Displaying publications 1 - 20 of 315 in total

Abstract:
Sort:
  1. Farah Wahida I, Aminuddin BS, Munirah S, Chua KH, Fuzina NH, Isa MR, et al.
    Med J Malaysia, 2004 May;59 Suppl B:190-1.
    PMID: 15468882
    This study was to assess collagen type II and collagen type I gene expression in tissue-engineered human auricular: cartilage formed via tissue engineering technique. Large-scale culture expansions were transformed into 3D in vitro construct and were implanted subcutaneously on the dorsal of athymic mice. After 8 weeks, explanted construct was processed in the same manner of native cartilage to facilitate cells for gene expression analysis. Isolated cells from in vivo construct demonstrated expression of type II collagen gene comparable to native cartilage. This study verified that tissue-engineered auricular cartilage expressed cartilage specific gene, collagen type II after in vivo maturation.
    Matched MeSH terms: Tissue Engineering/methods*
  2. Nur Adelina AN, Aminuddin BS, Munirah S, Chua KH, Fuzina NH, Saim L, et al.
    Med J Malaysia, 2004 May;59 Suppl B:188-9.
    PMID: 15468881
    Cartilage is regularly needed for reconstructive surgery. Basic research in tissue engineering is necessary to develop its full potential. We presented here the expression profile of type II collagen gene and type I collagen gene in human auricular monolayer culture expansion. Cultured chondrocytes documented a reduction in the expression level of collagen type II gene whilst collagen type I gene was gradually expressed through all the passages. This study demonstrated that human auricular chondrocytes lose its phenotypic expression during monolayer culture expansion. Further studies are required to enhance cartilage specific gene expression, collagen type II throughout the in vitro culture.
    Matched MeSH terms: Tissue Engineering/methods*
  3. Norazril SA, Aminuddin BS, Norhayati MM, Mazlyzam AL, Fauziah O, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:186-7.
    PMID: 15468880
    Chitosan has similar structure to glycosaminoglycans in the tissue, thus may be a good candidates as tissue engineering scaffold. However, to improve their cell attachment ability, we try to incorporate this natural polymer with collagen by combining it via cross-linking process. In this preliminary study we evaluate the cell attachment ability of chitosan-collagen scaffold versus chitosan scaffold alone. Chitosan and collagen were dissolved in 1% acetic acid and then were frozen for 24 hours before the lyophilizing process. Human skin fibroblasts were seeded into both scaffold and were cultured in F12: DMEM (1:1). Metabolic activity assay were used to evaluate cell attachment ability of scaffold for a period of 1, 3, 7 and 14 days. Scanning electron micrographs shows good cell morphology on chitosan-collagen hybrid scaffold. In conclusion, the incorporation of collagen to chitosan will enhance its cell attachment ability and will be a potential scaffold in tissue engineering.
    Matched MeSH terms: Tissue Engineering/methods*
  4. Phang MY, Ng MH, Tan KK, Aminuddin BS, Ruszymah BH, Fauziah O
    Med J Malaysia, 2004 May;59 Suppl B:198-9.
    PMID: 15468886
    Tricalcium phosphate/hydroxyapatite (TCP/HA), hydroxyapatite (HA), chitosan and calcium sulphate (CaSO4) were studied and evaluated for possible bone tissue engineered construct acting as good support for osteogenic cells to proliferate, differentiate, and eventually spread and integrate into the scaffold. Surface morphology visualized by SEM showed that scaffold materials with additional fibrin had more cell densities attached than those without, depicting that the presence of fibrin and collagen fibers were truly a favourite choice of cells to attach. In comparison of various biomaterials used incorporated with fibrin, TCP/HA had the most cluster of cells attached.
    Matched MeSH terms: Tissue Engineering/methods*
  5. Shamsul BS, Aminuddin BS, Ng MH, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:196-7.
    PMID: 15468885
    Bone marrow harvested by aspiration contains connective tissue progenitor cells which can be selectively isolated and induced to express bone phenotype in vitro. The osteoblastic progenitor can be estimated by counting the number of cells attach using the haemacytometer. This study was undertaken to test the hypothesis that human aging is associated with a significant change on the number of osteoblastic progenitors in the bone marrow. Bone marrow aspirates were harvested from 38 patients, 14 men (age 11-70) and 24 women (age 10-70) and cultured in F12: DMEM (1:1). In total 15 bone marrow samples have been isolated from patients above 40 years old (men/women) of age. Fourteen (93.3%) of this samples failed to proliferate. Only one (6.7%) bone marrow sample from a male patient, aged 59 years old was successfully cultured. Seventy percent (16/23) of the samples from patient below than 40 years old were successfully cultured. However, our observation on the survival rate for cells of different gender from patient below 40 years old does not indicate any significant difference. From this study, we conclude that the growth of bone marrow stromal cells possibly for bone engineering is better from bone marrow aspirates of younger patient.
    Matched MeSH terms: Tissue Engineering*
  6. Annuar N, Spier RE
    Med J Malaysia, 2004 May;59 Suppl B:204-5.
    PMID: 15468889
    Selections of collagen available commercially were tested for their biocompatibility as scaffold to promote cell growth in vitro via simple collagen fast test and cultivation of mammalian cells on the selected type of collagen. It was found that collagen type C9791 promotes the highest degree of aggregation as well as cells growth. This preliminary study also indicated potential use of collagen as scaffold in engineered tissue.
    Matched MeSH terms: Tissue Engineering/methods*
  7. Muhd Fakhruddin BH, Aminuddin BS, Mazlyzam AL, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:182-3.
    PMID: 15468878
    Skin is the largest organ in human system and plays a vital role as a barrier against environment and pathogens. Skin regeneration is important in tissue engineering especially in cases of chronic wounds. With the tissue engineering technology, these skins equivalent have been use clinically to repair burns and wounds. Consented redundant skin samples were obtained from patients aged 9 to 65 years old. Skin samples were digested with dispase, thus separating the epidermis and the dermis layer. The epidermis layer was trypsinized and cultured in DKSFM in 6-well plate at 37 degrees C and 5% CO2. Once confluent, the culture were trypsinized and the cells were pooled. Cells were counted using haemacytometer. Doubling time and viability were calculated and analysed. From the result, we conclude that doubling time and viability of in vitro keratinocytes cultured in DKSFM media is not age dependant.
    Matched MeSH terms: Tissue Engineering/methods*
  8. Al-Salihi KA, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:202-3.
    PMID: 15468888
    In this study the surface properties of two particulate coral and polyhydroxybutrate (PHB) were studied in order to characterize them prior to use in composite production. Coral powder and PHB particle were evaluated using scanning electron microscopy and confocal laser scanning microscopy, to measure surface porosity and pores size. The results showed that coral powder has multiple pleomorphic micropores cross each others give appearance of micro-interconnectivity. Some pore reached to 18 microm with an average porosity of 70%. PHB revealed multiple different size pores extended to the depth, with an average some times reach 25 microm and porosity 45%. These findings demonstrate that both coral and PHB have excellent pores size and porosity that facilitate bone in growth, vascular invasion and bone development. We believe that incorporation of coral powder into PHB will make an excellent composite scaffold for tissue engineering.
    Matched MeSH terms: Tissue Engineering/methods*
  9. Al-Salihi KA
    Med J Malaysia, 2004 May;59 Suppl B:200-1.
    PMID: 15468887
    In the present study, natural coral of porites species was used as scaffold combined with in vitro expanded bone marrow stem cell derived osteoblasts (BMSC-DO), to develop a tissue-engineered bone graft in a rat model. Coral was molded into the shape of rat mandible seeded with 5x10(6) /ml BMSC-DO subsequently implanted subcutaneously in the back of 5 week Sprague dawely rats for 3 months. Coral alone was implanted as a control. The implants were harvest and processed for gross inspection and histological observations. The results showed that newly bone grafts were successfully formed coral seeded with cells group showed smooth highly vascularized like bone tissue. Histological sections revealed mature bone formation and lots of blood vessel, the bone formation occurred in the manner resemble intramembraneous bone formation. This study demonstrates that coral can be use as a suitable scaffold material for delivering bone marrow mesenchymal stem cells in tissue engineering.
    Matched MeSH terms: Tissue Engineering/methods*
  10. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:194-5.
    PMID: 15468884
    We have previously formulated an optimized human chondrocytes growth medium based on 2% fetal bovine serum supplementation. For clinical usage, the animal serum must be replaced by patient own serum. We investigated the effects of human serum concentration for human nasal septum chondrocytes monolayer culture and cartilage reconstruction. Human serum demonstrated a dose dependent manner in promoting chondrocytes growth and cartilage engineering.
    Matched MeSH terms: Tissue Engineering/methods*
  11. Saim L, Aminuddin BS, Munirah S, Chua KH, Izuddin Fahmy A, Fuzina NH, et al.
    Med J Malaysia, 2004 May;59 Suppl B:192-3.
    PMID: 15468883
    To date there is no optimal approach to reconstruct an external ear. However, advances in tissue engineering technologies have indicated that in vitro autologous elastic cartilage might be of great importance in the future treatment of these patients. The aim of this study was to observe monolayer expansion of auricular cartilage and to evaluate engineered cartilage using standard histochemical study.
    Matched MeSH terms: Tissue Engineering/methods*
  12. Norhayati MM, Mazlyzam AL, Asmah R, Fuzina H, Aminuddin BS, Ruszymah BH, et al.
    Med J Malaysia, 2004 May;59 Suppl B:184-5.
    PMID: 15468879
    Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) evaluation were carried out in the in vivo skin construct using fibrin as biomaterial. To investigate its progressive remodeling, nude mice were grafted and the Extracellular Matrix (ECM) components were studied at four and eight weeks post-grafting. It was discovered that by 4 weeks of remodeling the skin construct acquired its native structure.
    Matched MeSH terms: Tissue Engineering*
  13. Hashim N, Sabudin S, Ibrahim S, Zin NM, Bakar SH, Fazan F
    Med J Malaysia, 2004 May;59 Suppl B:103-4.
    PMID: 15468839
    Hydroxyapatite (HA; Ca10(PO4)6(OH)2), is one of the significant implant materials used in Orthopaedics and Dental applications. However, synthetically produced HA may not be stable under ionic environment, which it will unavoidably encounter during its applications. In this paper, the in vitro effects of three HA materials derived from different resources, i.e. commercial HA (HAC), synthesised HA from pure chemicals (HAS) and synthesised HA from kapur sireh; derived traditionally from natural limestone (HAK), were studied. The HA disc samples were prepared and immersed in simulated body fluid (SBF) for 31-day period. The evaluation conducted focuses on the changes of the pH and the Calcium ion (Ca-ion) and Phosphate ion (P-ion) concentrations in the SBF solution, as well as the XRD and SEM data representing the reactions on the HA materials. From the XRD, it was found that HAK has the smallest crystallite sizes, which in turn affect the pH of the SBF during immersion. The Ca and P-ion concentrations generally decrease over time at different rates for different HA. Upon 1-day immersion in SBF, apatite growth was observed onto all three surfaces, which became more pronounced after 3-day immersion. However, the appetites formed were observed to be different in shapes and sizes. The reasons for the difference in the apatite-crystals and their subsequent effects on cells are still being investigated.
    Matched MeSH terms: Tissue Engineering
  14. Hollister SJ, Lin CY, Lin CY, Schek RD, Taboas JM, Flanagan CL, et al.
    Med J Malaysia, 2004 May;59 Suppl B:131-2.
    PMID: 15468853
    Matched MeSH terms: Tissue Engineering/methods*
  15. Idris B, Rusnah M, Reusmaazran YM, Rohaida CH
    Med J Malaysia, 2004 May;59 Suppl B:67-8.
    PMID: 15468822
    Matched MeSH terms: Tissue Engineering/methods*
  16. Ambrosio L, Battista S, Borzacchiello A, Borselli C, Causa F, De Santis R, et al.
    Med J Malaysia, 2004 May;59 Suppl B:71-2.
    PMID: 15468824
    Matched MeSH terms: Tissue Engineering/instrumentation*
  17. Di Silvio L, Gurav N, Sambrook R
    Med J Malaysia, 2004 May;59 Suppl B:89-90.
    PMID: 15468832
    The ability to regenerate new bone for skeletal use is a major clinical need. In this study, two novel porous calcium phosphate materials pure HA and biphasic HA/beta-Tricalcium phosphate (HA/beta -TCP) were evaluated as potential scaffolds for cell-seeded bone substitutes using human osteoblast-like cells (HOS) and primary human mesenchymal stem cells (hMSCs). A high rate of proliferation was observed on both scaffolds. A greater increase in alkaline phosphatase (ALP- an indicator of osteoblast differentiation) was observed on HA/beta -TCP compared to HA. This observation indicates that HA/TCP may play a role in inducing osteoblastic differentiation. Although further evaluation is required both materials show potential as innovative synthetic substitutes for tissue engineered scaffolds.
    Matched MeSH terms: Tissue Engineering/standards*
  18. Vert M
    Med J Malaysia, 2004 May;59 Suppl B:73-4.
    PMID: 15468825
    Matched MeSH terms: Tissue Engineering/instrumentation*
  19. Al-Salihi KA, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:45-6.
    PMID: 15468811
    This study was designed to evaluate the ability of natural coral implant to provide an environment for marrow cells to differentiate into osteoblasts and function suitable for mineralized tissue formation. DNA content, alkaline phosptatase (ALP) activity, calcium (Ca) content and mineralized nodules, were measured at day 3, day 7 and day 14, in rat bone marrow stromal cells cultured with coral discs glass discs, while cells alone and coral disc alone were cultured as control. DNA content, ALP activity, Ca content measurements showed no difference between coral, glass and cells groups at 3 day which were higher than control (coral disc alone), but there were higher measurement at day 7 and 14 in the cell cultured on coral than on glass discs, control cells and control coral discs. Mineralized nodules formation (both in area and number) was more predominant on the coral surface than in control groups. These results showed that natural coral implant provided excellent and favorable situation for marrow cell to differentiate to osteoblasts, lead to large amount of mineralized tissue formation on coral surface. This in vitro result could explain the rapid bone bonding of coral in vivo.
    Matched MeSH terms: Tissue Engineering*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links