mucin adsorption behaviour of these matrices followed Freudlich isotherms. As compared to pure ERL, the formulation (F-3) displayed an improved anti-proliferative potential and induced apoptosis more effectively on A549 cells. Thus, the CN-doped smart NCs could be utilized as promising drug-cargoes for lung cancer therapy.
    Matched MeSH terms: Thermogravimetry
  13. Jiang H, Mani MP, Jaganathan SK
    Int J Nanomedicine, 2019;14:8149-8159.
    PMID: 31632024 DOI: 10.2147/IJN.S214646
    Introduction: Recently several new approaches were emerging in bone tissue engineering to develop a substitute for remodelling the damaged tissue. In order to resemble the native extracellular matrix (ECM) of the human tissue, the bone scaffolds must possess necessary requirements like large surface area, interconnected pores and sufficient mechanical strength.

    Materials and methods: A novel bone scaffold has been developed using polyurethane (PE) added with wintergreen (WG) and titanium dioxide (TiO2). The developed nanocomposites were characterized through field emission scanning electron microscopy (FESEM), Fourier transform and infrared spectroscopy (FTIR), X-ray diffraction (XRD), contact angle measurement, thermogravimetric analysis (TGA), atomic force microscopy (AFM) and tensile testing. Furthermore, anticoagulant assays, cell viability analysis and calcium deposition were used to investigate the biological properties of the prepared hybrid nanocomposites.

    Results: FESEM depicted the reduced fibre diameter for the electrospun PE/WG and PE/WG/TiO2 than the pristine PE. The addition of WG and TiO2 resulted in the alteration in peak intensity of PE as revealed in the FTIR. Wettability measurements showed the PE/WG showed decreased wettability and the PE/WG/TiO2 exhibited improved wettability than the pristine PE. TGA measurements showed the improved thermal behaviour for the PE with the addition of WG and TiO2. Surface analysis indicated that the composite has a smoother surface rather than the pristine PE. Further, the incorporation of WG and TiO2 improved the anticoagulant nature of the pristine PE. In vitro cytotoxicity assay has been performed using fibroblast cells which revealed that the electrospun composites showed good cell attachment and proliferation after 5 days. Moreover, the bone apatite formation study revealed the enhanced deposition of calcium content in the fabricated composites than the pristine PE.

    Conclusion: Fabricated nanocomposites rendered improved physico-chemical properties, biocompatibility and calcium deposition which are conducive for bone tissue engineering.

    Matched MeSH terms: Thermogravimetry
  14. Ashri A, Amalina N, Kamil A, Fazry S, Sairi MF, Nazar MF, et al.
    Int J Biol Macromol, 2018 Feb;107(Pt B):2412-2421.
    PMID: 29056465 DOI: 10.1016/j.ijbiomac.2017.10.125
    Starch-based hydrogels are promising smart materials for biomedical and pharmaceutical applications, which offer exciting perspectives in biophysical research at molecular level. This work was intended to develop, characterize and explore the properties of hydrogel from starch extracted from new source, Dioscorea hispida Dennst. Starch-mediated hydrogels were successfully synthesized via free radical polymerization method with varying concentrations of acrylic acid (AA),N,N'-methylenebisacrylamide (MBA) and sodium hydroxide (NaOH) in aqueous system. The grafting reaction between starch and AA was examined by observing the decline in intensity peak of hydrogel FTIR spectrum at 3291cm-1 and peak around 1600-1680cm-1, indicating the stretching of hydroxyl group (OH) and stretching of carbon-carbon double bond (CC) respectively. The effects of cross-linker, monomer and NaOH concentration on swelling ratio and gel content in different medium and conditions were also evaluated. The thermal stability and structural morphology of as-synthesized hydrogels were studied by thermogravimetry analysis (TGA) and scanning electron microscopy (SEM). In-vitro cytotoxicity study using small intestine cell line (FHS-74 Int) revealed that the as-formulated eco-friendly-hydrogel was free from any harmful material and safe to use for future product development.
    Matched MeSH terms: Thermogravimetry
  15. Barahuie F, Saifullah B, Dorniani D, Fakurazi S, Karthivashan G, Hussein MZ, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 May 01;74:177-185.
    PMID: 28254283 DOI: 10.1016/j.msec.2016.11.114
    We have synthesized graphene oxide using improved Hummer's method in order to explore the potential use of the resulting graphene oxide as a nanocarrier for an active anticancer agent, chlorogenic acid (CA). The synthesized graphene oxide and chlorogenic acid-graphene oxide nanocomposite (CAGO) were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential thermogravimetry analysis, Raman spectroscopy, powder X-ray diffraction (PXRD), UV-vis spectroscopy and high resolution transmission electron microscopy (HRTEM) techniques. The successful conjugation of chlorogenic acid onto graphene oxide through hydrogen bonding and π-π interaction was confirmed by Raman spectroscopy, FTIR analysis and X-ray diffraction patterns. The loading of CA in the nanohybrid was estimated to be around 13.1% by UV-vis spectroscopy. The release profiles showed favourable, sustained and pH-dependent release of CA from CAGO nanocomposite and conformed well to the pseudo-second order kinetic model. Furthermore, the designed anticancer nanohybrid was thermally more stable than its counterpart. The in vitro cytotoxicity results revealed insignificant toxicity effect towards normal cell line, with a viability of >80% even at higher concentration of 50μg/mL. Contrarily, CAGO nanocomposite revealed enhanced toxic effect towards evaluated cancer cell lines (HepG2 human liver hepatocellular carcinoma cell line, A549 human lung adenocarcinoma epithelial cell line, and HeLa human cervical cancer cell line) compared to its free form.
    Matched MeSH terms: Thermogravimetry
  16. Barahuie F, Dorniani D, Saifullah B, Gothai S, Hussein MZ, Pandurangan AK, et al.
    Int J Nanomedicine, 2017;12:2361-2372.
    PMID: 28392693 DOI: 10.2147/IJN.S126245
    Chitosan (CS) iron oxide magnetic nanoparticles (MNPs) were coated with phytic acid (PTA) to form phytic acid-chitosan-iron oxide nanocomposite (PTA-CS-MNP). The obtained nanocomposite and nanocarrier were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, transmission electron microscopy, and thermogravimetric and differential thermogravimetric analyses. Fourier transform infrared spectra and thermal analysis of MNPs and PTA-CS-MNP nanocomposite confirmed the binding of CS on the surface of MNPs and the loading of PTA in the PTA-CS-MNP nanocomposite. The coating process enhanced the thermal stability of the anticancer nanocomposite obtained. X-ray diffraction results showed that the MNPs and PTA-CS-MNP nanocomposite are pure magnetite. Drug loading was estimated using ultraviolet-visible spectroscopy and showing a 12.9% in the designed nanocomposite. Magnetization curves demonstrated that the synthesized MNPs and nanocomposite were superparamagnetic with saturation magnetizations of 53.25 emu/g and 42.15 emu/g, respectively. The release study showed that around 86% and 93% of PTA from PTA-CS-MNP nanocomposite could be released within 127 and 56 hours by a phosphate buffer solution at pH 7.4 and 4.8, respectively, in a sustained manner and governed by pseudo-second order kinetic model. The cytotoxicity of the compounds on HT-29 colon cancer cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The HT-29 cell line was more sensitive against PTA-CS-MNP nanocomposite than PTA alone. No cytotoxic effect was observed on normal cells (3T3 fibroblast cells). This result indicates that PTA-CS-MNP nanocomposite can inhibit the proliferation of colon cancer cells without causing any harm to normal cell.
    Matched MeSH terms: Thermogravimetry
  17. Yusefi M, Shameli K, Jahangirian H, Teow SY, Umakoshi H, Saleh B, et al.
    Int J Nanomedicine, 2020;15:5417-5432.
    PMID: 32801697 DOI: 10.2147/IJN.S250047
    INTRODUCTION: Green-based materials have been increasingly studied to circumvent off-target cytotoxicity and other side-effects from conventional chemotherapy.

    MATERIALS AND METHODS: Here, cellulose fibers (CF) were isolated from rice straw (RS) waste by using an eco-friendly alkali treatment. The CF network served as an anticancer drug carrier for 5-fluorouracil (5-FU). The physicochemical and thermal properties of CF, pure 5-FU drug, and the 5-FU-loaded CF (CF/5-FU) samples were evaluated. The samples were assessed for in vitro cytotoxicity assays using human colorectal cancer (HCT116) and normal (CCD112) cell lines, along with human nasopharyngeal cancer (HONE-1) and normal (NP 460) cell lines after 72-hours of treatment.

    RESULTS: XRD and FTIR revealed the successful alkali treatment of RS to isolate CF with high purity and crystallinity. Compared to RS, the alkali-treated CF showed an almost fourfold increase in surface area and zeta potential of up to -33.61 mV. SEM images illustrated the CF network with a rod-shaped structure and comprised of ordered aggregated cellulose. TGA results proved that the thermal stability of 5-FU increased within the drug carrier. Based on UV-spectroscopy measurements for 5-FU loading into CF, drug loading encapsulation efficiency was estimated to be 83 ±0.8%. The release media at pH 7.4 and pH 1.2 showed a maximum drug release of 79% and 46%, respectively, over 24 hours. In cytotoxicity assays, CF showed almost no damage, while pure 5-FU killed most of the both normal and cancer cells. Impressively, the drug-loaded sample of CF/5-FU at a 250 µg/mL concentration demonstrated a 58% inhibition against colorectal cancer cells, but only a 23% inhibition against normal colorectal cells. Further, a 62.50 µg/mL concentration of CF/5FU eliminated 71% and 39% of nasopharyngeal carcinoma and normal nasopharyngeal cells, respectively.

    DISCUSSION: This study, therefore, showed the strong potential anticancer activity of the novel CF/5-FU formulations, warranting their further investigation.

    Matched MeSH terms: Thermogravimetry
  18. Dorniani D, Hussein MZ, Kura AU, Fakurazi S, Shaari AH, Ahmad Z
    Drug Des Devel Ther, 2013;7:1015-26.
    PMID: 24106420 DOI: 10.2147/DDDT.S43035
    BACKGROUND: Iron oxide nanoparticles are of considerable interest because of their use in magnetic recording tape, ferrofluid, magnetic resonance imaging, drug delivery, and treatment of cancer. The specific morphology of nanoparticles confers an ability to load, carry, and release different types of drugs.

    METHODS AND RESULTS: We synthesized superparamagnetic nanoparticles containing pure iron oxide with a cubic inverse spinal structure. Fourier transform infrared spectra confirmed that these Fe3O4 nanoparticles could be successfully coated with active drug, and thermogravimetric and differential thermogravimetric analyses showed that the thermal stability of iron oxide nanoparticles coated with chitosan and 6-mercaptopurine (FCMP) was markedly enhanced. The synthesized Fe3O4 nanoparticles and the FCMP nanocomposite were generally spherical, with an average diameter of 9 nm and 19 nm, respectively. The release of 6-mercaptopurine from the FCMP nanocomposite was found to be sustained and governed by pseudo-second order kinetics. In order to improve drug loading and release behavior, we prepared a novel nanocomposite (FCMP-D), ie, Fe3O4 nanoparticles containing the same amounts of chitosan and 6-mercaptopurine but using a different solvent for the drug. The results for FCMP-D did not demonstrate "burst release" and the maximum percentage release of 6-mercaptopurine from the FCMP-D nanocomposite reached about 97.7% and 55.4% within approximately 2,500 and 6,300 minutes when exposed to pH 4.8 and pH 7.4 solutions, respectively. By MTT assay, the FCMP nanocomposite was shown not to be toxic to a normal mouse fibroblast cell line.

    CONCLUSION: Iron oxide coated with chitosan containing 6-mercaptopurine prepared using a coprecipitation method has the potential to be used as a controlled-release formulation. These nanoparticles may serve as an alternative drug delivery system for the treatment of cancer, with the added advantage of sparing healthy surrounding cells and tissue.

    Matched MeSH terms: Thermogravimetry
  19. Nasrullah A, Khan H, Khan AS, Man Z, Muhammad N, Khan MI, et al.
    ScientificWorldJournal, 2015;2015:562693.
    PMID: 25705714 DOI: 10.1155/2015/562693
    The ash of C. polygonoides (locally called balanza) was collected from Lakki Marwat, Khyber Pakhtunkhwa, Pakistan, and was utilized as biosorbent for methylene blue (MB) removal from aqueous solution. The ash was used as biosorbent without any physical or chemical treatment. The biosorbent was characterized by using various techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The particle size and surface area were measured using particle size analyzer and Brunauer-Emmett-Teller equation (BET), respectively. The SEM and BET results expressed that the adsorbent has porous nature. Effects of various conditions such as initial concentration of methylene blue (MB), initial pH, contact time, dosage of biosorbent, and stirring rate were also investigated for the adsorption process. The rate of the adsorption of MB on biomass sample was fast, and equilibrium has been achieved within 1 hour. The kinetics of MB adsorption on biosorbent was studied by pseudo-first- and pseudo-second-order kinetic models and the pseudo-second-order has better mathematical fit with correlation coefficient value (R (2)) of 0.999. The study revealed that C. polygonoides ash proved to be an effective, alternative, inexpensive, and environmentally benign biosorbent for MB removal from aqueous solution.
    Matched MeSH terms: Thermogravimetry
  20. Talib AT, Mokhtar MN, Baharuddin AS, Sulaiman A
    Bioresour Technol, 2014 Oct;169:428-38.
    PMID: 25079208 DOI: 10.1016/j.biortech.2014.07.033
    The effect of different aeration rates on the organic matter (OM) degradation during the active phase of oil palm empty fruit bunch (EFB)-rabbit manure co-composting process under constant forced-aeration system has been studied. Four different aeration rates, 0.13 L min(-1) kg(DM)(-1),0.26 L min(-1) kg(DM)(-1),0.49 L min(-1) kg(DM)(-1) and 0.74 L min(-1) kg(DM)(-1) were applied. 0.26 L min(-1) kg(DM)(-1) provided enough oxygen level (10%) for the rest of composting period, showing 40.5% of OM reduction that is better than other aeration rates. A dynamic mathematical model describing OM degradation, based on the ratio between OM content and initial OM content with correction functions of moisture content, free air space, oxygen and temperature has been proposed.
    Matched MeSH terms: Thermogravimetry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links