Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Nipa ST, Akter R, Raihan A, Rasul SB, Som U, Ahmed S, et al.
    Environ Sci Pollut Res Int, 2022 Feb;29(8):10871-10893.
    PMID: 34997495 DOI: 10.1007/s11356-021-17933-1
    Tin oxide (SnO2) with versatile properties is of substantial standing for practical application, and improved features of the material are demonstrated in the current issue through the integration of nanotechnology with bio-resources leading to what is termed as biosynthesis of SnO2 nanoparticles (NPs). This review reveals the recent advances in biosynthesis of SnO2 NPs by chemical precipitation method focused on distinct methodologies, characterization, and reaction mechanism along with a photocatalytic application for dye degradation. According to available literature reviews, numerous bio-based precursors selectively extracted from biological substrates have effectively been applied as capping or reducing agents to achieve the metal oxide NPs. The major precursor obtained from the aqueous extract of root barks of Catunaregam spinosa is found to be 7-hydroxy-6-methoxy-2H-chromen-2-one that has been proposed as a model compound for the reduction of metal ions into nanoparticles due to having highly active functional groups, being abundant in plants (67.475 wt%), easy to extract, and eco benign. In addition, the photocatalytic activity of SnO2 NPs for the degradation of organic dyes, pharmaceuticals, and agricultural contaminants has been discussed in the context of a promising bio-reduction mechanism of the synthesis. The final properties are supposed to depend exclusively upon a number of factors, e.g., particle size (
    Matched MeSH terms: Tin Compounds
  2. Zakaria SNF, Aziz HA, Alazaiza MYD
    Water Environ Res, 2022 Jan;94(1):e1672.
    PMID: 34860438 DOI: 10.1002/wer.1672
    Landfill leachate can threaten the environment and human life. Therefore, this study aims to investigate the efficiency of ozone (O3 ), O3 with zirconium tetrachloride (O3 /ZrCl4 ), and O3 with tin tetrachloride (O3 /SnCl4 ) in remediating the stabilized anaerobic landfill leachate (SAL) from Alor Pongsu, Perak. Hydroxyl radical (OH•) is an important oxidizing agent in the ozonation process. Its presence was tested using tert-butyl alcohol. Results showed that using ZrCl4 and SnCl4 in ozonation boosted the generation of hydroxyl radical, thereby enhancing the oxidation process and pollutant removal inside the sample. The O3 /ZrCl4 mix at chemical oxygen demand (COD) to ZrCl4 ratio of 1:1.5, pH 8-9, and 90-min reaction time resulted in the highest reduction rates of COD and color at 91.9% and 99.6%, respectively. All results demonstrated that the optimum performance occurred at alkaline conditions (pH > 8), proving that OH radicals primarily oxidized the pollutants through an indirect reaction pathway. The biodegradability (biochemical oxygen demand/COD) ratio was also considerably improved from 0.02 (raw) to 0.37 using O3 /ZrCl4 , compared with using O3 alone and using O3 /SnCl4 , which only recorded 0.23 and 0.28, respectively, after the treatment. The study demonstrated that O3 /ZrCl4 was the most efficient combination. PRACTITIONER POINTS: The O3 /ZrCl4 recorded the highest COD and color removals. The O3 /ZrCl4 combination also recorded higher OH• concentrations. The biodegradability of leachate (BOD5 /COD ratio) improved from 0.02 to 0.37.
    Matched MeSH terms: Tin Compounds
  3. Keerthana SP, Yuvakkumar R, Ravi G, Manimegalai M, Pannipara M, Al-Sehemi AG, et al.
    Environ Res, 2021 08;199:111312.
    PMID: 34019891 DOI: 10.1016/j.envres.2021.111312
    Herein we reported the effect of doping and addition of surfactant on SnO2 nanostructures for enhanced photocatalytic activity. Pristine SnO2, Zn-SnO2 and SDS-(Zn-SnO2) was prepared via simple co-precipitation method and the product was annealed at 600 °C to obtain a clear phase. The structural, optical, vibrational, morphological characteristics of the synthesized SnO2, Zn-SnO2 and SDS-(Zn-SnO2) product were investigated. SnO2, Zn-SnO2 and SDS-(Zn-SnO2) possess crystallite size of 20 nm, 19 nm and 18 nm correspondingly with tetragonal structure and high purity. The metal oxygen vibrations were present in FT-IR spectra. The obtained bandgap energies of SnO2, Zn-SnO2 and SDS-(Zn-SnO2) were 3.58 eV, 3.51 eV and 2.81 eV due to the effect of dopant and surfactant. This narrowing of bandgap helped in the photocatalytic activity. The morphology of the pristine sample showed poor growth of nanostructures with high level of agglomeration which was effectively reduced for other two samples. Product photocatalytic action was tested beneath visible light of 300 W. SDS-(Zn-SnO2) nanostructure efficiency showed 90% degradation of RhB dye which is 2.5 times higher than pristine sample. Narrow bandgap, crystallite size, better growth of nanostructures paved the way for SDS-(Zn-SnO2) to degrade the toxic pollutant. The superior performance and individuality of SDS-(Zn-SnO2) will makes it a potential competitor on reducing toxic pollutants from wastewater in future research.
    Matched MeSH terms: Tin Compounds
  4. Velmurugan S, Zhi-Xiang L, C-K Yang T, Juan JC
    Chemosphere, 2021 May;271:129788.
    PMID: 33556631 DOI: 10.1016/j.chemosphere.2021.129788
    Tetracycline (TC), a popularly found drug pollutant, can be contaminated in food and aquatic regions and causes a severe impact on human health. In this research, a visible light active p-stannic oxide/n-copper manganate (p-SnO2/n-CuMnO2) heterojunction was synthesized and has been applied for a signal on photoelectrochemical sensing of antibiotic TC. Firstly, the n-SnO2 microrods were synthesized via a simple and efficient homogeneous precipitation method and the p-CuMnO2 nanoparticles were synthesized by a facile ultrasound-assisted hydrothermal method. The SnO2/CuMnO2 microrods p-n heterojunction was prepared through a simple impregnation method and physicochemical properties of the microrods are characterized by using X-ray diffraction (XRD), Raman, Brunauer-Emmett-Teller (BET), Fourier-transform infrared (FTIR), UV-Vis diffuse reflectance spectroscopy (UVDRS), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Mott-Schottky analyses. The photoelectrochemical sensing performance of SnO2/CuMnO2 microrods was 2.7 times higher than that of as-synthesized pure SnO2 microrods is due to the more visible light absorption ability and p-n heterojunction (synergy). The designed SnO2/CuMnO2/ITO sensor gives photocurrent signals for the detection of TC in the range of 0.01-1000 μM with the detection limit (LOD) of 5.6 nM. The practical applicability of the sensor was monitored in cow milk and the Taipei River water sample.
    Matched MeSH terms: Tin Compounds*
  5. Lee ZY, Hawari HFB, Djaswadi GWB, Kamarudin K
    Materials (Basel), 2021 Jan 22;14(3).
    PMID: 33498992 DOI: 10.3390/ma14030522
    A tin oxide (SnO2) and reduced graphene oxide (rGO) hybrid composite gas sensor for high-performance carbon dioxide (CO2) gas detection at room temperature was studied. Since it can be used independently from a heater, it emerges as a promising candidate for reducing the complexity of device circuitry, packaging size, and fabrication cost; furthermore, it favors integration into portable devices with a low energy density battery. In this study, SnO2-rGO was prepared via an in-situ chemical reduction route. Dedicated material characterization techniques including field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) were conducted. The gas sensor based on the synthesized hybrid composite was successfully tested over a wide range of carbon dioxide concentrations where it exhibited excellent response magnitudes, good linearity, and low detection limit. The synergistic effect can explain the obtained hybrid gas sensor's prominent sensing properties between SnO2 and rGO that provide excellent charge transport capability and an abundance of sensing sites.
    Matched MeSH terms: Tin Compounds
  6. Ahmed S, Shahid MM, Bakar SA, Arshed N, Basirun WJ, Fouad H
    J Nanosci Nanotechnol, 2020 12 01;20(12):7705-7709.
    PMID: 32711646 DOI: 10.1166/jnn.2020.18570
    Herein, we report the synthesis of SnO, Cu₂O and SnO-Cu₂O mixed oxide thin films on fluorinedoped tin oxide (FTO) substrate by Aerosol-Assisted Chemical Vapour Deposition (AACVD) process using [Cu (dmae)₂(H₂O)] and [Sn (dmae) (OAc)]₂ as molecular precursors for SnO and Cu₂O, respectively at 400 °C. The X-ray diffraction (XRD) pattern can be ascribed to the tetragonal phase of SnO crystals with space group P4 and cubic phase of Cu₂O crystals with space group Pn- 3m/nmm, respectively. The surface morphology characteristics of SnO, Cu₂O and SnO-Cu₂Omixed oxide have been investigated using Field Emission Scanning Electron Microscope (FESEM) which revealed that the SnO was grown homogeneously in cubical shape while Cu₂O possess nano balls shaped morphologies. The UV band gap values of SnO-Cu₂O mixed oxide thin film was found to be 2.6 eV appropriate for photoelectrochemical (PEC) applications. The synthesized material was proposed for PEC applications and has shown enhanced catalytic performance in the presence of light.
    Matched MeSH terms: Tin Compounds
  7. Okazaki T, Orii T, Tan SY, Watanabe T, Taguchi A, Rahman FA, et al.
    Anal Chem, 2020 07 21;92(14):9714-9721.
    PMID: 32551577 DOI: 10.1021/acs.analchem.0c01062
    We present an electrochemical long period fiber grating (LPFG) sensor for electroactive species with an optically transparent electrode. The sensor was fabricated by coating indium tin oxide onto the surface of LPFG using a polygonal barrel-sputtering method. LPFG was produced by an electric arc-induced technique. The sensing is based on change in the detection of electron density on the electrode surface during potential application and its reduction by electrochemical redox of analytes. Four typical electroactive species of methylene blue, hexaammineruthenium(III), ferrocyanide, and ferrocenedimethanol were used to investigate the sensor performance. The concentrations of analytes were determined by the modulation of the potential as the change in transmittance around the resonance band of LPFG. The sensitivity of the sensor, particularly to methylene blue, was high, and the sensor responded to a wide concentration range of 0.001 mM to 1 mM.
    Matched MeSH terms: Tin Compounds
  8. Muhammad F, Tahir M, Zeb M, Kalasad MN, Mohd Said S, Sarker MR, et al.
    Sci Rep, 2020 Mar 16;10(1):4828.
    PMID: 32179797 DOI: 10.1038/s41598-020-61602-1
    This paper reports the potential application of cadmium selenide (CdSe) quantum dots (QDs) in improving the microelectronic characteristics of Schottky barrier diode (SBD) prepared from a semiconducting material poly-(9,9-dioctylfluorene) (F8). Two SBDs, Ag/F8/P3HT/ITO and Ag/F8-CdSe QDs/P3HT/ITO, are fabricated by spin coating a 10 wt% solution of F8 in chloroform and 10:1 wt% solution of F8:CdSe QDs, respectively, on a pre-deposited poly(3-hexylthiophene) (P3HT) on indium tin oxide (ITO) substrate. To study the electronic properties of the fabricated devices, current-voltage (I-V) measurements are carried out at 25 °C in dark conditions. The I-V curves of Ag/F8/P3HT/ITO and Ag/F8-CdSe QDs/P3HT/ITO SBDs demonstrate asymmetrical behavior with forward bias current rectification ratio (RR) of 7.42 ± 0.02 and 142 ± 0.02, respectively, at ± 3.5 V which confirm the formation of depletion region. Other key parameters which govern microelectronic properties of the fabricated devices such as charge carrier mobility (µ), barrier height (ϕb), series resistance (Rs) and quality factor (n) are extracted from their corresponding I-V characteristics. Norde's and Cheung functions are also applied to characterize the devices to study consistency in various parameters. Significant improvement is found in the values of Rs, n, and RR by 3, 1.7, and 19 times, respectively, for Ag/F8-CdSe QDs/P3HT/ITO SBD as compared to Ag/F8/P3HT/ITO. This enhancement is due to the incorporation of CdSe QDs having 3-dimensional quantum confinement and large surface-to-volume area. Poole-Frenkle and Richardson-Schottky conduction mechanisms are also discussed for both of the devices. Morphology, optical bandgap (1.88 ± 0.5 eV) and photoluminescence (PL) spectrum of CdSe QDs with a peak intensity at 556 nm are also reported and discussed.
    Matched MeSH terms: Tin Compounds
  9. Sagadevan S, Chowdhury ZZ, Johan MRB, Aziz FA, Roselin LS, Podder J, et al.
    J Nanosci Nanotechnol, 2019 Nov 01;19(11):7139-7148.
    PMID: 31039868 DOI: 10.1166/jnn.2019.16666
    In this work, a simple, co-precipitation technique was used to prepare un-doped, pure tin oxide (SnO₂). As synthesized SnO₂ nanoparticles were doped with Cu2+ ions. Detailed characterization was carried out to observe the crystalline phase, morphological features and chemical constituents with opto-electrical and magnetic properties of the synthesized nanoparticles (NPs). X-ray diffraction analysis showed the existence of crystalline, tetragonal structure of SnO₂. Both the sample synthesized here showed different crystalline morphology. The band gap energy (Eg) of the synthesized sample was estimated and it was found to decrease from 3.60 to 3.26 eV. The band gap energy reduced due to increase in Cu2+ dopant amount inside the SnO₂ lattice. Optical properties were analyzed using absorption spectra and Photoluminescence (PL) spectra. It was observed that Cu2+ ions incorporated SnO₂ NPs exhibited more degradation efficiencies for Rhodamine B (RhB) dye compared to un-doped sample under UV-Visible irradiation. The dielectric characteristics of un-doped, pure and Cu2+ incorporated SnO₂ nanoparticles were studied at different frequency region under different temperatures. The ac conductivity and impedance analysis of pure and Cu2+ incorporated SnO₂ nanoparticles was also studied. The magnetic properties of the synthesized samples were analysed. Both the sample showed ferromagnetic properties. The research indicated that the Cu2+ ions doping can make the sample a promising candidate for using in the field of optoelectronics, magneto electronics, and microwave devices.
    Matched MeSH terms: Tin Compounds
  10. Kafi AKM, Alim S, Jose R, Yusoff MM
    J Nanosci Nanotechnol, 2019 04 01;19(4):2027-2033.
    PMID: 30486943 DOI: 10.1166/jnn.2019.15465
    A multiporous nanofiber (MPNFs) of SnO₂ and chitosan has been used for the immobilization of a redox protein, hemoglobin (Hb), onto the surface of glassy carbon electrode (GCE). The multiporous nanofiber of SnO₂ that has very high surface area is synthesized by using electrospinning technique through controlling the tin precursor concentration. Since the constructed MPNFs of SnO₂ exposes very high surface area, it increases the efficiency for biomolecule-loading. The morphology of fabricated electrodes is examined by SEM observation and the absorbance spectra of Hb/(MPNFs) of SnO₂ are studied by UV-Vis analysis. Cyclic Voltammetry and amperometry are employed to study and optimize the performance of the resulting fabricated electrode. After fabrication of the electrode with the Hb and MPNFs of SnO₂, a direct electron transfer between the protein's redox centre and the glassy carbon electrode was established. The modified electrode has showed a couple of redox peak located at -0.29 V and -0.18 V and found to be sensitive to H₂O₂. The fabricated electrode also exhibited an excellent electrocatalytic activity towards the reduction of H₂O₂. The catalysis currents increased linearly to the H₂O₂ concentration in a wide range of 5.0×10-6-1.5×10-4 M. Overall experimental results show that MPNFs of SnO₂ has a role towards the enhancement of the electroactivity of Hb at the electrode surface. Thus the MPNFs of SnO₂ is a very promising candidate for future biosensor applications.
    Matched MeSH terms: Tin Compounds
  11. Alim S, Kafi AKM, Rajan J, Yusoff MM
    Int J Biol Macromol, 2019 Feb 15;123:1028-1034.
    PMID: 30465828 DOI: 10.1016/j.ijbiomac.2018.11.171
    This work reports on a novel glucose biosensor based on co-immobilization of glucose oxidase (GOx) and horseradish peroxidase with polymerized multiporous nanofiber (MPNFs) of SnO2 onto glassy carbon electrode with chitosan. Multiporous nanofibers of SnO2 were synthesized by electrospinning method from the tin precursor which possesses high surface area good electrical conductivity, and the nanofibers were polymerized with polyaniline (PANI). GOx and HRP were then co-immobilized with the nanofibers on the surface of the glassy carbon electrode by using chitosan. The polymerized nanofibers play a significant role in facilitating the direct electron transfer between the electroactive center of the immobilized enzyme and the electrode surface. The morphology of the nanofiber and polymerized nanofiber has been evaluated by field emission scanning electron microscopy (FESEM). Cyclic Voltammetry and amperometry were employed to study and optimize the performance of the fabricated biosensor. The PANI/SnO2-NF/GOx-HRP/Ch/GC biosensor displayed a linear amperometric response towards the glucose concentration range from 5 to 100 μM with a detection limit of 1.8 μM (S/N = 3). Also, the anti-interference study and real sample analysis was investigated. Furthermore, the biosensor reported in this work exhibited excellent stability, reproducibility, and repeatability.
    Matched MeSH terms: Tin Compounds
  12. Matmin J, Jalani MA, Osman H, Omar Q, Ab'lah N, Elong K, et al.
    Nanomaterials (Basel), 2019 Feb 14;9(2).
    PMID: 30769911 DOI: 10.3390/nano9020264
    The photochemical synthesis of two-dimensional (2D) nanostructured from semiconductor materials is unique and challenging. We report, for the first time, the photochemical synthesis of 2D tin di/sulfide (PS-SnS₂-x, x = 0 or 1) from thioacetamide (TAA) and tin (IV) chloride in an aqueous system. The synthesized PS-SnS₂-x were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), a particle size distribution analyzer, X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), thermal analysis, UV⁻Vis diffuse reflectance spectroscopy (DR UV⁻Vis), and photoluminescence (PL) spectroscopy. In this study, the PS-SnS₂-x showed hexagonally closed-packed crystals having nanosheets morphology with the average size of 870 nm. Furthermore, the nanosheets PS-SnS₂-x demonstrated reusable photo-degradation of methylene blue (MB) dye as a water pollutant, owing to the stable electronic conducting properties with estimated bandgap (Eg) at ~2.5 eV. Importantly, the study provides a green protocol by using photochemical synthesis to produce 2D nanosheets of semiconductor materials showing photo-degradation activity under sunlight response.
    Matched MeSH terms: Tin Compounds
  13. Alim S, Kafi AKM, Jose R, Yusoff MM, Vejayan J
    Int J Biol Macromol, 2018 Jul 15;114:1071-1076.
    PMID: 29625222 DOI: 10.1016/j.ijbiomac.2018.03.184
    A novel third generation H2O2 biosensor is fabricated using multiporous SnO2 nanofiber/carbon nanotubes (CNTs) composite as a matrix for the immobilization of redox protein onto glassy carbon electrode. The multiporous nanofiber (MPNFs) of SnO2 is synthesized by electrospinning technique from the tin precursor. This nanofiber shows high surface area and good electrical conductivity. The SnO2 nanofiber/CNT composite increases the efficiency of biomolecule loading due to its high surface area. The morphology of the nanofiber has been evaluated by scanning electron microscopy (SEM). Cyclic Voltammetry and amperometry technique are employed to study and optimize the performance of the fabricated electrode. A direct electron transfer between the protein's redox centre and the glassy carbon electrode is established after fabrication of the electrode. The fabricated electrode shows excellent electrocatalytic reduction to H2O2. The catalysis currents increases linearly to the H2O2 concentration in a wide range of 1.0 10-6-1.4×10-4M and the lowest detection limit was 30nM (S/N=3). Moreover, the biosensor showed a rapid response to H2O2, a good stability and reproducibility.
    Matched MeSH terms: Tin Compounds/chemistry*
  14. Gan SM, Najmiah Radiah Mohamad, Nur Akmar Jamil, Burhanuddin Yeop Majlis, Susthitha Menon P
    Sains Malaysiana, 2018;47:2565-2571.
    In this paper, Taguchi experimental design technique was applied for optimization of chromium (Cr)/silver (Ag)/indium
    tin oxide (ITO) SPR sensor for operation in near infrared region. Four factors were considered which include wavelength,
    thickness of Cr, thickness of Ag, and thickness of ITO. Finite-difference-time-domain (FDTD) method was used in numerical
    analysis for minimum reflectance (Rmin) and full-width-at-half-maximum (FWHM) performance parameters. The results
    obtained from the Taguchi method shows that the optimized parameter for Rmin was 785 nm of wavelength, Cr (1 nm),
    Ag (40 nm) and ITO (20 nm), whereas the optimized parameter for FWHM was 785 of wavelength, Cr (0 nm), Ag (40 nm)
    and ITO (0 nm). In short, the optimum parameters for achieving the desired performance of sensor were successfully
    predicted using Taguchi optimization method.
    Matched MeSH terms: Tin Compounds
  15. Wan M. Khairul, Foong, Y.D., Lee, O.J., Lim, S.K.J., Daud, A.I., Rahamathullah, R., et al.
    ASM Science Journal, 2018;11(101):124-135.
    MyJurnal
    A new class of liquid crystalline acetylide-imine system was successfully synthesized, characterized
    and deposited on indium tin oxide (ITO) coated substrate via electrochemical deposition
    method for potential organic film application. The relationship between liquid crystal
    molecular structure, phase transition temperature and electrical performance was evaluated.
    The mesomorphic properties were identified via polarized optic microscopy (POM) which displayed
    fan-shaped texture of smectic A phase and their corresponding transition enthalpies
    are in concurrence with DSC and TGA studies. The findings from the conductivity analysis
    revealed that the fabricated film exhibits good electrical performance where it displayed
    linear current-voltage relationship of I-V curve. Therefore, this proposed type of molecular
    framework has given an ideal indication to act as transporting material for application in
    optoelectronic devices.
    Matched MeSH terms: Tin Compounds
  16. Sagadevan S, Chowdhury ZZ, Johan MRB, Khan AA, Aziz FA, F Rafique R, et al.
    PLoS One, 2018;13(10):e0202694.
    PMID: 30273344 DOI: 10.1371/journal.pone.0202694
    A cost-effective, facile hydrothermal approach was made for the synthesis of SnO2/graphene (Gr) nano-composites. XRD diffraction spectra clearly confirmed the presence of tetragonal crystal system of SnO2 which was maintaining its structure in both pure and composite materials' matrix. The stretching and bending vibrations of the functional groups were analyzed using FTIR analysis. FESEM images illustrated the surface morphology and the texture of the synthesized sample. HRTEM images confirmed the deposition of SnO2 nanoparticles over the surface of graphene nano-sheets. Raman Spectroscopic analysis was carried out to confirm the in-plane blending of SnO2 and graphene inside the composite matrix. The photocatalytic performance of the synthesized sample under UV irradiation using methylene blue dye was observed. Incorporation of grapheme into the SnO2 sample had increased the photocatalytic activity compared with the pure SnO2 sample. The electrochemical property of the synthesized sample was evaluated.
    Matched MeSH terms: Tin Compounds/chemistry*
  17. Al-Asbahi BA, Haji Jumali MH, AlSalhi MS
    Polymers (Basel), 2016 Sep 06;8(9).
    PMID: 30974607 DOI: 10.3390/polym8090334
    The effect of TiO₂ nanoparticle (NP) content on the improvement of poly(9,9'-di-n-octylfluorenyl-2,7-diyl) (PFO)/Fluorol 7GA organic light emitting diode (OLED) performance is demonstrated here. The PFO/Fluorol 7GA blend with specific ratios of TiO₂ NPs was prepared via a solution blending method before being spin-coated onto an indium tin oxide (ITO) substrate to act as an emissive layer in OLEDs. A thin aluminum layer as top electrode was deposited onto the emissive layer using the electron beam chamber. Improvement electron injection from the cathode was achieved upon incorporation of TiO₂ NPs into the PFO/Fluorol 7GA blend, thus producing devices with intense luminance and lower turn-on voltage. The ITO/(PFO/Fluorol 7GA/TiO₂)/Al OLED device exhibited maximum electroluminescence intensity and luminance at 25 wt % of TiO₂ NPs, while maximum luminance efficiency was achieved with 15 wt % TiO₂ NP content. In addition, this work proved that the performance of the devices was strongly affected by the surface morphology, which in turn depended on the TiO₂ NP content.
    Matched MeSH terms: Tin Compounds
  18. Chong SW, Lai CW, Abd Hamid SB
    Materials (Basel), 2016 Jan 25;9(2).
    PMID: 28787869 DOI: 10.3390/ma9020069
    A controllable electrochemical synthesis to convert reduced graphene oxide (rGO) from graphite flakes was introduced and investigated in detail. Electrochemical reduction was used to prepare rGO because of its cost effectiveness, environmental friendliness, and ability to produce rGO thin films in industrial scale. This study aimed to determine the optimum applied potential for the electrochemical reduction. An applied voltage of 15 V successfully formed a uniformly coated rGO thin film, which significantly promoted effective electron transfer within dye-sensitized solar cells (DSSCs). Thus, DSSC performance improved. However, rGO thin films formed in voltages below or exceeding 15 V resulted in poor DSSC performance. This behavior was due to poor electron transfer within the rGO thin films caused by poor uniformity. These results revealed that DSSC constructed using 15 V rGO thin film exhibited high efficiency (η = 1.5211%) attributed to its higher surface uniformity than other samples. The addition of natural lemon juice (pH ~ 2.3) to the electrolyte accelerated the deposition and strengthened the adhesion of rGO thin film onto fluorine-doped tin oxide (FTO) glasses.
    Matched MeSH terms: Tin Compounds
  19. Zhang X, Wu X, Centeno A, Ryan MP, Alford NM, Riley DJ, et al.
    Sci Rep, 2016;6:23364.
    PMID: 26997140 DOI: 10.1038/srep23364
    Copper zinc tin sulfide (CZTS) is a promising material for harvesting solar energy due to its abundance and non-toxicity. However, its poor performance hinders their wide application. In this paper gold (Au) nanoparticles are successfully incorporated into CZTS to form Au@CZTS core-shell nanostructures. The photocathode of Au@CZTS nanostructures exhibits enhanced optical absorption characteristics and improved incident photon-to-current efficiency (IPCE) performance. It is demonstrated that using this photocathode there is a significant increase of the power conversion efficiency (PCE) of a photoelectrochemical solar cell of 100% compared to using a CZTS without Au core. More importantly, the PCE of Au@CZTS photocathode improved by 15.8% compared to standard platinum (Pt) counter electrode. The increased efficiency is attributed to plasmon resonance energy transfer (PRET) between the Au nanoparticle core and the CZTS shell at wavelengths shorter than the localized surface plasmon resonance (LSPR) peak of the Au and the semiconductor bandgap.
    Matched MeSH terms: Tin Compounds
  20. Ibrahim I, Lim HN, Huang NM, Pandikumar A
    PLoS One, 2016;11(5):e0154557.
    PMID: 27176635 DOI: 10.1371/journal.pone.0154557
    A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 μM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection.
    Matched MeSH terms: Tin Compounds/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links