Displaying publications 1 - 20 of 1045 in total

Abstract:
Sort:
  1. Hariri F, Malek RA, Abdullah NA, Hassan SF
    Int J Oral Maxillofac Surg, 2024 Apr;53(4):293-300.
    PMID: 37739816 DOI: 10.1016/j.ijom.2023.08.009
    Midface hypoplasia in syndromic craniosynostosis (SC) may lead to serious respiratory issues. The aim of this study was to analyse the morphometric correlation between midface and cranial base parameters in paediatric SC patients in order to formulate predictive regression models. The computed tomography scans of 18 SC patients and 20 control were imported into Materialise Mimics Medical version 21.0 software for the measurement of multiple craniofacial landmarks and correlation analysis. The results showed a strong correlation of anterior cranial base (SN), posterior cranial base (SBa), and total cranial base (NBa) (r = 0.935) to maxilla length and width (ZMR-ZML) (r = 0.864). The model of NBa = - 1.554 + 1.021(SN) + 0.753(SBa) with R2 = 0.875 is proposed to demonstrate the development of the cranial base that causes a certain degree of midface hypoplasia in SC patients. The formula is supported using a prediction model of ZMR-ZML = 5.762 + 0.920(NBa), with R2 = 0.746. The mean absolute difference and standard deviation between the predicted and true NBa and ZMR-ZML were 2.08 ± 1.50 mm and 3.11 ± 2.32 mm, respectively. The skeletal growth estimation models provide valuable foundation for further analysis and potential clinical application.
    Matched MeSH terms: Tomography, X-Ray Computed
  2. Kamarulzaman K, Mohd Rohani MF, Mat Nawi N, Amir Hassan SZ
    Clin Nucl Med, 2024 Mar 01;49(3):250-252.
    PMID: 38306377 DOI: 10.1097/RLU.0000000000005037
    A 57-year-old woman received radioiodine therapy post total thyroidectomy for pT3aNxMx follicular thyroid carcinoma. Posttherapy 131I whole-body scan showed 131I concentration in the chest, mediastinum, and left upper thigh with stimulated thyroglobulin (Tg) of 89 μg/L. Subsequent radioiodine therapies showed persistent 131I accumulation in the anterior mediastinal soft tissue lesions and a hypodense segment VII liver lesion visualized on SPECT/CT, suggestive of iodine-avid metastatic disease despite the undetectable serum Tg (<1.0 μg/L) with no Tg antibody interference. Biopsy of the liver lesion revealed liver cyst, and consequent removal of the mediastinal lesions showed benign thymic cysts.
    Matched MeSH terms: Tomography, X-Ray Computed
  3. Koo ZP, Chainchel Singh MK, Mohamad Noor MHB, Omar NB, Siew SF
    Forensic Sci Med Pathol, 2024 Mar;20(1):226-232.
    PMID: 37436679 DOI: 10.1007/s12024-023-00669-4
    We report a fatal case of a 26-year-old nulliparous woman who presented with an anterior mediastinal mass in her late pregnancy. She had complained of a progressively increasing neck swelling and occasional dry cough in the early second trimester, which was associated with worsening dyspnoea, reduced effort tolerance and orthopnoea. Ultrasound of the neck showed an enlarged lymph node, and chest X-ray revealed mediastinal widening. At 35 weeks' gestation, the patient was referred to a tertiary centre for a computed tomography (CT) scan of the neck and thorax under elective intubation via awake fibreoptic nasal intubation as she was unable to lie flat. However, she developed sudden bradycardia, hypotension and desaturation soon after being positioned supine, which required resuscitation. She succumbed after 3 days in the intensive care unit. An autopsy revealed a large anterior mediastinal mass extending to the right supraclavicular region, displacing the heart and lungs, encircling the superior vena cava and right internal jugular vein with tumour thrombus extending into the right atrium. Histopathology examination of the mediastinal mass confirmed the diagnosis of a primary mediastinal large B-cell lymphoma. This report emphasizes the severe and fatal outcome resulting from the delay and misinterpretation of symptoms related to a mediastinal mass.
    Matched MeSH terms: Tomography, X-Ray Computed
  4. Md Shah MN, Azman RR, Chan WY, Ng KH
    Can Assoc Radiol J, 2024 Feb;75(1):92-97.
    PMID: 37075322 DOI: 10.1177/08465371231171700
    The past two decades have seen a significant increase in the use of CT, with a corresponding rise in the mean population radiation dose. This rise in CT use has caused improved diagnostic certainty in conditions that were not previously routinely evaluated using CT, such as headaches, back pain, and chest pain. Unused data, unrelated to the primary diagnosis, embedded within these scans have the potential to provide organ-specific measurements that can be used to prognosticate or risk-profile patients for a wide variety of conditions. The recent increased availability of computing power, expertise and software for automated segmentation and measurements, assisted by artificial intelligence, provides a conducive environment for the deployment of these analyses into routine use. Data gathering from CT has the potential to add value to examinations and help offset the public perception of harm from radiation exposure. We review the potential for the collection of these data and propose the incorporation of this strategy into routine clinical practice.
    Matched MeSH terms: Tomography, X-Ray Computed*
  5. Sachithanandan A, Lockman H, Azman RR, Tho LM, Ban EZ, Ramon V
    Med J Malaysia, 2024 Jan;79(1):9-14.
    PMID: 38287751
    INTRODUCTION: The poor prognosis of lung cancer has been largely attributed to the fact that most patients present with advanced stage disease. Although low dose computed tomography (LDCT) is presently considered the optimal imaging modality for lung cancer screening, its use has been hampered by cost and accessibility. One possible approach to facilitate lung cancer screening is to implement a risk-stratification step with chest radiography, given its ease of access and affordability. Furthermore, implementation of artificial-intelligence (AI) in chest radiography is expected to improve the detection of indeterminate pulmonary nodules, which may represent early lung cancer.

    MATERIALS AND METHODS: This consensus statement was formulated by a panel of five experts of primary care and specialist doctors. A lung cancer screening algorithm was proposed for implementation locally.

    RESULTS: In an earlier pilot project collaboration, AI-assisted chest radiography had been incorporated into lung cancer screening in the community. Preliminary experience in the pilot project suggests that the system is easy to use, affordable and scalable. Drawing from experience with the pilot project, a standardised lung cancer screening algorithm using AI in Malaysia was proposed. Requirements for such a screening programme, expected outcomes and limitations of AI-assisted chest radiography were also discussed.

    CONCLUSION: The combined strategy of AI-assisted chest radiography and complementary LDCT imaging has great potential in detecting early-stage lung cancer in a timely manner, and irrespective of risk status. The proposed screening algorithm provides a guide for clinicians in Malaysia to participate in screening efforts.

    Matched MeSH terms: Tomography, X-Ray Computed/methods
  6. Zelenev A, Michael L, Li J, Altice FL
    Int J Drug Policy, 2024 Jan;123:104250.
    PMID: 38088004 DOI: 10.1016/j.drugpo.2023.104250
    BACKGROUND: Opioid agonist therapies (OAT) and  harm reduction such as syringe service programs (SSP) have been shown to be effective in preventing adverse outcomes such as overdose deaths, HIV and Hepatitis C infections among people who inject drugs (PWID). The importance of social network influence on disease transmission is well established, yet the interplay between harm reduction and network structures is, generally, not well understood. This study aims to analyze how social networks can mediate the harm reduction effects associated with secondary exchange through syringe service programs (SSP) and opioid agonist therapies (OAT) among injection network members.

    METHODS: Sociometric data on networks on people who inject drugs from Hartford, CT, which were collected in 2012-2013, provided assessment of risk behaviors among 1574 injection network members, including participation in OAT and SSP. Subject's network characteristics were examined in relation to retention in OAT, as well as secondary syringe exchange using exponential random graph model (ERGM) and regression.

    RESULTS: Based on the analysis, we found that probability of individuals being retained in OAT was positively associated with the OAT retention status of their peers within the network. Using simulations, we found that higher levels of positive correlation of OAT retention among network members can result in reduced risk of transmission of HIV to network partners on OAT. In addition, we found that secondary syringe exchange engagement was associated with higher probability of sharing of paraphernalia and unsterile needles at the network level.

    CONCLUSIONS: Understanding how networks mediate risk behaviors is crucial for making progress toward ending the HIV epidemic.

    Matched MeSH terms: Tomography, X-Ray Computed
  7. Yap Abdullah J, Manaf Abdullah A, Zaim S, Hadi H, Husein A, Ahmad Rajion Z, et al.
    Proc Inst Mech Eng H, 2024 Jan;238(1):55-62.
    PMID: 37990963 DOI: 10.1177/09544119231212034
    This study aimed to compare the 3D skull models reconstructed from computed tomography (CT) images using three different open-source software with a commercial software as a reference. The commercial Mimics v17.0 software was used to reconstruct the 3D skull models from 58 subjects. Next, two open-source software, MITK Workbench 2016.11, 3D Slicer 4.8.1 and InVesalius 3.1 were used to reconstruct the 3D skull models from the same subjects. All four software went through similar steps in 3D reconstruction process. The 3D skull models from the commercial and open-source software were exported in standard tessellation language (STL) format into CloudCompare v2.8 software and superimposed for geometric analyses. Hausdorff distance (HD) analysis demonstrated the average points distance of Mimics versus MITK was 0.25 mm. Meanwhile, for Mimics versus 3D Slicer and Mimics versus InVesalius, there was almost no differences between the two superimposed 3D skull models with average points distance of 0.01 mm. Based on Dice similarity coefficient (DSC) analysis, the similarity between Mimics versus MITK, Mimics versus 3D Slicer and Mimics versus InVesalius were 94.1, 98.8 and 98.3%, respectively. In conclusion, this study confirmed that the alternative open-source software, MITK, 3D Slicer and InVesalius gave comparable results in 3D reconstruction of skull models compared to the commercial gold standard Mimics software. This open-source software could possibly be used for pre-operative planning in cranio-maxillofacial cases and for patient management in the hospitals or institutions with limited budget.
    Matched MeSH terms: Tomography, X-Ray Computed
  8. Wang W, Zhao X, Jia Y, Xu J
    PLoS One, 2024;19(2):e0297578.
    PMID: 38319912 DOI: 10.1371/journal.pone.0297578
    The objectives are to improve the diagnostic efficiency and accuracy of epidemic pulmonary infectious diseases and to study the application of artificial intelligence (AI) in pulmonary infectious disease diagnosis and public health management. The computer tomography (CT) images of 200 patients with pulmonary infectious disease are collected and input into the AI-assisted diagnosis software based on the deep learning (DL) model, "UAI, pulmonary infectious disease intelligent auxiliary analysis system", for lesion detection. By analyzing the principles of convolutional neural networks (CNN) in deep learning (DL), the study selects the AlexNet model for the recognition and classification of pulmonary infection CT images. The software automatically detects the pneumonia lesions, marks them in batches, and calculates the lesion volume. The result shows that the CT manifestations of the patients are mainly involved in multiple lobes and density, the most common shadow is the ground-glass opacity. The detection rate of the manual method is 95.30%, the misdetection rate is 0.20% and missed diagnosis rate is 4.50%; the detection rate of the DL-based AI-assisted lesion method is 99.76%, the misdetection rate is 0.08%, and the missed diagnosis rate is 0.08%. Therefore, the proposed model can effectively identify pulmonary infectious disease lesions and provide relevant data information to objectively diagnose pulmonary infectious disease and manage public health.
    Matched MeSH terms: Tomography, X-Ray Computed/methods
  9. Rahman H, Khan AR, Sadiq T, Farooqi AH, Khan IU, Lim WH
    Tomography, 2023 Dec 05;9(6):2158-2189.
    PMID: 38133073 DOI: 10.3390/tomography9060169
    Computed tomography (CT) is used in a wide range of medical imaging diagnoses. However, the reconstruction of CT images from raw projection data is inherently complex and is subject to artifacts and noise, which compromises image quality and accuracy. In order to address these challenges, deep learning developments have the potential to improve the reconstruction of computed tomography images. In this regard, our research aim is to determine the techniques that are used for 3D deep learning in CT reconstruction and to identify the training and validation datasets that are accessible. This research was performed on five databases. After a careful assessment of each record based on the objective and scope of the study, we selected 60 research articles for this review. This systematic literature review revealed that convolutional neural networks (CNNs), 3D convolutional neural networks (3D CNNs), and deep learning reconstruction (DLR) were the most suitable deep learning algorithms for CT reconstruction. Additionally, two major datasets appropriate for training and developing deep learning systems were identified: 2016 NIH-AAPM-Mayo and MSCT. These datasets are important resources for the creation and assessment of CT reconstruction models. According to the results, 3D deep learning may increase the effectiveness of CT image reconstruction, boost image quality, and lower radiation exposure. By using these deep learning approaches, CT image reconstruction may be made more precise and effective, improving patient outcomes, diagnostic accuracy, and healthcare system productivity.
    Matched MeSH terms: Tomography, X-Ray Computed/methods
  10. Vinothini R, Niranjana G, Yakub F
    J Digit Imaging, 2023 Dec;36(6):2480-2493.
    PMID: 37491543 DOI: 10.1007/s10278-023-00852-7
    The human respiratory system is affected when an individual is infected with COVID-19, which became a global pandemic in 2020 and affected millions of people worldwide. However, accurate diagnosis of COVID-19 can be challenging due to small variations in typical and COVID-19 pneumonia, as well as the complexities involved in classifying infection regions. Currently, various deep learning (DL)-based methods are being introduced for the automatic detection of COVID-19 using computerized tomography (CT) scan images. In this paper, we propose the pelican optimization algorithm-based long short-term memory (POA-LSTM) method for classifying coronavirus using CT scan images. The data preprocessing technique is used to convert raw image data into a suitable format for subsequent steps. Here, we develop a general framework called no new U-Net (nnU-Net) for region of interest (ROI) segmentation in medical images. We apply a set of heuristic guidelines derived from the domain to systematically optimize the ROI segmentation task, which represents the dataset's key properties. Furthermore, high-resolution net (HRNet) is a standard neural network design developed for feature extraction. HRNet chooses the top-down strategy over the bottom-up method after considering the two options. It first detects the subject, generates a bounding box around the object and then estimates the relevant feature. The POA is used to minimize the subjective influence of manually selected parameters and enhance the LSTM's parameters. Thus, the POA-LSTM is used for the classification process, achieving higher performance for each performance metric such as accuracy, sensitivity, F1-score, precision, and specificity of 99%, 98.67%, 98.88%, 98.72%, and 98.43%, respectively.
    Matched MeSH terms: Tomography, X-Ray Computed
  11. Alhorani Q, Alkhybari E, Rawashdeh M, Sabarudin A, Latiff RA, Al-Ibraheem A, et al.
    Nucl Med Commun, 2023 Nov 01;44(11):937-943.
    PMID: 37615527 DOI: 10.1097/MNM.0000000000001748
    PET-computed tomography (PET/CT) is a hybrid imaging technique that combines anatomical and functional information; to investigate primary cancers, stage tumours, and track treatment response in paediatric oncology patients. However, there is debate in the literature about whether PET/CT could increase the risk of cancer in children, as the machine is utilizing two types of radiation, and paediatric patients have faster cell division and longer life expectancy. Therefore, it is essential to minimize radiation exposure by justifying and optimizing PET/CT examinations and ensure an acceptable image quality. Establishing diagnostic reference levels (DRLs) is a crucial quantitative indicator and effective tool to optimize paediatric imaging procedures. This review aimed to distinguish and acknowledge variations among published DRLs for paediatric patients in PET/CT procedures. A search of relevant articles was conducted using databases, that is, Embase, Scopus, Web of Science, and Medline, using the keywords: PET-computed tomography, computed tomography, PET, radiopharmaceutical, DRL, and their synonyms. Only English and full-text articles were included, with no limitations on the publication year. After the screening, four articles were selected, and the review reveals different DRL approaches for paediatric patients undergoing PET/CT, with primary variations observed in patient selection criteria, reporting of radiation dose values, and PET/CT equipment. The study suggests that future DRL methods for paediatric patients should prioritize data collection in accordance with international guidelines to better understand PET/CT dose discrepancies while also striving to optimize radiation doses without compromising the quality of PET/CT images.
    Matched MeSH terms: Tomography, X-Ray Computed
  12. Ismail IN, Alaga A
    Med J Malaysia, 2023 Nov;78(6):751-755.
    PMID: 38031216
    INTRODUCTION: Ultrasound guided lung biopsy (USLB) is a minimally invasive diagnostic tool with short examination time and real-time monitoring conducted bedside for accurate diagnosis in order to provide the best treatment. However, it is not widely performed by pulmonologists. We aim to explicate the efficacy and safety of USLB led by pulmonologists. The objective of this study is to assess safety and efficacy of USLB performed by pulmonologists in an outpatient setting.

    MATERIALS AND METHODS: We retrospectively enrolled patients who underwent the procedure from January 2018 to April 2022. Under real time ultrasound (Hitachi Medical ProSound F37), thoracic lesions adjacent to the chest wall were sampled with a full-core biopsy needle (CT Core Single Action Biopsy Device, 18G × 15 cm, Vigeo, Italy). Chest x-ray was performed 30 minutes post procedure ruling out pneumothorax. Patients were discharged home 1-2 hours post biopsy. Data was analysed using Microsoft Excel 2010 and Statistical Package for Social Science (SPSS) Version 26.

    RESULTS: A total of 18 patients (14 males, 4 females) underwent USLB for lung tumours. Biopsies were histologically deemed adequate with an overall diagnostic yield of 77.8% (14/18). A total of 57% were positive for thoracic malignancy (21% squamous cell carcinoma, 21% adenocarcinoma, 15% small cell carcinoma) and another 43% were positive for extra thoracic malignancy (1 hepatocellular carcinoma, 2 DLBCL, 1 Hodgkin's lymphoma, 1 seminoma, 1 thymoma). Four patients had inconclusive results but managed to get positive results from surgical or lymph node biopsy (thymoma and adenocarcinoma). Statistical analysis showed more than two passes are needed to achieve a positive HPE yield (p value<0.05). There were nil complications to all the cases done.

    CONCLUSIONS: USLB can safely and effectively be performed by trained pulmonologists with excellent accuracy and low complication rate in outpatients.

    Matched MeSH terms: Tomography, X-Ray Computed
  13. Bolong MF, Shanmuga Ratnam S, Raja Badrol Hisham RMBAB, Pang Tze Ping N
    Adv Emerg Nurs J, 2023 10 27;45(4):270-274.
    PMID: 37885079 DOI: 10.1097/TME.0000000000000481
    Re-expansion pulmonary edema (RPE) after chest drain insertion is rare. The objective of this clinical case report is to highlight the importance of this chest drain insertion complication. A 35-year-old man presented to the emergency department with a chief complaint of shortness of breath and pleuritic chest pain. Further physical examination and radiographic investigations showed a left-sided hemipneumothorax. A chest drain was inserted, but subsequently the patient developed worsening shortness of breath, desaturation, and coughed out pink frothy sputum. Repeated chest radiographic and computed tomographic thorax findings suggested RPE. A nonrebreathable mask with high-flow oxygen was given to the patient to maintain his oxygen saturation. The patient was referred to the cardiothoracic team and was admitted to the hospital. Despite conservative management in the ward, the patient underwent lung decortication. Postdecortication, the left-sided lung re-expanded well, and the patient was discharged home. This case highlighted this rare, potentially fatal complication of chest drain insertion for spontaneous pneumothorax.
    Matched MeSH terms: Tomography, X-Ray Computed
  14. Lam DC, Liam CK, Andarini S, Park S, Tan DSW, Singh N, et al.
    J Thorac Oncol, 2023 Oct;18(10):1303-1322.
    PMID: 37390982 DOI: 10.1016/j.jtho.2023.06.014
    INTRODUCTION: The incidence and mortality of lung cancer are highest in Asia compared with Europe and USA, with the incidence and mortality rates being 34.4 and 28.1 per 100,000 respectively in East Asia. Diagnosing lung cancer at early stages makes the disease amenable to curative treatment and reduces mortality. In some areas in Asia, limited availability of robust diagnostic tools and treatment modalities, along with variations in specific health care investment and policies, make it necessary to have a more specific approach for screening, early detection, diagnosis, and treatment of patients with lung cancer in Asia compared with the West.

    METHOD: A group of 19 advisors across different specialties from 11 Asian countries, met on a virtual Steering Committee meeting, to discuss and recommend the most affordable and accessible lung cancer screening modalities and their implementation, for the Asian population.

    RESULTS: Significant risk factors identified for lung cancer in smokers in Asia include age 50 to 75 years and smoking history of more than or equal to 20 pack-years. Family history is the most common risk factor for nonsmokers. Low-dose computed tomography screening is recommended once a year for patients with screening-detected abnormality and persistent exposure to risk factors. However, for high-risk heavy smokers and nonsmokers with risk factors, reassessment scans are recommended at an initial interval of 6 to 12 months with subsequent lengthening of reassessment intervals, and it should be stopped in patients more than 80 years of age or are unable or unwilling to undergo curative treatment.

    CONCLUSIONS: Asian countries face several challenges in implementing low-dose computed tomography screening, such as economic limitations, lack of efforts for early detection, and lack of specific government programs. Various strategies are suggested to overcome these challenges in Asia.

    Matched MeSH terms: Tomography, X-Ray Computed/methods
  15. Lilyasari O, Goo HW, Siripornpitak S, Abdul Latiff H, Ota H, Caro-Dominguez P
    Pediatr Radiol, 2023 Sep;53(10):2120-2133.
    PMID: 37202498 DOI: 10.1007/s00247-023-05660-3
    Anomalous pulmonary venous connections represent a heterogeneous group of congenital heart diseases in which a part or all pulmonary venous flow drains directly or indirectly into the right atrium. Clinically, anomalous pulmonary venous connections may be silent or have variable consequences, including neonatal cyanosis, volume overload and pulmonary arterial hypertension due to the left-to-right shunt. Anomalous pulmonary venous connections are frequently associated with other congenital cardiac defects and their accurate diagnosis is crucial for treatment planning. Therefore, multimodality diagnostic imaging, comprising a combination (but not all) of echocardiography, cardiac catheterization, cardiothoracic computed tomography and cardiac magnetic resonance imaging, helps identify potential blind spots relevant to each imaging modality before treatment and achieve optimal management and monitoring. For the same reasons, diagnostic imaging evaluation using a multimodality fashion should be used after treatment. Finally, those interpreting the images should be familiar with the various surgical approaches used to repair anomalous pulmonary venous connections and the common postoperative complications.
    Matched MeSH terms: Tomography, X-Ray Computed
  16. Young Chuah Y, Yeh Lee Y
    Turk J Gastroenterol, 2023 Aug;34(8):890-891.
    PMID: 37434401 DOI: 10.5152/tjg.2023.23208
    Matched MeSH terms: Tomography, X-Ray Computed*
  17. Ninomiya K, Arimura H, Tanaka K, Chan WY, Kabata Y, Mizuno S, et al.
    Comput Methods Programs Biomed, 2023 Jun;236:107544.
    PMID: 37148668 DOI: 10.1016/j.cmpb.2023.107544
    OBJECTIVES: To elucidate a novel radiogenomics approach using three-dimensional (3D) topologically invariant Betti numbers (BNs) for topological characterization of epidermal growth factor receptor (EGFR) Del19 and L858R mutation subtypes.

    METHODS: In total, 154 patients (wild-type EGFR, 72 patients; Del19 mutation, 45 patients; and L858R mutation, 37 patients) were retrospectively enrolled and randomly divided into 92 training and 62 test cases. Two support vector machine (SVM) models to distinguish between wild-type and mutant EGFR (mutation [M] classification) as well as between the Del19 and L858R subtypes (subtype [S] classification) were trained using 3DBN features. These features were computed from 3DBN maps by using histogram and texture analyses. The 3DBN maps were generated using computed tomography (CT) images based on the Čech complex constructed on sets of points in the images. These points were defined by coordinates of voxels with CT values higher than several threshold values. The M classification model was built using image features and demographic parameters of sex and smoking status. The SVM models were evaluated by determining their classification accuracies. The feasibility of the 3DBN model was compared with those of conventional radiomic models based on pseudo-3D BN (p3DBN), two-dimensional BN (2DBN), and CT and wavelet-decomposition (WD) images. The validation of the model was repeated with 100 times random sampling.

    RESULTS: The mean test accuracies for M classification with 3DBN, p3DBN, 2DBN, CT, and WD images were 0.810, 0.733, 0.838, 0.782, and 0.799, respectively. The mean test accuracies for S classification with 3DBN, p3DBN, 2DBN, CT, and WD images were 0.773, 0.694, 0.657, 0.581, and 0.696, respectively.

    CONCLUSION: 3DBN features, which showed a radiogenomic association with the characteristics of the EGFR Del19/L858R mutation subtypes, yielded higher accuracy for subtype classifications in comparison with conventional features.

    Matched MeSH terms: Tomography, X-Ray Computed/methods
  18. Chainchel Singh MK, Johari B, Naik VR, Lai PS, Siew SF
    Trop Biomed, 2023 Jun 01;40(2):165-169.
    PMID: 37650402 DOI: 10.47665/tb.40.2.006
    Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a serious public health threat with the World Health Organisation (WHO) reporting 5.8 million cases and 1.3 million deaths in the year 2020 due to TB. TB can be diagnosed by imaging, histopathological and bacteriological methods with culture remaining the gold standard. This study was performed to look at the sensitivity and specificity of post-mortem computed tomography (PMCT) imaging when compared to culture in diagnosing pulmonary tuberculosis. This was a retrospective comparative study looking at post mortem cases where lung tissue samples sent for TB culture at Hospital Kuala Lumpur were compared against PMCT imaging. Exclusion criteria included contaminated samples, decomposed cases, immunocompromised subjects and those below 18 years of age. Subjects included 80 medico-legal autopsy cases at the National Institute of Forensic Medicine, Hospital Kuala Lumpur, Malaysia who had whole body PMCT done in accordance with the Institute's protocol and tissue samples sent for bacteriology culture for tuberculosis. PMCT findings were positively associated with acid-fast organisms in 23.5 out of 33 cases (71.2%). Our study also showed that PMCT had a sensitivity of 71.3% and specificity of 54.3% (95% CI: 39.5-68.4) in diagnosing TB based on the protocol set in this study. This study showed that there was relatively good agreement between radiological PMCT findings and bacterial culture, suggesting that radiological examination is a relatively reliable tool for preliminary screening and possible diagnosis of TB prior to a postmortem examination which would be beneficial in reducing the risk of transmission of TB to health workers during autopsy.
    Matched MeSH terms: Tomography, X-Ray Computed
  19. Kaplan E, Baygin M, Barua PD, Dogan S, Tuncer T, Altunisik E, et al.
    Med Eng Phys, 2023 May;115:103971.
    PMID: 37120169 DOI: 10.1016/j.medengphy.2023.103971
    PURPOSE: The classification of medical images is an important priority for clinical research and helps to improve the diagnosis of various disorders. This work aims to classify the neuroradiological features of patients with Alzheimer's disease (AD) using an automatic hand-modeled method with high accuracy.

    MATERIALS AND METHOD: This work uses two (private and public) datasets. The private dataset consists of 3807 magnetic resonance imaging (MRI) and computer tomography (CT) images belonging to two (normal and AD) classes. The second public (Kaggle AD) dataset contains 6400 MR images. The presented classification model comprises three fundamental phases: feature extraction using an exemplar hybrid feature extractor, neighborhood component analysis-based feature selection, and classification utilizing eight different classifiers. The novelty of this model is feature extraction. Vision transformers inspire this phase, and hence 16 exemplars are generated. Histogram-oriented gradients (HOG), local binary pattern (LBP) and local phase quantization (LPQ) feature extraction functions have been applied to each exemplar/patch and raw brain image. Finally, the created features are merged, and the best features are selected using neighborhood component analysis (NCA). These features are fed to eight classifiers to obtain highest classification performance using our proposed method. The presented image classification model uses exemplar histogram-based features; hence, it is called ExHiF.

    RESULTS: We have developed the ExHiF model with a ten-fold cross-validation strategy using two (private and public) datasets with shallow classifiers. We have obtained 100% classification accuracy using cubic support vector machine (CSVM) and fine k nearest neighbor (FkNN) classifiers for both datasets.

    CONCLUSIONS: Our developed model is ready to be validated with more datasets and has the potential to be employed in mental hospitals to assist neurologists in confirming their manual screening of AD using MRI/CT images.

    Matched MeSH terms: Tomography, X-Ray Computed
  20. Chong B, Jayabaskaran J, Ruban J, Goh R, Chin YH, Kong G, et al.
    Circ Cardiovasc Imaging, 2023 May;16(5):e015159.
    PMID: 37192298 DOI: 10.1161/CIRCIMAGING.122.015159
    BACKGROUND: Epicardial adipose tissue (EAT) has garnered attention as a prognostic and risk stratification factor for cardiovascular disease. This study, via meta-analyses, evaluates the associations between EAT and cardiovascular outcomes stratified across imaging modalities, ethnic groups, and study protocols.

    METHODS: Medline and Embase databases were searched without date restriction on May 2022 for articles that examined EAT and cardiovascular outcomes. The inclusion criteria were (1) studies measuring EAT of adult patients at baseline and (2) reporting follow-up data on study outcomes of interest. The primary study outcome was major adverse cardiovascular events. Secondary study outcomes included cardiac death, myocardial infarction, coronary revascularization, and atrial fibrillation.

    RESULTS: Twenty-nine articles published between 2012 and 2022, comprising 19 709 patients, were included in our analysis. Increased EAT thickness and volume were associated with higher risks of cardiac death (odds ratio, 2.53 [95% CI, 1.17-5.44]; P=0.020; n=4), myocardial infarction (odds ratio, 2.63 [95% CI, 1.39-4.96]; P=0.003; n=5), coronary revascularization (odds ratio, 2.99 [95% CI, 1.64-5.44]; P<0.001; n=5), and atrial fibrillation (adjusted odds ratio, 4.04 [95% CI, 3.06-5.32]; P<0.001; n=3). For 1 unit increment in the continuous measure of EAT, computed tomography volumetric quantification (adjusted hazard ratio, 1.74 [95% CI, 1.42-2.13]; P<0.001) and echocardiographic thickness quantification (adjusted hazard ratio, 1.20 [95% CI, 1.09-1.32]; P<0.001) conferred an increased risk of major adverse cardiovascular events.

    CONCLUSIONS: The utility of EAT as an imaging biomarker for predicting and prognosticating cardiovascular disease is promising, with increased EAT thickness and volume being identified as independent predictors of major adverse cardiovascular events.

    REGISTRATION: URL: https://www.crd.york.ac.uk/prospero; Unique identifier: CRD42022338075.

    Matched MeSH terms: Tomography, X-Ray Computed/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links