Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Ahmed S, Shahid MM, Bakar SA, Arshed N, Basirun WJ, Fouad H
    J Nanosci Nanotechnol, 2020 12 01;20(12):7705-7709.
    PMID: 32711646 DOI: 10.1166/jnn.2020.18570
    Herein, we report the synthesis of SnO, Cu₂O and SnO-Cu₂O mixed oxide thin films on fluorinedoped tin oxide (FTO) substrate by Aerosol-Assisted Chemical Vapour Deposition (AACVD) process using [Cu (dmae)₂(H₂O)] and [Sn (dmae) (OAc)]₂ as molecular precursors for SnO and Cu₂O, respectively at 400 °C. The X-ray diffraction (XRD) pattern can be ascribed to the tetragonal phase of SnO crystals with space group P4 and cubic phase of Cu₂O crystals with space group Pn- 3m/nmm, respectively. The surface morphology characteristics of SnO, Cu₂O and SnO-Cu₂Omixed oxide have been investigated using Field Emission Scanning Electron Microscope (FESEM) which revealed that the SnO was grown homogeneously in cubical shape while Cu₂O possess nano balls shaped morphologies. The UV band gap values of SnO-Cu₂O mixed oxide thin film was found to be 2.6 eV appropriate for photoelectrochemical (PEC) applications. The synthesized material was proposed for PEC applications and has shown enhanced catalytic performance in the presence of light.
    Matched MeSH terms: Tin Compounds
  2. Al-Asbahi BA, Haji Jumali MH, AlSalhi MS
    Polymers (Basel), 2016 Sep 06;8(9).
    PMID: 30974607 DOI: 10.3390/polym8090334
    The effect of TiO₂ nanoparticle (NP) content on the improvement of poly(9,9'-di-n-octylfluorenyl-2,7-diyl) (PFO)/Fluorol 7GA organic light emitting diode (OLED) performance is demonstrated here. The PFO/Fluorol 7GA blend with specific ratios of TiO₂ NPs was prepared via a solution blending method before being spin-coated onto an indium tin oxide (ITO) substrate to act as an emissive layer in OLEDs. A thin aluminum layer as top electrode was deposited onto the emissive layer using the electron beam chamber. Improvement electron injection from the cathode was achieved upon incorporation of TiO₂ NPs into the PFO/Fluorol 7GA blend, thus producing devices with intense luminance and lower turn-on voltage. The ITO/(PFO/Fluorol 7GA/TiO₂)/Al OLED device exhibited maximum electroluminescence intensity and luminance at 25 wt % of TiO₂ NPs, while maximum luminance efficiency was achieved with 15 wt % TiO₂ NP content. In addition, this work proved that the performance of the devices was strongly affected by the surface morphology, which in turn depended on the TiO₂ NP content.
    Matched MeSH terms: Tin Compounds
  3. Ali K, Khan SA, Jafri MZ
    Nanoscale Res Lett, 2014;9(1):175.
    PMID: 24721986 DOI: 10.1186/1556-276X-9-175
    Indium tin oxide (ITO) and titanium dioxide (TiO2) anti-reflective coatings (ARCs) were deposited on a (100) P-type monocrystalline Si substrate by a radio-frequency (RF) magnetron sputtering. Polycrystalline ITO and anatase TiO2 films were obtained at room temperature (RT). The thickness of ITO (60 to 64 nm) and TiO2 (55 to 60 nm) films was optimized, considering the optical response in the 400- to 1,000-nm wavelength range. The deposited films were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM). The XRD analysis showed preferential orientation along (211) and (222) for ITO and (200) and (211) for TiO2 films. The XRD analysis showed that crystalline ITO/TiO2 films could be formed at RT. The crystallite strain measurements showed compressive strain for ITO and TiO2 films. The measured average optical reflectance was about 12% and 10% for the ITO and TiO2 ARCs, respectively.
    Matched MeSH terms: Tin Compounds
  4. Alim S, Kafi AKM, Jose R, Yusoff MM, Vejayan J
    Int J Biol Macromol, 2018 Jul 15;114:1071-1076.
    PMID: 29625222 DOI: 10.1016/j.ijbiomac.2018.03.184
    A novel third generation H2O2 biosensor is fabricated using multiporous SnO2 nanofiber/carbon nanotubes (CNTs) composite as a matrix for the immobilization of redox protein onto glassy carbon electrode. The multiporous nanofiber (MPNFs) of SnO2 is synthesized by electrospinning technique from the tin precursor. This nanofiber shows high surface area and good electrical conductivity. The SnO2 nanofiber/CNT composite increases the efficiency of biomolecule loading due to its high surface area. The morphology of the nanofiber has been evaluated by scanning electron microscopy (SEM). Cyclic Voltammetry and amperometry technique are employed to study and optimize the performance of the fabricated electrode. A direct electron transfer between the protein's redox centre and the glassy carbon electrode is established after fabrication of the electrode. The fabricated electrode shows excellent electrocatalytic reduction to H2O2. The catalysis currents increases linearly to the H2O2 concentration in a wide range of 1.0 10-6-1.4×10-4M and the lowest detection limit was 30nM (S/N=3). Moreover, the biosensor showed a rapid response to H2O2, a good stability and reproducibility.
    Matched MeSH terms: Tin Compounds/chemistry*
  5. Alim S, Kafi AKM, Rajan J, Yusoff MM
    Int J Biol Macromol, 2019 Feb 15;123:1028-1034.
    PMID: 30465828 DOI: 10.1016/j.ijbiomac.2018.11.171
    This work reports on a novel glucose biosensor based on co-immobilization of glucose oxidase (GOx) and horseradish peroxidase with polymerized multiporous nanofiber (MPNFs) of SnO2 onto glassy carbon electrode with chitosan. Multiporous nanofibers of SnO2 were synthesized by electrospinning method from the tin precursor which possesses high surface area good electrical conductivity, and the nanofibers were polymerized with polyaniline (PANI). GOx and HRP were then co-immobilized with the nanofibers on the surface of the glassy carbon electrode by using chitosan. The polymerized nanofibers play a significant role in facilitating the direct electron transfer between the electroactive center of the immobilized enzyme and the electrode surface. The morphology of the nanofiber and polymerized nanofiber has been evaluated by field emission scanning electron microscopy (FESEM). Cyclic Voltammetry and amperometry were employed to study and optimize the performance of the fabricated biosensor. The PANI/SnO2-NF/GOx-HRP/Ch/GC biosensor displayed a linear amperometric response towards the glucose concentration range from 5 to 100 μM with a detection limit of 1.8 μM (S/N = 3). Also, the anti-interference study and real sample analysis was investigated. Furthermore, the biosensor reported in this work exhibited excellent stability, reproducibility, and repeatability.
    Matched MeSH terms: Tin Compounds
  6. Ang HH, Lee EL, Cheang HS
    Int J Toxicol, 2004 Jan-Feb;23(1):65-71.
    PMID: 15162849 DOI: 10.1080/10915810490269654
    The DCA (Drug Control Authority), Malaysia, has implemented the phase 3 registration of traditional medicines on 1 January 1992, with special emphasis on the quality, efficacy, and safety (including the presence of heavy metals) in all pharmaceutical dosage forms of traditional medicine preparations. As such, a total of 100 products in various pharmaceutical dosage forms of a herbal preparation, containing Tongkat Ali, were analyzed for mercury content using cold vapor atomic absorption spectrophotometer. Results showed that 36% of the above products possessed 0.52 to 5.30 ppm of mercury and, therefore, do not comply with the quality requirement for traditional medicines in Malaysia. Out of these 36 products, 5 products that possessed 1.05 to 4.41 ppm of mercury were in fact have already registered with the DCA, Malaysia. However, the rest of the products that contain 0.52 to 5.30 ppm of mercury still have not registered with the DCA, Malaysia. Although this study showed that only 64% of the products complied with the quality requirement for traditional medicines in Malaysia pertaining to mercury, they cannot be assumed safe from mercury contamination because of batch-to-batch inconsistency.
    Matched MeSH terms: Tin Compounds/chemistry
  7. Basar N, Donnelly S, Sirat HM, Thomas EJ
    Org Biomol Chem, 2013 Dec 28;11(48):8476-505.
    PMID: 24212203 DOI: 10.1039/c3ob41931b
    Reactions of 5-benzyloxy-4-methylpent-2-enyl(tributyl)stannane with aldehydes promoted by bismuth(III) iodide were usefully stereoselective in favour of the (E)-1,5-anti-6-benzyloxy-5-methylalk-3-en-1-ols. Similar stereoselectivity was observed for reactions of analogous 5-benzyloxy-4-methylpent-2-enyl bromides with aldehydes when promoted by a low valency bismuth species prepared by reduction of bismuth(III) triiodide with powdered zinc so providing a "tin-free" procedure. The analogous reactions of 4-benzyloxypent-2-enyl(tributyl)stannane with aldehydes promoted by bismuth(III) iodide were also stereoselective but gave lower yields. Attempted 1,6-stereocontrol using these reactions resulted in only modest stereoselectivities. Aspects of the chemistry of the products were studied in particular their stereoselective conversion into aliphatic compounds with methyl bearing stereogenic centres at 1,5,9,13- and 1,3,5-positions along the aliphatic chain. Mechanistically, allylic organobismuth species may be involved in both sets of reactions but this was not confirmed although the similar stereoselectivities observed for both the bismuth(III) iodide mediated reactions of the pent-2-enylstannanes and the low-valency bismuth promoted reactions of the pent-2-enyl bromides are consistent with participation of similar intermediates.
    Matched MeSH terms: Tin Compounds
  8. Chong SW, Lai CW, Abd Hamid SB
    Materials (Basel), 2016 Jan 25;9(2).
    PMID: 28787869 DOI: 10.3390/ma9020069
    A controllable electrochemical synthesis to convert reduced graphene oxide (rGO) from graphite flakes was introduced and investigated in detail. Electrochemical reduction was used to prepare rGO because of its cost effectiveness, environmental friendliness, and ability to produce rGO thin films in industrial scale. This study aimed to determine the optimum applied potential for the electrochemical reduction. An applied voltage of 15 V successfully formed a uniformly coated rGO thin film, which significantly promoted effective electron transfer within dye-sensitized solar cells (DSSCs). Thus, DSSC performance improved. However, rGO thin films formed in voltages below or exceeding 15 V resulted in poor DSSC performance. This behavior was due to poor electron transfer within the rGO thin films caused by poor uniformity. These results revealed that DSSC constructed using 15 V rGO thin film exhibited high efficiency (η = 1.5211%) attributed to its higher surface uniformity than other samples. The addition of natural lemon juice (pH ~ 2.3) to the electrolyte accelerated the deposition and strengthened the adhesion of rGO thin film onto fluorine-doped tin oxide (FTO) glasses.
    Matched MeSH terms: Tin Compounds
  9. Dee CF, Chong SK, Rahman SA, Omar FS, Huang NM, Majlis BY, et al.
    Nanoscale Res Lett, 2014;9(1):469.
    PMID: 25246872 DOI: 10.1186/1556-276X-9-469
    Hierarchical Si/ZnO trunk-branch nanostructures (NSs) have been synthesized by hot wire assisted chemical vapor deposition method for trunk Si nanowires (NWs) on indium tin oxide (ITO) substrate and followed by the vapor transport condensation (VTC) method for zinc oxide (ZnO) nanorods (NRs) which was laterally grown from each Si nanowires (NWs). A spin coating method has been used for zinc oxide (ZnO) seeding. This method is better compared with other group where they used sputtering method for the same process. The sputtering method only results in the growth of ZnO NRs on top of the Si trunk. Our method shows improvement by having the growth evenly distributed on the lateral sides and caps of the Si trunks, resulting in pine-leave-like NSs. Field emission scanning electron microscope image shows the hierarchical nanostructures resembling the shape of the leaves of pine trees. Single crystalline structure for the ZnO branch grown laterally from the crystalline Si trunk has been identified by using a lattice-resolved transmission electron microscope. A preliminary photoelectrochemical (PEC) cell testing has been setup to characterize the photocurrent of sole array of ZnO NR growth by both hydrothermal-grown (HTG) method and VTC method on ITO substrates. VTC-grown ZnO NRs showed greater photocurrent effect due to its better structural properties. The measured photocurrent was also compared with the array of hierarchical Si/ZnO trunk-branch NSs. The cell with the array of Si/ZnO trunk-branch NSs revealed four-fold magnitude enhancement in photocurrent density compared with the sole array of ZnO NRs obtain from VTC processes.
    Matched MeSH terms: Tin Compounds
  10. Ebrahimiasl S, Zakaria A
    Sensors (Basel), 2014;14(2):2549-60.
    PMID: 24509767 DOI: 10.3390/s140202549
    A nanocrystalline SnO2 thin film was synthesized by a chemical bath method. The parameters affecting the energy band gap and surface morphology of the deposited SnO2 thin film were optimized using a semi-empirical method. Four parameters, including deposition time, pH, bath temperature and tin chloride (SnCl2·2H2O) concentration were optimized by a factorial method. The factorial used a Taguchi OA (TOA) design method to estimate certain interactions and obtain the actual responses. Statistical evidences in analysis of variance including high F-value (4,112.2 and 20.27), very low P-value (<0.012 and 0.0478), non-significant lack of fit, the determination coefficient (R2 equal to 0.978 and 0.977) and the adequate precision (170.96 and 12.57) validated the suggested model. The optima of the suggested model were verified in the laboratory and results were quite close to the predicted values, indicating that the model successfully simulated the optimum conditions of SnO2 thin film synthesis.
    Matched MeSH terms: Tin Compounds
  11. Ebrahimiasl S, Yunus WM, Kassim A, Zainal Z
    Sensors (Basel), 2011;11(10):9207-16.
    PMID: 22163690 DOI: 10.3390/s111009207
    Nanocrystalline SnO(x) (x = 1-2) thin films were prepared on glass substrates by a simple chemical bath deposition method. Triethanolamine was used as complexing agent to decrease time and temperature of deposition and shift the pH of the solution to the noncorrosive region. The films were characterized for composition, surface morphology, structure and optical properties. X-ray diffraction analysis confirms that SnO(x) thin films consist of a polycrystalline structure with an average grain size of 36 nm. Atomic force microscopy studies show a uniform grain distribution without pinholes. The elemental composition was evaluated by energy dispersive X-ray spectroscopy. The average O/Sn atomic percentage ratio is 1.72. Band gap energy and optical transition were determined from optical absorbance data. The film was found to exhibit direct and indirect transitions in the visible spectrum with band gap values of about 3.9 and 3.7 eV, respectively. The optical transmittance in the visible region is 82%. The SnO(x) nanocrystals exhibit an ultraviolet emission band centered at 392 nm in the vicinity of the band edge, which is attributed to the well-known exciton transition in SnO(x). Photosensitivity was detected in the positive region under illumination with white light.
    Matched MeSH terms: Tin Compounds/chemical synthesis*; Tin Compounds/chemistry
  12. Fazli FIM, Nayan N, Ahmad MK, Mohd Napi Ml, Hamed NKA, Khalid NS
    Sains Malaysiana, 2016;45:1197-1200.
    Titanium dioxide (TiO2
    ) nanoparticles thin film has been successfully synthesized by a spray pyrolysis deposition method
    by using an air compressor on a fluorine-doped tin oxide (FTO) substrate and was annealed at different temperature. TiO2
    is the most common oxide as an electrode in dye sensitized solar cell (DSSC) which still has chances of improvements to
    increase its efficiency as an electrode. The efficiency of a DSSC was relatively low but modifications on every part of a
    DSSC were currently in research progress and an increase in adsorbed dye molecules was considered a potential. Thus,
    the influences of annealing temperature on structural and morphological properties of TiO2
    have been studied using
    X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively, while the efficiency of
    the films in a solar cell was studied by a solar simulator. The FESEM result showed several degrees of porosity obtained
    by varying the annealing temperature. The crystallinity of TiO2 investigated by XRD showed that the crystallinity of the
    TiO2
    thin films was generally unaffected by the annealing temperature. The relationship between the properties and the
    efficiency of the films as an electrode was also studied
    Matched MeSH terms: Tin Compounds
  13. Gan SM, Najmiah Radiah Mohamad, Nur Akmar Jamil, Burhanuddin Yeop Majlis, Susthitha Menon P
    Sains Malaysiana, 2018;47:2565-2571.
    In this paper, Taguchi experimental design technique was applied for optimization of chromium (Cr)/silver (Ag)/indium
    tin oxide (ITO) SPR sensor for operation in near infrared region. Four factors were considered which include wavelength,
    thickness of Cr, thickness of Ag, and thickness of ITO. Finite-difference-time-domain (FDTD) method was used in numerical
    analysis for minimum reflectance (Rmin) and full-width-at-half-maximum (FWHM) performance parameters. The results
    obtained from the Taguchi method shows that the optimized parameter for Rmin was 785 nm of wavelength, Cr (1 nm),
    Ag (40 nm) and ITO (20 nm), whereas the optimized parameter for FWHM was 785 of wavelength, Cr (0 nm), Ag (40 nm)
    and ITO (0 nm). In short, the optimum parameters for achieving the desired performance of sensor were successfully
    predicted using Taguchi optimization method.
    Matched MeSH terms: Tin Compounds
  14. Ibrahim I, Lim HN, Huang NM, Pandikumar A
    PLoS One, 2016;11(5):e0154557.
    PMID: 27176635 DOI: 10.1371/journal.pone.0154557
    A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 μM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection.
    Matched MeSH terms: Tin Compounds/chemistry
  15. Kafi AKM, Alim S, Jose R, Yusoff MM
    J Nanosci Nanotechnol, 2019 04 01;19(4):2027-2033.
    PMID: 30486943 DOI: 10.1166/jnn.2019.15465
    A multiporous nanofiber (MPNFs) of SnO₂ and chitosan has been used for the immobilization of a redox protein, hemoglobin (Hb), onto the surface of glassy carbon electrode (GCE). The multiporous nanofiber of SnO₂ that has very high surface area is synthesized by using electrospinning technique through controlling the tin precursor concentration. Since the constructed MPNFs of SnO₂ exposes very high surface area, it increases the efficiency for biomolecule-loading. The morphology of fabricated electrodes is examined by SEM observation and the absorbance spectra of Hb/(MPNFs) of SnO₂ are studied by UV-Vis analysis. Cyclic Voltammetry and amperometry are employed to study and optimize the performance of the resulting fabricated electrode. After fabrication of the electrode with the Hb and MPNFs of SnO₂, a direct electron transfer between the protein's redox centre and the glassy carbon electrode was established. The modified electrode has showed a couple of redox peak located at -0.29 V and -0.18 V and found to be sensitive to H₂O₂. The fabricated electrode also exhibited an excellent electrocatalytic activity towards the reduction of H₂O₂. The catalysis currents increased linearly to the H₂O₂ concentration in a wide range of 5.0×10-6-1.5×10-4 M. Overall experimental results show that MPNFs of SnO₂ has a role towards the enhancement of the electroactivity of Hb at the electrode surface. Thus the MPNFs of SnO₂ is a very promising candidate for future biosensor applications.
    Matched MeSH terms: Tin Compounds
  16. Kee YY, Tan SS, Yong TK, Nee CH, Yap SS, Tou TY, et al.
    Nanotechnology, 2012 Jan 20;23(2):025706.
    PMID: 22166812 DOI: 10.1088/0957-4484/23/2/025706
    Low-temperature growth of indium tin oxide (ITO) nanowires (NWs) was obtained on catalyst-free amorphous glass substrates at 250 °C by Nd:YAG pulsed-laser deposition. These ITO NWs have branching morphology as grown in Ar ambient. As suggested by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM), our ITO NWs have the tendency to grow vertically outward from the substrate surface, with the (400) plane parallel to the longitudinal axis of the nanowires. These NWs are low in electrical resistivity (1.6×10⁻⁴ Ω cm) and high in visible transmittance (~90–96%), and were tested as the electrode for organic light emitting devices (OLEDs). An enhanced current density of ~30 mA cm⁻² was detected at bias voltages of ~19–21 V with uniform and bright emission. We found that the Hall mobility of these NWs is 2.2–2.7 times higher than that of ITO film, which can be explained by the reduction of Coulomb scattering loss. These results suggested that ITO nanowires are promising for applications in optoelectronic devices including OLED, touch screen displays, and photovoltaic solar cells.
    Matched MeSH terms: Tin Compounds/chemistry*
  17. Keerthana SP, Yuvakkumar R, Ravi G, Manimegalai M, Pannipara M, Al-Sehemi AG, et al.
    Environ Res, 2021 08;199:111312.
    PMID: 34019891 DOI: 10.1016/j.envres.2021.111312
    Herein we reported the effect of doping and addition of surfactant on SnO2 nanostructures for enhanced photocatalytic activity. Pristine SnO2, Zn-SnO2 and SDS-(Zn-SnO2) was prepared via simple co-precipitation method and the product was annealed at 600 °C to obtain a clear phase. The structural, optical, vibrational, morphological characteristics of the synthesized SnO2, Zn-SnO2 and SDS-(Zn-SnO2) product were investigated. SnO2, Zn-SnO2 and SDS-(Zn-SnO2) possess crystallite size of 20 nm, 19 nm and 18 nm correspondingly with tetragonal structure and high purity. The metal oxygen vibrations were present in FT-IR spectra. The obtained bandgap energies of SnO2, Zn-SnO2 and SDS-(Zn-SnO2) were 3.58 eV, 3.51 eV and 2.81 eV due to the effect of dopant and surfactant. This narrowing of bandgap helped in the photocatalytic activity. The morphology of the pristine sample showed poor growth of nanostructures with high level of agglomeration which was effectively reduced for other two samples. Product photocatalytic action was tested beneath visible light of 300 W. SDS-(Zn-SnO2) nanostructure efficiency showed 90% degradation of RhB dye which is 2.5 times higher than pristine sample. Narrow bandgap, crystallite size, better growth of nanostructures paved the way for SDS-(Zn-SnO2) to degrade the toxic pollutant. The superior performance and individuality of SDS-(Zn-SnO2) will makes it a potential competitor on reducing toxic pollutants from wastewater in future research.
    Matched MeSH terms: Tin Compounds
  18. Lee ZY, Hawari HFB, Djaswadi GWB, Kamarudin K
    Materials (Basel), 2021 Jan 22;14(3).
    PMID: 33498992 DOI: 10.3390/ma14030522
    A tin oxide (SnO2) and reduced graphene oxide (rGO) hybrid composite gas sensor for high-performance carbon dioxide (CO2) gas detection at room temperature was studied. Since it can be used independently from a heater, it emerges as a promising candidate for reducing the complexity of device circuitry, packaging size, and fabrication cost; furthermore, it favors integration into portable devices with a low energy density battery. In this study, SnO2-rGO was prepared via an in-situ chemical reduction route. Dedicated material characterization techniques including field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) were conducted. The gas sensor based on the synthesized hybrid composite was successfully tested over a wide range of carbon dioxide concentrations where it exhibited excellent response magnitudes, good linearity, and low detection limit. The synergistic effect can explain the obtained hybrid gas sensor's prominent sensing properties between SnO2 and rGO that provide excellent charge transport capability and an abundance of sensing sites.
    Matched MeSH terms: Tin Compounds
  19. Matmin J, Jalani MA, Osman H, Omar Q, Ab'lah N, Elong K, et al.
    Nanomaterials (Basel), 2019 Feb 14;9(2).
    PMID: 30769911 DOI: 10.3390/nano9020264
    The photochemical synthesis of two-dimensional (2D) nanostructured from semiconductor materials is unique and challenging. We report, for the first time, the photochemical synthesis of 2D tin di/sulfide (PS-SnS₂-x, x = 0 or 1) from thioacetamide (TAA) and tin (IV) chloride in an aqueous system. The synthesized PS-SnS₂-x were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), a particle size distribution analyzer, X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), thermal analysis, UV⁻Vis diffuse reflectance spectroscopy (DR UV⁻Vis), and photoluminescence (PL) spectroscopy. In this study, the PS-SnS₂-x showed hexagonally closed-packed crystals having nanosheets morphology with the average size of 870 nm. Furthermore, the nanosheets PS-SnS₂-x demonstrated reusable photo-degradation of methylene blue (MB) dye as a water pollutant, owing to the stable electronic conducting properties with estimated bandgap (Eg) at ~2.5 eV. Importantly, the study provides a green protocol by using photochemical synthesis to produce 2D nanosheets of semiconductor materials showing photo-degradation activity under sunlight response.
    Matched MeSH terms: Tin Compounds
  20. Muhammad F, Tahir M, Zeb M, Kalasad MN, Mohd Said S, Sarker MR, et al.
    Sci Rep, 2020 Mar 16;10(1):4828.
    PMID: 32179797 DOI: 10.1038/s41598-020-61602-1
    This paper reports the potential application of cadmium selenide (CdSe) quantum dots (QDs) in improving the microelectronic characteristics of Schottky barrier diode (SBD) prepared from a semiconducting material poly-(9,9-dioctylfluorene) (F8). Two SBDs, Ag/F8/P3HT/ITO and Ag/F8-CdSe QDs/P3HT/ITO, are fabricated by spin coating a 10 wt% solution of F8 in chloroform and 10:1 wt% solution of F8:CdSe QDs, respectively, on a pre-deposited poly(3-hexylthiophene) (P3HT) on indium tin oxide (ITO) substrate. To study the electronic properties of the fabricated devices, current-voltage (I-V) measurements are carried out at 25 °C in dark conditions. The I-V curves of Ag/F8/P3HT/ITO and Ag/F8-CdSe QDs/P3HT/ITO SBDs demonstrate asymmetrical behavior with forward bias current rectification ratio (RR) of 7.42 ± 0.02 and 142 ± 0.02, respectively, at ± 3.5 V which confirm the formation of depletion region. Other key parameters which govern microelectronic properties of the fabricated devices such as charge carrier mobility (µ), barrier height (ϕb), series resistance (Rs) and quality factor (n) are extracted from their corresponding I-V characteristics. Norde's and Cheung functions are also applied to characterize the devices to study consistency in various parameters. Significant improvement is found in the values of Rs, n, and RR by 3, 1.7, and 19 times, respectively, for Ag/F8-CdSe QDs/P3HT/ITO SBD as compared to Ag/F8/P3HT/ITO. This enhancement is due to the incorporation of CdSe QDs having 3-dimensional quantum confinement and large surface-to-volume area. Poole-Frenkle and Richardson-Schottky conduction mechanisms are also discussed for both of the devices. Morphology, optical bandgap (1.88 ± 0.5 eV) and photoluminescence (PL) spectrum of CdSe QDs with a peak intensity at 556 nm are also reported and discussed.
    Matched MeSH terms: Tin Compounds
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links