Displaying publications 1 - 20 of 385 in total

Abstract:
Sort:
  1. Smn Mydin RB, Sreekantan S, Hazan R, Farid Wajidi MF, Mat I
    Oxid Med Cell Longev, 2017;2017:3708048.
    PMID: 28337249 DOI: 10.1155/2017/3708048
    Cell growth and proliferative activities on titania nanotube arrays (TNA) have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense) was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics.
    Matched MeSH terms: Titanium/chemistry*
  2. Chai WL, Moharamzadeh K, Brook IM, Emanuelsson L, Palmquist A, van Noort R
    J. Periodontol., 2010 Aug;81(8):1187-95.
    PMID: 20450401 DOI: 10.1902/jop.2010.090648
    In dental implant treatment, the long-term prognosis is dependent on the biologic seal formed by the soft tissue around the implant. The in vitro investigation of the implant-soft tissue interface is usually carried out using a monolayer cell-culture model that lacks a polarized-cell phenotype. This study developed a tissue-engineered three-dimensional oral mucosal model (3D OMM) to investigate the implant-soft tissue interface.
    Matched MeSH terms: Titanium
  3. Majidnia Z, Idris A, Majid M, Zin R, Ponraj M
    Appl Radiat Isot, 2015 Nov;105:105-113.
    PMID: 26275818 DOI: 10.1016/j.apradiso.2015.06.028
    In this paper, both maghemite (γ-Fe2O3) and titanium oxide (TiO2) nanoparticles were synthesized and mixed in various ratios and embedded in PVA and alginate beads. Batch sorption experiments were applied for removal of barium ions from aqueous solution under sunlight using the beads. The process has been investigated as a function of pH, contact time, temperature, initial barium ion concentration and TiO2:γ-Fe2O3 ratios (1:10, 1:60 and 1). The recycling attributes of these beads were also considered. Furthermore, the results revealed that 99% of the Ba(II) was eliminated in 150min at pH 8 under sunlight. Also, the maghemite and titania PVA-alginate beads can be readily isolated from the aqueous solution after the process and reused for at least 7 times without significant losses of their initial properties. The reduction of Ba(II) with maghemite and titania PVA-alginate beads fitted the pseudo first order and second order Langmuir-Hinshelwood (L-H) kinetic model.
    Matched MeSH terms: Titanium
  4. Khalajabadi SZ, Abu ABH, Ahmad N, Yajid MAM, Hj Redzuan NB, Nasiri R, et al.
    J Mech Behav Biomed Mater, 2018 Jan;77:360-374.
    PMID: 28985616 DOI: 10.1016/j.jmbbm.2017.09.032
    This study was aimed to improve of the corrosion resistance and mechanical properties of Mg/15TiO2/5HA nanocomposite by silicon and magnesium oxide coatings prepared using a powder metallurgy method. The phase evolution, chemical composition, microstructure and mechanical properties of uncoated and coated samples were characterized. Electrochemical and immersion tests used to investigate the in vitro corrosion behavior of the fabricated samples. The adhesion strength of ~36MPa for MgO and ~32MPa for Si/MgO coatings to substrate was measured by adhesion test. Fabrication a homogenous double layer coating with uniform thicknesses consisting micro-sized particles of Si as outer layer and flake-like particles of MgO as the inner layer on the surface of Mg/15TiO2/5HA nanocomposite caused the corrosion resistance and ductility increased whereas the ultimate compressive stress decreased. However, after immersion in SBF solution, Si/MgO-coated sample indicates the best mechanical properties compared to those of the uncoated and MgO-coated samples. The increase of cell viability percentage of the normal human osteoblast (NHOst) cells indicates the improvement in biocompatibility of Mg/15TiO2/5HA nanocomposite by Si/MgO coating.
    Matched MeSH terms: Titanium
  5. Farea M, Masudi S, Wan Bakar WZ
    Aust Endod J, 2010 Aug;36(2):48-53.
    PMID: 20666748 DOI: 10.1111/j.1747-4477.2009.00187.x
    The aim of this study was to evaluate in vitro the apical sealing ability of cold lateral and system B root filling techniques using dye penetration. Eighty-six extracted single-rooted human teeth were prepared and randomly divided into two experimental groups to be obturated by cold lateral condensation (n = 33) and system B (n = 33). The remaining 20 teeth served as positive and negative controls. The roots were embedded for 72 h in methylene blue dye solution and sectioned transversely for dye penetration evaluation using stereomicroscope. The results of this study showed that cold lateral condensation leaked significantly more (P < 0.001) than system B technique.
    Matched MeSH terms: Titanium/therapeutic use; Titanium/chemistry
  6. Mustafa A, Lung CY, Mustafa NS, Mustafa BA, Kashmoola MA, Zwahlen RA, et al.
    Clin Oral Implants Res, 2016 Mar;27(3):303-9.
    PMID: 25393376 DOI: 10.1111/clr.12525
    OBJECTIVES: To investigate the effect of eicosapentaenoic acid (EPA)-coated Ti implants on osteoconduction in white New Zealand rabbit mandibles.

    MATERIAL AND METHODS: Sandblasted and cleansed planar titanium specimens with a size of 5 × 5 × 1 mm were coated on one side with 0.25 vol% eicosapentaenoic acid (EPA). The other side of the specimens was kept highly polished (the control side). These specimens were inserted in rabbit mandibles. Twelve rabbits were randomly assigned into three study groups (n = 4). The rabbits were sacrificed at 4, 8, and 12 weeks. The harvested specimens with the implants were assessed for new bone formation on both sides of the implant using CBCT, conventional radiographs, and the biaxial pullout test. The results were statistically analyzed by a nonparametric Kruskal-Wallis test and Friedman's test as multiple comparisons and by Brunner-Langer nonparametric mixed model approach (R Software).

    RESULTS: A significant osteoconductive bone formation was found on the EPA-coated Ti implant surface (P < 0.05) at 8 weeks when compared to the polished surface (control). Biaxial pullout test results showed a significant difference (P < 0.05) after 8 and 12 weeks with a maximum force of 243.8 N, compared to 143.25 N after 4 week.

    CONCLUSION: EPA implant coating promoted osteoconduction on the Ti implant surfaces, enhancing the anchorage of the implant to the surrounding bone in white New Zealand rabbits.

    Matched MeSH terms: Titanium
  7. Ishak MI, Kadir MR, Sulaiman E, Kasim NH
    Int J Oral Maxillofac Implants, 2013 May-Jun;28(3):e151-60.
    PMID: 23748334 DOI: 10.11607/jomi.2304
    To compare the extramaxillary approach with the widely used intrasinus approach via finite element method.
    Matched MeSH terms: Titanium
  8. Younis L, Taher A, Abu-Hassan MI, Tin O
    J Contemp Dent Pract, 2009;10(4):35-42.
    PMID: 19575052
    The purpose of this study was to compare bone healing and coronal bone remodeling following both immediate and delayed placement of titanium dental implants in extraction sockets.
    Matched MeSH terms: Titanium
  9. Alawjali SS, Lui JL
    J Dent, 2013 Aug;41 Suppl 3:e53-61.
    PMID: 23103847 DOI: 10.1016/j.jdent.2012.10.008
    This study was to compare the effect of three different one-step polishing systems on the color stability of three different types of nanocomposites after immersion in coffee for one day and seven days and determine which nanocomposite material has the best color stability following polishing with each of the one-step polishing system.
    Matched MeSH terms: Titanium/chemistry
  10. Baig MR, Rajan G
    J Oral Implantol, 2010;36(3):219-23.
    PMID: 20553176 DOI: 10.1563/AAID-JOI-D-09-00048
    Abstract This article describes the clinical and laboratory procedures involved in the fabrication of laboratory-processed, provisional, screw-retained, implant-supported maxillary and mandibular fixed complete dentures incorporating a cast metal reinforcement for immediate loading of implants. Precise fit is achieved by intraoral luting of the cast frame to milled abutments. Effective splinting of all implants is attained by the metal substructure and retrievability is provided by the screw-retention of the prosthesis.
    Matched MeSH terms: Titanium/chemistry
  11. Chai WL, Moharamzadeh K, van Noort R, Emanuelsson L, Palmquist A, Brook IM
    J Periodontal Res, 2013 Oct;48(5):663-70.
    PMID: 23442017 DOI: 10.1111/jre.12062
    Studies of peri-implant soft tissue on in vivo models are commonly based on histological sections prepared using undecalcified or 'fracture' techniques. These techniques require the cutting or removal of implant during the specimen preparation process. The aim of this study is to explore a new impression technique that does not require any cutting or removal of implant for contour analysis of soft tissue around four types of titanium (Ti) surface roughness using an in vitro three-dimensional oral mucosal model (3D OMM).
    Matched MeSH terms: Titanium/chemistry
  12. Chai WL, Moharamzadeh K, Brook IM, Van Noort R
    Biotech Histochem, 2011 Aug;86(4):242-54.
    PMID: 20392135 DOI: 10.3109/10520291003707916
    The success of dental implant treatment depends on the healing of both hard and soft tissues. While osseointegration provides initial success, the biological seal of the peri-implant soft tissue is crucial for maintaining the long term success of implants. Most studies of the biological seal of peri-implant tissues are based on animal or monolayer cell culture models. To understand the mechanisms of soft tissue attachment and the factors affecting the integrity of the soft tissue around the implants, it is essential to obtain good quality histological sections for microscopic examination. The nature of the specimens, however, which consist of both metal implant and soft peri-implant tissues, poses difficulties in preparing the specimens for histomorphometric analysis of the implant-soft tissue interface. We review various methods that have been used for the implant-tissue interface investigation with particular focus on the soft tissue. The different methods are classified and the advantages and limitations of the different techniques are highlighted.
    Matched MeSH terms: Titanium
  13. Merican AM, Randle R
    J Arthroplasty, 2006 Sep;21(6):846-51.
    PMID: 16950037
    The Fitmore titanium mesh cementless acetabular component in 115 hip arthroplasties was reviewed at an average of 33 months of follow-up. None were revised nor had infection. One hip dislocated 4 years postoperatively. Two femoral components were revised. The average Harris Hip Score at the last follow-up was 90 points. In the 96 sets of radiographs available, there was no loosening or new radiolucency. One hip had nonprogressive osteolysis adjacent to a screw. This press-fit cup has its polar region flattened and is rim loading. Noncontact (gaps) at the acetabular floor is expected and is not critical for fixation. In all but 6 hips, these gaps filled. In 5 hips, a minimal gap (
    Matched MeSH terms: Titanium
  14. Gunarajah DR, Samman N
    J Oral Maxillofac Surg, 2013 Mar;71(3):550-70.
    PMID: 23422151 DOI: 10.1016/j.joms.2012.10.029
    To evaluate the reported use and outcomes of implant materials used for the restoration of post-traumatic orbital floor defects in adults.
    Matched MeSH terms: Titanium
  15. Norman NH, Worthington H, Chadwick SM
    J Orthod, 2016 Sep;43(3):176-85.
    PMID: 26836747 DOI: 10.1080/14653125.2015.1122260
    OBJECTIVE: To compare the clinical performance of nickel titanium (NiTi) versus stainless steel (SS) springs during orthodontic space closure.
    DESIGN: Two-centre parallel group randomized clinical trial.
    SETTING: Orthodontic Department University of Manchester Dental Hospital and Orthodontic Department Countess of Chester Hospital, United Kingdom.
    SUBJECTS AND METHODS: Forty orthodontic patients requiring fixed appliance treatment were enrolled, each being randomly allocated into either NiTi (n = 19) or SS groups (n = 21). Study models were constructed at the start of the space closure phase (T0) and following the completion of space closure (T1). The rate of space closure achieved for each patient was calculated by taking an average measurement from the tip of the canine to the mesiobuccal groove on the first permanent molar of each quadrant.
    RESULTS: The study was terminated early due to time constraints. Only 30 patients completed, 15 in each study group. There was no statistically significant difference between the amounts of space closed (mean difference 0.17 mm (95%CI -0.99 to 1.34; P = 0.76)). The mean rate of space closure for NiTi coil springs was 0.58 mm/4 weeks (SD 0.24) and 0.85 mm/4 weeks (SD 0.36) for the stainless steel springs. There was a statistically significant difference between the two groups (P = 0.024), in favour of the stainless steel springs, when the mean values per patient were compared.
    CONCLUSIONS: Our study shows that stainless steel springs are clinically effective; these springs produce as much space closure as their more expensive rivals, the NiTi springs.
    Matched MeSH terms: Titanium
  16. Harun NH, Mydin RBSMN, Sreekantan S, Saharudin KA, Basiron N, Seeni A
    J Biomater Sci Polym Ed, 2020 10;31(14):1757-1769.
    PMID: 32498665 DOI: 10.1080/09205063.2020.1775759
    The emerging polymer nanocomposites have received industrial interests in diverse fields because of their added value in metal oxide-based nanocomposites, such as titanium (TiO2) and zinc oxide (ZnO). Linear low-density polyethylene (LLDPE)-based polymer has recently generated a huge market in the healthcare industry. TiO2 and ZnO are well known for their instant photocatalytic killing of hospital-acquired infections, especially multidrug-resistant (MDR) pathogens. This study investigated the actions of LLDPE/TiO2/ZnO (1:3) nanocomposites in different weight% against two representative MDR pathogens, namely, methicillin-resistant Staphylococcus aureus (MRSA) and Klebsiella pneumonia (K.pneumoniae). Antibacterial activities were quantified according to international standard guidelines of CLSI MO2-A11 (static condition) and ASTM E-2149 (dynamic condition). Preliminary observation via a scanning electron microscope revealed that LLDPE matrix with TiO2/ZnO nanocomposites changed the bacterial morphology and reduced the bacterial adherence and biofilm formation. Furthermore, a high ZnO weight ratio killed both types of pathogens. The bactericidal potential of the nanocomposite is highlighted by the enhancements in photocatalytic activity, zinc ion release and reactive species, and bacteriostatic/bactericidal activity against bacterial growth. This study provides new insights into the MDR-bactericidal potential of LLDPE with TiO2/ZnO nanocomposites for targeted healthcare applications.
    Matched MeSH terms: Titanium
  17. Abba MU, Man HC, Azis RS, Isma Idris A, Hazwan Hamzah M, Yunos KF, et al.
    Nanomaterials (Basel), 2021 Feb 04;11(2).
    PMID: 33557323 DOI: 10.3390/nano11020399
    High proportion of copper has become a global challenge owing to its negative impact on the environment and public health complications. The present study focuses on the fabrication of a polyvinylidene fluoride (PVDF)-polyvinyl pyrrolidone (PVP) fiber membrane incorporated with varying loading (0, 0.5, 1.0, 1.5, and 2.0 wt%) of titanium dioxide (TiO2) nanoparticles via phase inversion technique to achieve hydrophilicity along with high selectivity for copper removal. The developed fibers were characterized based on scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), permeability, porosity, zeta potential, and contact angle. The improved membrane (with 1.0 wt% TiO2) concentration recorded the maximum flux (223 L/m2·h) and copper rejection (98.18%). Similarly, 1.0 wt% concentration of TiO2 nanoparticles made the membrane matrix more hydrophilic with the least contact angle of 50.01°. The maximum copper adsorption capacity of 69.68 mg/g was attained at 1.0 wt% TiO2 concentration. The experimental data of adsorption capacity were best fitted to the Freundlich isotherm model with R2 value of 0.99573. The hybrid membrane developed in this study has considerably eliminated copper from leachate and the concentration of copper in the permeate was substantially reduced to 0.044 mg/L, which is below standard discharge threshold.
    Matched MeSH terms: Titanium
  18. Zamhuri A, Lim GP, Ma NL, Tee KS, Soon CF
    Biomed Eng Online, 2021 Apr 01;20(1):33.
    PMID: 33794899 DOI: 10.1186/s12938-021-00873-9
    MXene is a recently emerged multifaceted two-dimensional (2D) material that is made up of surface-modified carbide, providing its flexibility and variable composition. They consist of layers of early transition metals (M), interleaved with n layers of carbon or nitrogen (denoted as X) and terminated with surface functional groups (denoted as Tx/Tz) with a general formula of Mn+1XnTx, where n = 1-3. In general, MXenes possess an exclusive combination of properties, which include, high electrical conductivity, good mechanical stability, and excellent optical properties. MXenes also exhibit good biological properties, with high surface area for drug loading/delivery, good hydrophilicity for biocompatibility, and other electronic-related properties for computed tomography (CT) scans and magnetic resonance imaging (MRI). Due to the attractive physicochemical and biocompatibility properties, the novel 2D materials have enticed an uprising research interest for application in biomedicine and biotechnology. Although some potential applications of MXenes in biomedicine have been explored recently, the types of MXene applied in the perspective of biomedical engineering and biomedicine are limited to a few, titanium carbide and tantalum carbide families of MXenes. This review paper aims to provide an overview of the structural organization of MXenes, different top-down and bottom-up approaches for synthesis of MXenes, whether they are fluorine-based or fluorine-free etching methods to produce biocompatible MXenes. MXenes can be further modified to enhance the biodegradability and reduce the cytotoxicity of the material for biosensing, cancer theranostics, drug delivery and bio-imaging applications. The antimicrobial activity of MXene and the mechanism of MXenes in damaging the cell membrane were also discussed. Some challenges for in vivo applications, pitfalls, and future outlooks for the deployment of MXene in biomedical devices were demystified. Overall, this review puts into perspective the current advancements and prospects of MXenes in realizing this 2D nanomaterial as a versatile biological tool.
    Matched MeSH terms: Titanium
  19. Dharmaraj B, Diong NC, Shamugam N, Sathiamurthy N, Mohd Zainal H, Chai SC, et al.
    Indian J Thorac Cardiovasc Surg, 2021 Jan;37(1):82-88.
    PMID: 33442211 DOI: 10.1007/s12055-020-00972-7
    Chest wall resection is defined as partial or full-thickness removal of the chest wall. Significant morbidity has been recorded, with documented respiratory failure as high as 27%. Medical records of all patients who had undergone chest wall resection and reconstruction were reviewed. Patients' demographics, length of surgery, reconstruction method, size of tumor and chest wall defect, histopathological result, complications, duration of post-operative antibiotics, and hospital stay were assessed. From 1 April 2017 to 30 April 2019, a total of 20 patients underwent chest wall reconstructive surgery. The median age was 57 years, with 12 females and 8 males. Fourteen patients (70%) had malignant disease and 6 patients (30%) had benign disease. Nine patients underwent rigid reconstruction (titanium mesh for sternum and titanium plates for ribs), 6 patients had non-rigid reconstruction (with polypropylene or composite mesh), and 5 patients had primary closure. Nine patients (45%) required closure with myocutaneous flap. Complications were noted in 70% of patients. Patients who underwent primary closure had minor complications. In total, 66.7% of patients who had closure with either fasciocutaneous or myocutaneous flaps had threatened flap necrosis. Two patients developed pneumonia and 3 patients (15%) had respiratory failure requiring tracheostomy and prolonged ventilation. There was 1 mortality (5%) in this series. In conclusion, chest wall resections involving large defects require prudent clinical judgment and multidisciplinary assessments in determining the choice of chest wall reconstruction to improve outcomes.
    Matched MeSH terms: Titanium
  20. Bidsorkhi HC, Riazi H, Emadzadeh D, Ghanbari M, Matsuura T, Lau WJ, et al.
    Nanotechnology, 2016 Oct 14;27(41):415706.
    PMID: 27607307 DOI: 10.1088/0957-4484/27/41/415706
    In this research, novel ultrafiltration nanocomposite membranes were prepared by incorporating self-synthesized nanoporous titanium dioxide (NTiO2) nanoparticles into polysulfone. The surface of the nanoparticle was treated with a silane-based modifier to improve its distribution in the host polymer. Atomic-force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller, transmission electron microscopy, energy-dispersive x-ray spectroscopy, porosity and contact angle tests were conducted to characterize the properties of the particles as well as the fabricated nanocomposite membranes. The effects of the nanoparticle incorporation were evaluated by conducting ultrafiltration experiments. It was reported that the membrane pure water flux was increased with increasing NTiO2 loading owing to the high porosity of the nanoparticles embedded and/or formation of enlarged pores upon addition of them. The antifouling capacity of the membranes was also tested by ultrafiltration of bovine serum albumin fouling solution. It was found that both water flux and antifouling capacity tended to reach desired level if the NTiO2 added was at optimized loading.
    Matched MeSH terms: Titanium
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links