Displaying publications 1 - 20 of 117 in total

Abstract:
Sort:
  1. Aris A, Din MF, Salim MR, Yunus S, Abu Bakar WA
    Water Sci Technol, 2002;46(9):255-62.
    PMID: 12448476
    In Malaysia, most colored wastewater from dyeing factories is discharged to the environment causing serious problems. In this paper the influence of several reacting conditions, i.e. H2O2, pH, Ultraviolet (UV) intensity and dye concentration, on the performance of the immobilized system is discussed. The pH of the solution was varied from 3 to 11 while H2O2 concentration tested was from 10(-4) M to 5 x 10(-2) M. UV was tested at 365 nm and 254 nm, while dye concentration ranged from 2.5 x 10(-4) M to 10(-3) M. The influence of the reacting conditions was assessed based on absorbance. Using an OG concentration of 10(-3) M, the degradation increases from 17.8% to 49.7%. Optimum concentration of H2O2 was found to be 5 x 10(-3) M for degradation. Increasing the intensity of the UV light via shorter light wavelength also improves the performance of the system. Increasing the concentration of the dye reduces the overall performance of the system. Using the dye concentration of 2.5 x 10(-4) M (H2O2 = 10(-2) M, lambda = 254 nm, pH = 11), gives a degradation of 93.2%. At dye concentration of 10(-3) M, the performance was reduced to 53.1%.
    Matched MeSH terms: Titanium/chemistry*
  2. Ling CM, Mohamed AR, Bhatia S
    Chemosphere, 2004 Nov;57(7):547-54.
    PMID: 15488916
    TiO2 thin film photocatalyst was successfully synthesized and immobilized on glass reactor tube using sol-gel method. The synthesized TiO2 coating was transparent, which enabled the penetration of ultra-violet (UV) light to the catalyst surface. Two photocatalytic reactors with different operating modes were tested: (a) tubular photocatalytic reactor with re-circulation mode and (b) batch photocatalytic reactor. A new proposed TiO2 synthesized film formulation of 1 titanium isopropoxide: 8 isopropanol: 3 acetyl acetone: 1.1 H2O: 0.05 acetic acid (in molar ratio) gave excellent photocatalytic activity for degradation of phenol and methylene blue dye present in the water. The half-life time, t1/2 of photocatalytic degradation of phenol was 56 min at the initial phenol concentration of 1000 microM in the batch reactor. In the tubular photocatalytic reactor, 5 re-circulation passes with residence time of 2.2 min (single pass) degraded 50% of 40-microM methylene blue dye. Initial phenol concentration, presence of hydrogen peroxide, presence of air bubbling and stirring speed as the process variables were studied in the batch reactor. Initial methylene blue concentration, pH value, light intensity and reaction temperature were studied as the process variables in the tubular reactor. The synthesized TiO2 thin film was characterized using SEM, XRD and EDX analysis. A comparative performance between the synthesized TiO2 thin film and commercial TiO2 particles (99% anatase) was evaluated under the same experimental conditions. The TiO2 film was equally active as the TiO2 powder catalyst.
    Matched MeSH terms: Titanium/chemistry*
  3. Zainal Z, Lee CY, Hussein MZ, Kassim A, Yusof NA
    J Hazard Mater, 2005 Feb 14;118(1-3):197-203.
    PMID: 15721544
    Electrochemical-assisted photodegradation of methyl orange has been investigated using TiO2 thin films. The films were prepared by sol-gel dip-coating method. Several operational parameters to achieve optimum efficiency of this electrochemical-assisted photodegradation system have been tested. Photoelectrochemical degradation was studied using different light sources and light intensity. The light sources chosen ranged from ultraviolet to visible light. The effect of agitation of the solution at different speeds has also been studied. Slight improvement of photodegradation rate was observed by applying higher agitation speed. Investigation on the electrode after repeated usages show the electrode can be reused up to 20 times with percentage of deficiency less than 15%. The study on the effect of solution temperature indicated that the activation energy of the methyl orange degradation is 18.63 kJ mol(-1).
    Matched MeSH terms: Titanium/chemistry*
  4. Zainal Z, Lee CY, Hussein MZ, Kassim A, Yusof NA
    J Hazard Mater, 2007 Jul 19;146(1-2):73-80.
    PMID: 17196740
    Mixed dye consists of six commercial dyes and textile effluents from cotton dyeing process were treated by electrochemical-assisted photodegradation under halogen lamp illumination. Two types of effluents were collected which are samples before and after undergone pre-treatment at the factory wastewater treatment plant. The photodegradation process was studied by evaluating the changes in concentration employing UV-vis spectrophotometer (UV-vis) and total organic carbon (TOC) analysis. The photoelectrochemical degradation of mixed dye was found to follow the Langmuir Hinshelwood pseudo-first order kinetic while pseudo-second order kinetic model for effluents by using TOC analyses. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD) values of mixed dye and raw effluents were reported. Photoelectrochemical characteristic of pollutants was studied using the cyclic voltammetry technique. Raw effluent was found to exhibit stronger reduction behaviour at cathodic bias potential but slightly less photoresponse at anodic bias than mixed dye.
    Matched MeSH terms: Titanium/chemistry
  5. Zainal Z, Hui LK, Hussein MZ, Abdullah AH, Hamadneh IM
    J Hazard Mater, 2009 May 15;164(1):138-45.
    PMID: 18809254 DOI: 10.1016/j.jhazmat.2008.07.154
    In this paper, the newly explored TiO(2)-Chitosan/Glass was suggested as a promising alternative material to conventional means of wastewater treatment. Characterization of TiO(2)-Chitosan/Glass photocatalyst was studied with SEM-EDX, XRD, and Fourier transform infrared spectroscopy (FTIR) analysis. The combination effect of photodegradation-adsorption process for the removal of methyl orange (MO), an acid dye of the monoazo series occur promisingly when four layers of TiO(2)-Chitosan/Glass photocatalyst was used for MO removal. Approximately, 87.0% of total MO removal was achieved. The reactive -NH(2), -OH, and metal oxide contents in the prepared photocatalyst responsible for the photodegradation-adsorption effect were confirmed by FTIR study. Similarly, MO removal behavior was well supported by SEM-EDX and XRD analysis. Significant dependence of MO removal on the TiO(2)-Chitosan loading can be explained in terms of relationship between quantum yield of photocatalytic reactions and photocatalyst structure/activity. Hence, the research work done thus far suggests a new method, having both the advantages of photodegradation-adsorption process in the abatement of various wastewater pollutants.
    Matched MeSH terms: Titanium/chemistry*
  6. Akpan UG, Hameed BH
    J Hazard Mater, 2009 Oct 30;170(2-3):520-9.
    PMID: 19505759 DOI: 10.1016/j.jhazmat.2009.05.039
    This paper presents the review of the effects of operating parameters on the photocatalytic degradation of textile dyes using TiO2-based photocatalysts. It further examines various methods used in the preparations of the considered photocatalysts. The findings revealed that various parameters, such as the initial pH of the solution to be degraded, oxidizing agents, temperature at which the catalysts must be calcined, dopant(s) content and catalyst loading exert their individual influence on the photocatalytic degradation of any dye in wastewaters. It was also found out that sol-gel method is widely used in the production of TiO2-based photocatalysts because of the advantage derived from its ability to synthesize nanosized crystallized powder of the photocatalysts of high purity at relatively low temperature.
    Matched MeSH terms: Titanium/chemistry*
  7. Baig MR, Rajan G, Rajan M
    J Oral Implantol, 2009;35(6):295-9.
    PMID: 20017646 DOI: 10.1563/AAID-JOI-D-09-00012R1.1
    This article describes the rehabilitation of a completely edentulous patient using a milled titanium implant framework and cemented crowns. This combined approach significantly offsets unsuitable implant position, alignment, or angulation, while ensuring the easy retrievability, repair, and maintenance of the prosthesis. Hence, the dual advantage of cemented-retained crowns reproducing appropriate esthetics and function, irrespective of where the screw access openings are located in the substructure, can be obtained, along with the splinting effect and management of soft and hard tissue deficits achievable with a screw-retained framework.
    Matched MeSH terms: Titanium/chemistry
  8. Abdullah AZ, Ling PY
    J Hazard Mater, 2010 Jan 15;173(1-3):159-67.
    PMID: 19740600 DOI: 10.1016/j.jhazmat.2009.08.060
    The ambient sonocatalytic degradation of congo red, methyl orange, and methylene blue by titanium dioxide (TiO(2)) catalyst at initial concentrations between 10 and 50mg/L, catalyst loadings between 1.0 and 3.0mg/L and hydrogen peroxide (H(2)O(2)) concentrations up to 600 mg/L is reported. A 20 kHz ultrasonic processor at 50 W was used to accelerate the reaction. The catalysts were exposed to heat treatments between 400 and 1000 degrees C for up to 4h to induce phase change. Sonocatalysts with small amount of rutile phase showed better sonocatalytic activity but excessive rutile phase should be avoided. TiO(2) heated to 800 degrees C for 2h showed the highest sonocatalytic activity and the degradation of dyes was influenced by their chemical structures, chemical phases and characteristics of the catalysts. Congo red exhibited the highest degradation rate, attributed to multiple labile azo bonds to cause highest reactivity with the free radicals generated. An initial concentration of 10mg/L, 1.5 g/L of catalyst loading and 450 ppm of H(2)O(2) gave the best congo red removal efficiency of above 80% in 180 min. Rate coefficients for the sonocatalytic process was successfully established and the reused catalyst showed an activity drop by merely 10%.
    Matched MeSH terms: Titanium/chemistry*
  9. Zainudin NF, Abdullah AZ, Mohamed AR
    J Hazard Mater, 2010 Feb 15;174(1-3):299-306.
    PMID: 19818556 DOI: 10.1016/j.jhazmat.2009.09.051
    Photocatalytic degradation of phenol was investigated using the supported nano-TiO(2)/ZSM-5/silica gel (SNTZS) as a photocatalyst in a batch reactor. The prepared photocatalyst was characterized using XRD, TEM, FT-IR and BET surface area analysis. The synthesized photocatalyst composition was developed using nano-TiO(2) as the photoactive component and zeolite (ZSM-5) as the adsorbents, all supported on silica gel using colloidal silica gel binder. The optimum formulation of SNTZS catalyst was observed to be (nano-TiO(2):ZSM-5:silica gel:colloidal silica gel=1:0.6:0.6:1) which giving about 90% degradation of 50mg/L phenol solution in 180 min. The SNTZS exhibited higher photocatalytic activity than that of the commercial Degussa P25 which only gave 67% degradation. Its high photocatalytic activity was due to its large specific surface area (275.7 m(2)/g), small particle size (8.1 nm), high crystalline quality of the synthesized catalyst and low electron-hole pairs recombination rate as ZSM-5 adsorbent was used. The SNTZS photocatalyst synthesized in this study also has been proven to have an excellent adhesion and reusability.
    Matched MeSH terms: Titanium/chemistry*
  10. Saepurahman, Abdullah MA, Chong FK
    J Hazard Mater, 2010 Apr 15;176(1-3):451-8.
    PMID: 19969415 DOI: 10.1016/j.jhazmat.2009.11.050
    Tungsten-loaded TiO(2) photocatalyst has been successfully prepared and characterized. TEM analysis showed that the photocatalysts were nanosize with the tungsten species forming layers of coverage on the surface of TiO(2), but not in clustered form. This was confirmed by XRD and FT-Raman analyses where tungsten species were well dispersed at lower loading (<6.5 mol%), but were in crystalline WO(3) at higher loadings (>12 mol%). In addition, loading with tungsten could stabilize the anatase phase from transforming into inactive rutile phase and did not shift the optical absorption to the visible region as shown by DRUV-vis analysis. PZC value of TiO(2) was found at 6.4, but the presence of tungsten at 6.5 mol% WO(3), decreased the PZC value to 3. Tungsten-loaded TiO(2) was superior to unmodified TiO(2) with 2-fold increase in degradation rate of methylene blue, and equally effective for the degradation of different class of dyes such as methyl violet and methyl orange at 1 mol% WO(3) loading.
    Matched MeSH terms: Titanium/chemistry*
  11. Farea M, Masudi S, Wan Bakar WZ
    Aust Endod J, 2010 Aug;36(2):48-53.
    PMID: 20666748 DOI: 10.1111/j.1747-4477.2009.00187.x
    The aim of this study was to evaluate in vitro the apical sealing ability of cold lateral and system B root filling techniques using dye penetration. Eighty-six extracted single-rooted human teeth were prepared and randomly divided into two experimental groups to be obturated by cold lateral condensation (n = 33) and system B (n = 33). The remaining 20 teeth served as positive and negative controls. The roots were embedded for 72 h in methylene blue dye solution and sectioned transversely for dye penetration evaluation using stereomicroscope. The results of this study showed that cold lateral condensation leaked significantly more (P < 0.001) than system B technique.
    Matched MeSH terms: Titanium/chemistry
  12. Foo KY, Hameed BH
    Adv Colloid Interface Sci, 2010 Sep 15;159(2):130-43.
    PMID: 20673570 DOI: 10.1016/j.cis.2010.06.002
    Water scarcity and pollution rank equal to climate change as the most urgent environmental turmoil for the 21st century. To date, the percolation of textile effluents into the waterways and aquifer systems, remain an intricate conundrum abroad the nations. With the renaissance of activated carbon, there has been a steadily growing interest in the research field. Recently, the adoption of titanium dioxide, a prestigious advanced photo-catalyst which formulates the new growing branch of activated carbon composites for enhancement of adsorption rate and discoloration capacity, has attracted stern consideration and supports worldwide. Confirming the assertion, this paper presents a state of art review of titanium dioxide/activated carbon composites technology, its fundamental background studies, and environmental implications. Moreover, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons composites material represents a potentially viable and powerful tool, leading to the plausible improvement of environmental conservation.
    Matched MeSH terms: Titanium/chemistry*
  13. Baig MR, Rajan G
    J Oral Implantol, 2010;36(3):219-23.
    PMID: 20553176 DOI: 10.1563/AAID-JOI-D-09-00048
    Abstract This article describes the clinical and laboratory procedures involved in the fabrication of laboratory-processed, provisional, screw-retained, implant-supported maxillary and mandibular fixed complete dentures incorporating a cast metal reinforcement for immediate loading of implants. Precise fit is achieved by intraoral luting of the cast frame to milled abutments. Effective splinting of all implants is attained by the metal substructure and retrievability is provided by the screw-retention of the prosthesis.
    Matched MeSH terms: Titanium/chemistry
  14. Wong CL, Tan YN, Mohamed AR
    J Environ Manage, 2011 Jul;92(7):1669-80.
    PMID: 21450395 DOI: 10.1016/j.jenvman.2011.03.006
    Titania nanotubes are gaining prominence in photocatalysis, owing to their excellent physical and chemical properties such as high surface area, excellent photocatalytic activity, and widespread availability. They are easily produced by a simple and effective hydrothermal method under mild temperature and pressure conditions. This paper reviews and analyzes the mechanism of titania nanotube formation by hydrothermal treatment. It further examines the parameters that affect the formation of titania nanotubes, such as starting material, sonication pretreatment, hydrothermal temperature, washing process, and calcination process. Finally, the effects of the presence of dopants on the formation of titania nanotubes are analyzed.
    Matched MeSH terms: Titanium/chemistry*
  15. Daood U, Bandey N, Qasim SB, Omar H, Khan SA
    Acta Odontol Scand, 2011 Nov;69(6):367-73.
    PMID: 21449690 DOI: 10.3109/00016357.2011.569507
    To investigate the failure of 15 dental implants (Paragon/Zimmer) in relation to their surface quality.
    Matched MeSH terms: Titanium/chemistry*
  16. Ghazali MS, Zakaria A, Rizwan Z, Kamari HM, Hashim M, Zaid MH, et al.
    Int J Mol Sci, 2011;12(3):1496-504.
    PMID: 21673903 DOI: 10.3390/ijms12031496
    The optical band-gap energy (E(g)) is an important feature of semiconductors which determines their applications in optoelectronics. Therefore, it is necessary to investigate the electronic states of ceramic ZnO and the effect of doped impurities under different processing conditions. E(g) of the ceramic ZnO + xBi(2)O(3) + xTiO(2), where x = 0.5 mol%, was determined using a UV-Vis spectrophotometer attached to a Reflectance Spectroscopy Accessory for powdered samples. The samples was prepared using the solid-state route and sintered at temperatures from 1140 to 1260 °C for 45 and 90 minutes. E(g) was observed to decrease with an increase of sintering temperature. XRD analysis indicated hexagonal ZnO and few small peaks of intergranular layers of secondary phases. The relative density of the sintered ceramics decreased and the average grain size increased with the increase of sintering temperature.
    Matched MeSH terms: Titanium/chemistry*
  17. Abd Aziz A, Yong KS, Ibrahim S, Pichiah S
    J Hazard Mater, 2012 Jan 15;199-200:143-50.
    PMID: 22100220 DOI: 10.1016/j.jhazmat.2011.10.069
    An enhanced ferromagnetic property, visible light active TiO(2) photocatalyst was successfully synthesized by supporting strontium ferrite (SrFe(12)O(19)) onto TiO(2) doped with nitrogen (N) and compared with N-doped TiO(2). The synthesized catalysts were further characterized with X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDS), BET surface area analysis, vibrating sample magnetometer (VSM), X-ray photon spectroscopy (XPS) and visible light spectroscopy analysis for their respective properties. The XRD and EDS revealed the structural and inorganic composition of N-TiO(2) supported on SrFe(12)O(19). The supported N-TiO(2) exhibited a strong ferromagnetic property with tremendous stability against magnetic property losses. It also resulted in reduced band gap (2.8 eV) and better visible light absorption between 400 and 800 nm compared to N-doped TiO(2). The photocatalytic activity was investigated with a recalcitrant phenolic compound namely 2,4-dichlorophenol (2,4-DCP) as a model pollutant under direct bright and diffuse sunlight exposure. A complete degradation of 2,4-DCP was achieved with an initial concentration of 50mg/L for both photocatalysts in 180 min and 270 min respectively under bright sunlight. Similarly the diffuse sunlight study resulted in complete degradation for supported N-TiO(2) and >85% degradation N-TiO(2), respectively. Finally the supported photocatalyst was separated under permanent magnetic field with a mass recovery ≈ 98% for further reuse.
    Matched MeSH terms: Titanium/chemistry*
  18. Wahab RM, Idris H, Yacob H, Ariffin SH
    Eur J Orthod, 2012 Apr;34(2):176-81.
    PMID: 21478298 DOI: 10.1093/ejo/cjq179
    This prospective study investigated the difference in clinical efficiency between Damon™ 3 self-ligating brackets (SLB) compared with Mini Diamond conventional ligating brackets (CLBs) during tooth alignment in straightwire fixed appliance therapy. Twenty-nine patients (10 males and 19 females), aged between 14 and 30 years, were randomly divided into two groups: 14 patients received the SLB and 15 received the CLB. Upper arch impressions were taken for pre-treatment records (T(0)). A transpalatal arch was soldered to both maxillary first molar bands prior to extraction of the maxillary first premolars, followed by straightwire fixed appliances (0.022 × 0.028 inch). A 0.014 inch nickel titanium (NiTi) wire was used as the levelling and aligning archwire. Four monthly reviews were undertaken and impressions of the upper arch were taken at each appointment (T(1), T(2), T(3), and T(4)). Displacements of the teeth were determined using Little's irregularity index (LII). Data were analysed using the Mann-Whitney U-test. In the aligning stage, the CLB group showed significantly faster alignment of the teeth compared with the SLB group at the T(1)-T(2) interval (P < 0.05). However, there were no differences at T(2)-T(3), and T(3)-T(4) for either group (P > 0.05). The CLB group showed 98 per cent crowding alleviation compared with 67 per cent for the SLB after 4 months of alignment and levelling. Mini Diamond brackets aligned the teeth faster than Damon™ 3 but only during the first month. There was no difference in efficacy between the two groups in the later 3 weeks. Alleviation of crowding was faster with CLB than with SLB.
    Matched MeSH terms: Titanium/chemistry
  19. Pang YL, Abdullah AZ
    Ultrason Sonochem, 2012 May;19(3):642-51.
    PMID: 22000097 DOI: 10.1016/j.ultsonch.2011.09.007
    Sonocatalytic degradation of various organic dyes (Congo Red, Reactive Blue 4, Methyl Orange, Rhodamine B and Methylene Blue) catalyzed by powder and nanotubes TiO(2) was studied. Both catalysts were characterized using transmission electron microscope (TEM), surface analyzer, Raman spectroscope and thermal gravimetric analyzer (TGA). Sonocatalytic activity of powder and nanotubes TiO(2) was elucidated based on the degradation of various organic dyes. The former catalyst was favorable for treatment of anionic dyes, while the latter was more beneficial for cationic dyes. Sonocatalytic activity of TiO(2) nanotubes could be up to four times as compared to TiO(2) powder under an ultrasonic power of 100 W and a frequency of 42 kHz. This was associated with the higher surface area and the electrostatic attraction between dye molecules and TiO(2) nanotubes. Fourier transform-infrared spectrometer (FT-IR) was used to identify changes that occurred on the functional group in Rhodamine B molecules and TiO(2) nanotubes after the reaction. Sonocatalytic degradation of Rhodamine B by TiO(2) nanotubes apparently followed the Langmuir-Hinshelwood adsorption kinetic model with surface reaction rate of 1.75 mg/L min. TiO(2) nanotubes were proven for their high potential to be applied in sonocatalytic degradation of organic dyes.
    Matched MeSH terms: Titanium/chemistry
  20. Jawad AH, Nawi MA
    Carbohydr Polym, 2012 Sep 1;90(1):87-94.
    PMID: 24751014 DOI: 10.1016/j.carbpol.2012.04.066
    Photocatalytic oxidation of crosslinked chitosan-epichlorohydrin (CS-ECH) film was successfully achieved via an immobilized TiO2/CS-ECH photocatalyst system on a glass plate. Oxidation process of CS-ECH film was carried out by irradiating the system with a 45-W fluorescent lamp for 10h in ultra-pure water. The results indicate the formation of carbonyl functional groups and partial elimination of amine groups in the molecular structure of the oxidized CS-ECH film. This oxidized CS-ECH film has different optical properties, ionic conductivity, degree of transparency, swelling index and chemical stability than the fresh CS-ECH film. In the environmental applications, the TiO2/oxidized-CS-ECH photocatalyst system can have photodegradation and faster mineralization rate of phenol than both fresh TiO2/CS-ECH and TiO2/oxidized-CS photocatalyst systems. This simple photocatalyst system, therefore can be considered as an environmental friendly method to oxidize synthetic biopolymer and to improve the photocatalytic efficiency of TiO2 to treat wastewater.
    Matched MeSH terms: Titanium/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links