Displaying publications 1 - 20 of 286 in total

Abstract:
Sort:
  1. Abdul Rahman SN, Bakar MFA, Singham GV, Othman AS
    3 Biotech, 2019 Nov;9(11):388.
    PMID: 31656726 DOI: 10.1007/s13205-019-1921-3
    In this study, RNA sequencing of several Hevea brasiliensis clones grown in Malaysia with different annual rubber production yields and disease resistance was performed on the Illumina platform. A total of 29,862,548 reads were generated, resulting in 101,269 assembled transcripts that were used as the reference transcripts. A similarity search against the non-redundant (nr) protein databases presented 83,771 (83%) positive BLASTx hits. The transcriptome was annotated using gene ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Pfam database. A search for putative molecular markers was performed to identify single-nucleotide polymorphisms (SNPs). Overall, 3,210,629 SNPs were detected and a total of 1314 SNPs associated with the genes involved in MVA and MEP pathways were identified. A total of 176 SNP primer pairs were designed from sequences that were related to the MVA and MEP pathways. The transcriptome of RRIM 3001 and RRIM 712 were subjected to pairwise comparison and the results revealed that there were 1262 significantly differentially expressed genes unique to RRIM 3001, 1499 significantly differentially expressed genes unique to RRIM 712 and several genes related to the MVA and MEP pathways such as AACT, HMGS, PMK, MVD, DXS and HDS were included. The results will facilitate the characterization of H. brasiliensis transcriptomes and the development of a new set of molecular markers in the form of SNPs from transcriptome assembly for the genotype identification of various rubber varieties with superior traits in Malaysia.
    Matched MeSH terms: Transcriptome
  2. Seder N, Abu Bakar MH, Abu Rayyan WS
    PMID: 33488102 DOI: 10.2147/AABC.S292143
    Introduction: Malaysian stingless bee honey (Trigona) has been aroused as a potential antimicrobial compound with antibiofilm activity. The capability of the gram-negative bacillus P. aeruginosa to sustain a fatal infection is encoded in the bacterium genome.

    Methods: In the current study, a transcriptome investigation was performed to explore the mechanism underlying the biofilm dispersal of P. aeruginosa after the exposure to Trigona honey.

    Results: Microarray analysis of the Pseudomonas biofilm treated by 20% Trigona honey has revealed a down-regulation of 3478 genes among the 6085 screened genes. Specifically, around 13.5% of the down-regulated genes were biofilm-associated genes. The mapping of the biofilm-associated pathways has shown an ultimate decrease in the expression levels of the D-GMP signaling pathway and diguanylate cyclases (DGCs) genes responsible for c-di-GMP formation.

    Conclusion: We predominantly report the lowering of c-di-GMP through the down-regulation of DGC genes as the main mechanism of biofilm inhibition by Trigona honey.

    Matched MeSH terms: Transcriptome
  3. Zuther E, Lee YP, Erban A, Kopka J, Hincha DK
    Adv Exp Med Biol, 2018 10 6;1081:81-98.
    PMID: 30288705 DOI: 10.1007/978-981-13-1244-1_5
    During low-temperature exposure, temperate plant species increase their freezing tolerance in a process termed cold acclimation. The molecular mechanisms involved in cold acclimation have been mostly investigated in Arabidopsis thaliana. In addition, other Brassicaceae species related to A. thaliana have been employed in recent years to study plant stress responses on a phylogenetically broader basis and in some cases with extremophile species with a much higher stress tolerance. In this paper, we briefly summarize cold acclimation responses in A. thaliana and current knowledge about cold acclimation in A. thaliana relatives with special emphasis on Eutrema salsugineum and two closely related Thellungiella species. We then present a transcriptomic and metabolomic analysis of cold acclimation in five A. thaliana and two E. salsugineum accessions that differ widely in their freezing tolerance. Differences in the cold responses of the two species are discussed.
    Matched MeSH terms: Transcriptome
  4. Tan HT, Hagner S, Ruchti F, Radzikowska U, Tan G, Altunbulakli C, et al.
    Allergy, 2019 02;74(2):294-307.
    PMID: 30267575 DOI: 10.1111/all.13619
    BACKGROUND: Asthma is a chronic respiratory disease with marked clinical and pathophysiological heterogeneity. Specific pathways are thought to be involved in the pathomechanisms of different inflammatory phenotypes of asthma; however, direct in vivo comparison has not been performed.

    METHODS: We developed mouse models representing three different phenotypes of allergic airway inflammation-eosinophilic, mixed, and neutrophilic asthma via different methods of house dust mite sensitization and challenge. Transcriptomic analysis of the lungs, followed by the RT-PCR, western blot, and confocal microscopy, was performed. Primary human bronchial epithelial cells cultured in air-liquid interface were used to study the mechanisms revealed in the in vivo models.

    RESULTS: By whole-genome transcriptome profiling of the lung, we found that airway tight junction (TJ), mucin, and inflammasome-related genes are differentially expressed in these distinct phenotypes. Further analysis of proteins from these families revealed that Zo-1 and Cldn18 were downregulated in all phenotypes, while increased Cldn4 expression was characteristic for neutrophilic airway inflammation. Mucins Clca1 (Gob5) and Muc5ac were upregulated in eosinophilic and even more in neutrophilic phenotype. Increased expression of inflammasome-related molecules such as Nlrp3, Nlrc4, Casp-1, and IL-1β was characteristic for neutrophilic asthma. In addition, we showed that inflammasome/Th17/neutrophilic axis cytokine-IL-1β-may transiently impair epithelial barrier function, while IL-1β and IL-17 increase mucin expressions in primary human bronchial epithelial cells.

    CONCLUSION: Our findings suggest that differential expression of TJ, mucin, and inflammasome-related molecules in distinct inflammatory phenotypes of asthma may be linked to pathophysiology and might reflect the differences observed in the clinic.

    Matched MeSH terms: Transcriptome
  5. Jia G, Ping J, Shu X, Yang Y, Cai Q, Kweon SS, et al.
    Am J Hum Genet, 2022 Dec 01;109(12):2185-2195.
    PMID: 36356581 DOI: 10.1016/j.ajhg.2022.10.011
    By combining data from 160,500 individuals with breast cancer and 226,196 controls of Asian and European ancestry, we conducted genome- and transcriptome-wide association studies of breast cancer. We identified 222 genetic risk loci and 137 genes that were associated with breast cancer risk at a p 
    Matched MeSH terms: Transcriptome/genetics
  6. Wang Y, Cheng C, Zhang Z, Wang J, Wang Y, Li X, et al.
    Am J Med Genet B Neuropsychiatr Genet, 2018 12;177(8):709-716.
    PMID: 30350918 DOI: 10.1002/ajmg.b.32675
    No biologically based diagnostic criteria are in clinical use today for obsessive-compulsive disorder (OCD), schizophrenia, and major depressive disorder (MDD), which are defined with reference to Diagnostic and Statistical Manual clinical symptoms alone. However, these disorders cannot always be well distinguished on clinical grounds and may also be comorbid. A biological blood-based dynamic genomic signature that can differentiate among OCD, MDD, and schizophrenia would therefore be of great utility. This study enrolled 77 patients with OCD, 67 controls with no psychiatric illness, 39 patients with MDD, and 40 with schizophrenia. An OCD-specific gene signature was identified using blood gene expression analysis to construct a predictive model of OCD that can differentiate this disorder from healthy controls, MDD, and schizophrenia using a logistic regression algorithm. To verify that the genes selected were not derived as a result of chance, the algorithm was tested twice. First, the algorithm was used to predict the cohort with true disease/control status and second, the algorithm predicted the cohort with disease/control status randomly reassigned (null set). A six-gene panel (COPS7A, FKBP1A, FIBP, TP73-AS1, SDF4, and GOLGA8A) discriminated patients with OCD from healthy controls, MDD, and schizophrenia in the training set (with an area under the receiver-operating-characteristic curve of 0.938; accuracy, 86%; sensitivity, 88%; and specificity, 85%). Our findings indicate that a blood transcriptomic signature can distinguish OCD from healthy controls, MDD, and schizophrenia. This finding further confirms the feasibility of using dynamic blood-based genomic signatures in psychiatric disorders and may provide a useful tool for clinical staff engaged in OCD diagnosis and decision making.
    Matched MeSH terms: Transcriptome
  7. Lim CH, Zainal NZ, Kanagasundram S, Zain SM, Mohamed Z
    PMID: 27177356 DOI: 10.1002/ajmg.b.32457
    Although major progress has been achieved in research and development of antipsychotic medications for bipolar disorder (BPD), knowledge of the molecular mechanisms underlying this disorder and the action of atypical antipsychotics remains incomplete. The levels of microRNAs (miRNAs)-small non-coding RNA molecules that regulate gene expression, including genes involved in neuronal function and plasticity-are frequently altered in psychiatric disorders. This study aimed to examine changes in miRNA expression in bipolar mania patients after treatment with asenapine and risperidone. Using a miRNA microarray, we analyzed miRNA expression in the blood of 10 bipolar mania patients following 12 weeks of treatment with asenapine or risperidone. Selected miRNAs were validated by using real-time PCR. A total of 16 miRNAs were differentially expressed after treatment in the asenapine group, 14 of which were significantly upregulated and the other two significantly downregulated. However, all three differentially expressed miRNAs in the risperidone group were downregulated. MiRNA target gene prediction and gene ontology analysis revealed significant enrichment for pathways associated with immune system response and regulation of programmed cell death and transcription. Our results suggest that candidate miRNAs may be involved in the mechanism of action of both antipsychotics in bipolar mania. © 2016 Wiley Periodicals, Inc.
    Matched MeSH terms: Transcriptome/genetics
  8. Nguyen DDN, Zain SM, Kamarulzaman MH, Low TY, Chilian WM, Pan Y, et al.
    Am J Physiol Heart Circ Physiol, 2021 10 01;321(4):H770-H783.
    PMID: 34506226 DOI: 10.1152/ajpheart.00058.2021
    Vascular aging is highly associated with cardiovascular morbidity and mortality. Although the senescence of vascular smooth muscle cells (VSMCs) has been well established as a major contributor to vascular aging, intracellular and exosomal microRNA (miRNA) signaling pathways in senescent VSMCs have not been fully elucidated. This study aimed to identify the differential expression of intracellular and exosomal miRNA in human VSMCs (hVSMCs) during replicative senescence. To achieve this aim, intracellular and exosomal miRNAs were isolated from hVSMCs and subsequently subjected to whole genome small RNA next-generation sequencing, bioinformatics analyses, and qPCR validation. Three significant findings were obtained. First, senescent hVSMC-derived exosomes tended to cluster together during replicative senescence and the molecular weight of the exosomal protein tumor susceptibility gene 101 (TSG-101) increased relative to the intracellular TSG-101, suggesting potential posttranslational modifications of exosomal TSG-101. Second, there was a significant decrease in both intracellular and exosomal hsa-miR-155-5p expression [n = 3, false discovery rate (FDR) < 0.05], potentially being a cell type-specific biomarker of hVSMCs during replicative senescence. Importantly, hsa-miR-155-5p was found to associate with cell-cycle arrest and elevated oxidative stress. Lastly, miRNAs from the intracellular pool, that is, hsa-miR-664a-3p, hsa-miR-664a-5p, hsa-miR-664b-3p, hsa-miR-4485-3p, hsa-miR-10527-5p, and hsa-miR-12136, and that from the exosomal pool, that is, hsa-miR-7704, were upregulated in hVSMCs during replicative senescence (n = 3, FDR < 0.05). Interestingly, these novel upregulated miRNAs were not functionally well annotated in hVSMCs to date. In conclusion, hVSMC-specific miRNA expression profiles during replicative senescence potentially provide valuable insights into the signaling pathways leading to vascular aging.NEW & NOTEWORTHY This is the first study on intracellular and exosomal miRNA profiling on human vascular smooth muscle cells during replicative senescence. Specific dysregulated sets of miRNAs were identified from human vascular smooth muscle cells. Hsa-miR-155-5p was significantly downregulated in both intracellular and exosomal hVSMCs, suggesting its crucial role in cellular senescence. Hsa-miR-155-5p might be the mediator in linking cellular senescence to vascular aging and atherosclerosis.
    Matched MeSH terms: Transcriptome*
  9. Greenwood MP, Mecawi AS, Hoe SZ, Mustafa MR, Johnson KR, Al-Mahmoud GA, et al.
    Am J Physiol Regul Integr Comp Physiol, 2015 Apr 01;308(7):R559-68.
    PMID: 25632023 DOI: 10.1152/ajpregu.00444.2014
    Salt loading (SL) and water deprivation (WD) are experimental challenges that are often used to study the osmotic circuitry of the brain. Central to this circuit is the supraoptic nucleus (SON) of the hypothalamus, which is responsible for the biosynthesis of the hormones, arginine vasopressin (AVP) and oxytocin (OXT), and their transport to terminals that reside in the posterior lobe of the pituitary. On osmotic challenge evoked by a change in blood volume or osmolality, the SON undergoes a function-related plasticity that creates an environment that allows for an appropriate hormone response. Here, we have described the impact of SL and WD compared with euhydrated (EU) controls in terms of drinking and eating behavior, body weight, and recorded physiological data including circulating hormone data and plasma and urine osmolality. We have also used microarrays to profile the transcriptome of the SON following SL and remined data from the SON that describes the transcriptome response to WD. From a list of 2,783 commonly regulated transcripts, we selected 20 genes for validation by qPCR. All of the 9 genes that have already been described as expressed or regulated in the SON by osmotic stimuli were confirmed in our models. Of the 11 novel genes, 5 were successfully validated while 6 were false discoveries.
    Matched MeSH terms: Transcriptome*
  10. Leong RZL, Lim LH, Chew YL, Teo SS
    Anim Biotechnol, 2023 Dec;34(9):4474-4487.
    PMID: 36576030 DOI: 10.1080/10495398.2022.2158094
    Sea cucumber is a bioremediator as it can composite organic matter and excrete inorganic matter. Sea cucumber has the potential to serve as a bioindicator in marine habitat as they provide an integrated insight into the status of their environment over long periods. Sea cucumbers are sensitive to the organic concentration in the marine environment and can effectively provide an early warning system for any organic contamination that can negatively impact the ecosystem. The availability of a reference transcriptome for sea cucumber would constitute an essential tool for identifying genes involved in crucial steps of the defence pathway. De novo assembly of RNA-seq data enables researchers to study the transcriptomes without needing a genome sequence. In this study, sea cucumbers fed with Kappaphycus alvarezii powder were treated with 0.20 mg/L copper concentration comprehensive transcriptome data containing 75,149 Unigenes, with a total length of 20,460,032 bp. A total of 8820 genes were predicted from the unigenes, annotated, and functionally categorized into 25 functional groups with approximately 20% cluster in signal transduction mechanism. The reference transcriptome presented and validated in this study is meaningful for identifying a wide range of gene(s) related to the bioindication of sea cucumber in a high copper environment.
    Matched MeSH terms: Transcriptome
  11. Akit H, Collins C, Fahri F, Hung A, D'Souza D, Leury B, et al.
    Animals (Basel), 2016;6(6).
    PMID: 27338483 DOI: 10.3390/ani6060038
    The purpose of this study was to investigate the effect of dietary lecithin on skeletal muscle gene expression of collagen precursors and enzymes involved in collagen synthesis and degradation. Finisher gilts with an average start weight of 55.9 ± 2.22 kg were fed diets containing either 0, 4, 20 or 80 g/kg soybean lecithin prior to harvest for six weeks and the rectus abdominis muscle gene expression profile was analyzed by quantitative real-time PCR. Lecithin treatment down-regulated Type I (α1) procollagen (COL1A1) and Type III (α1) procollagen (COL3A1) mRNA expression ( p < 0.05, respectively), indicating a decrease in the precursors for collagen synthesis. The α-subunit of prolyl 4-hydroxylase (P4H) mRNA expression also tended to be down-regulated ( p = 0.056), indicating a decrease in collagen synthesis. Decreased matrix metalloproteinase-1 (MMP-1) mRNA expression may reflect a positive regulatory response to the reduced collagen synthesis in muscle from the pigs fed lecithin ( p = 0.035). Lecithin had no effect on tissue inhibitor metalloproteinase-1 (TIMP-1), matrix metalloproteinase-13 (MMP-13) and lysyl oxidase mRNA expression. In conclusion, lecithin down-regulated COL1A1 and COL3A1 as well as tended to down-regulate α-subunit P4H expression. However, determination of muscle collagen content and solubility are required to support the gene functions.
    Matched MeSH terms: Transcriptome
  12. Mazumdar P, Binti Othman R, Mebus K, Ramakrishnan N, Ann Harikrishna J
    Ann Bot, 2017 Nov 28;120(6):893-909.
    PMID: 29155926 DOI: 10.1093/aob/mcx112
    Background and Aims: Studies on codon usage in monocots have focused on grasses, and observed patterns of this taxon were generalized to all monocot species. Here, non-grass monocot species were analysed to investigate the differences between grass and non-grass monocots.

    Methods: First, studies of codon usage in monocots were reviewed. The current information was then extended regarding codon usage, as well as codon-pair context bias, using four completely sequenced non-grass monocot genomes (Musa acuminata, Musa balbisiana, Phoenix dactylifera and Spirodela polyrhiza) for which comparable transcriptome datasets are available. Measurements were taken regarding relative synonymous codon usage, effective number of codons, derived optimal codon and GC content and then the relationships investigated to infer the underlying evolutionary forces.

    Key Results: The research identified optimal codons, rare codons and preferred codon-pair context in the non-grass monocot species studied. In contrast to the bimodal distribution of GC3 (GC content in third codon position) in grasses, non-grass monocots showed a unimodal distribution. Disproportionate use of G and C (and of A and T) in two- and four-codon amino acids detected in the analysis rules out the mutational bias hypothesis as an explanation of genomic variation in GC content. There was found to be a positive relationship between CAI (codon adaptation index; predicts the level of expression of a gene) and GC3. In addition, a strong correlation was observed between coding and genomic GC content and negative correlation of GC3 with gene length, indicating a strong impact of GC-biased gene conversion (gBGC) in shaping codon usage and nucleotide composition in non-grass monocots.

    Conclusion: Optimal codons in these non-grass monocots show a preference for G/C in the third codon position. These results support the concept that codon usage and nucleotide composition in non-grass monocots are mainly driven by gBGC.

    Matched MeSH terms: Transcriptome*
  13. Er JL, Goh PN, Lee CY, Tan YJ, Hii LW, Mai CW, et al.
    Apoptosis, 2018 Jun;23(5-6):343-355.
    PMID: 29740790 DOI: 10.1007/s10495-018-1459-6
    Pancreatic adenocarcinoma (PDAC) is a highly aggressive cancer with a high chance of recurrence, limited treatment options, and poor prognosis. A recent study has classified pancreatic cancers into four molecular subtypes: (1) squamous, (2) immunogenic, (3) pancreatic progenitor and (4) aberrantly differentiated endocrine exocrine. Among all the subtypes, the squamous subtype has the worst prognosis. This study aims to utilize large scale genomic datasets and computational systems biology to identify potential drugs targeting the squamous subtype of PDAC through combination therapy. Using the transcriptomic data available from the International Cancer Genome Consortium, Cancer Cell Line Encyclopedia and Connectivity Map, we identified 26 small molecules that could target the squamous subtype of PDAC. Among them include inhibitors targeting the SRC proto-oncogene (SRC) and the mitogen-activated protein kinase kinase 1/2 (MEK1/2). Further analyses demonstrated that the SRC inhibitors (dasatinib and PP2) and MEK1/2 inhibitor (pimasertib) synergized gemcitabine sensitivity specifically in the squamous subtype of PDAC cells (SW1990 and BxPC3), but not in the PDAC progenitor cells (AsPC1). Further analysis revealed that the synergistic effects are dependent on SRC or MEK1/2 activities, as overexpression of SRC or MEK1/2 completely abrogated the synergistic effects SRC inhibitors (dasatinib and PP2) and MEK1/2 inhibitor (pimasertib). In contrast, no significant toxicity was observed in the MRC5 human lung fibroblast and ARPE-19 human retinal pigment epithelial cells. Together, our findings suggest that combinations of SRC or MEK inhibitors with gemcitabine possess synergistic effects on the squamous subtype of PDAC cells and warrant further investigation.
    Matched MeSH terms: Transcriptome
  14. Thinh DD, Rasid MH, Deris ZM, Shazili NA, De Boeck G, Wong LL
    Arch Environ Contam Toxicol, 2016 Nov;71(4):530-540.
    PMID: 27638714
    To assess stress level induced by multiple stressors in aquatic organism, biomarkers have been adopted as early warning indicator due to their high accuracy, rapidity, and sensitivity. We investigated the effects of ectoparasitic isopod infection on heavy metal bioaccumulation (Fe, Cu, Zn, and Cd) in the fish Nemipterus furcosus and profiled the expression of metallothionein (MT) and heat shock proteins 70 (HSP70) genes of the fish host. Sixty individuals (parasitized and nonparasitized with Cymothoa truncata) were collected from three sites differing in the levels of anthropogenic activities off the South China Sea. Our results revealed no significant difference in heavy metal concentrations between infected and nonparasitized fish. We observed a positive correlation between heavy metal bioaccumulation in the fish host and anthropogenic activities. Accordingly, expression analysis of MT genes in fish liver showed significant differences in expression level between sampling sites, with lowest level in the least exploited site (Batu Rakit). A reverse pattern in HSP70 gene expression was demonstrated in fish muscle, showing the highest expression at Batu Rakit. While cymothoid infection in N. furcosus had no significant impact on fish MT gene expression, it resulted in a reduction of HSP70 level in liver of parasitized fish. These findings highlight the putative roles of MT in heavy metal assessment. Future studies should determine the kinetics of cymothoid infection and other potential stressors in characterizing the HSP70 gene expression profile.
    Matched MeSH terms: Transcriptome
  15. Haris K, Ismail S, Idris Z, Abdullah JM, Yusoff AA
    Asian Pac J Cancer Prev, 2014;15(11):4499-505.
    PMID: 24969876
    Glioblastoma, the most aggressive and malignant form of glioma, appears to be resistant to various chemotherapeutic agents. Hence, approaches have been intensively investigated to targeti specific molecular pathways involved in glioblastoma development and progression. Aloe emodin is believed to modulate the expression of several genes in cancer cells. We aimed to understand the molecular mechanisms underlying the therapeutic effect of Aloe emodin on gene expression profiles in the human U87 glioblastoma cell line utilizing microarray technology. The gene expression analysis revealed that a total of 8,226 gene alterations out of 28,869 genes were detected after treatment with 58.6 μg/ml for 24 hours. Out of this total, 34 genes demonstrated statistically significant change (p<0.05) ranging from 1.07 to 1.87 fold. The results revealed that 22 genes were up-regulated and 12 genes were down-regulated in response to Aloe emodin treatment. These genes were then grouped into several clusters based on their biological functions, revealing induction of expression of genes involved in apoptosis (programmed cell death) and tissue remodelling in U87 cells (p<0.01). Several genes with significant changes of the expression level e.g. SHARPIN, BCAP31, FIS1, RAC1 and TGM2 from the apoptotic cluster were confirmed by quantitative real-time PCR (qRT-PCR). These results could serve as guidance for further studies in order to discover molecular targets for the cancer therapy based on Aloe emodin treatment.
    Matched MeSH terms: Transcriptome/drug effects*; Transcriptome/genetics*
  16. Salleh SM, Mazzoni G, Løvendahl P, Kadarmideen HN
    BMC Bioinformatics, 2018 Dec 17;19(1):513.
    PMID: 30558534 DOI: 10.1186/s12859-018-2553-z
    BACKGROUND: Selection for feed efficiency is crucial for overall profitability and sustainability in dairy cattle production. Key regulator genes and genetic markers derived from co-expression networks underlying feed efficiency could be included in the genomic selection of the best cows. The present study identified co-expression networks associated with high and low feed efficiency and their regulator genes in Danish Holstein and Jersey cows. RNA-sequencing data from Holstein and Jersey cows with high and low residual feed intake (RFI) and treated with two diets (low and high concentrate) were used. Approximately 26 million and 25 million pair reads were mapped to bovine reference genome for Jersey and Holstein breed, respectively. Subsequently, the gene count expressions data were analysed using a Weighted Gene Co-expression Network Analysis (WGCNA) approach. Functional enrichment analysis from Ingenuity® Pathway Analysis (IPA®), ClueGO application and STRING of these modules was performed to identify relevant biological pathways and regulatory genes.

    RESULTS: WGCNA identified two groups of co-expressed genes (modules) significantly associated with RFI and one module significantly associated with diet. In Holstein cows, the salmon module with module trait relationship (MTR) = 0.7 and the top upstream regulators ATP7B were involved in cholesterol biosynthesis, steroid biosynthesis, lipid biosynthesis and fatty acid metabolism. The magenta module has been significantly associated (MTR = 0.51) with the treatment diet involved in the triglyceride homeostasis. In Jersey cows, the lightsteelblue1 (MTR = - 0.57) module controlled by IFNG and IL10RA was involved in the positive regulation of interferon-gamma production, lymphocyte differentiation, natural killer cell-mediated cytotoxicity and primary immunodeficiency.

    CONCLUSION: The present study provides new information on the biological functions in liver that are potentially involved in controlling feed efficiency. The hub genes and upstream regulators (ATP7b, IFNG and IL10RA) involved in these functions are potential candidate genes for the development of new biomarkers. However, the hub genes, upstream regulators and pathways involved in the co-expressed networks were different in both breeds. Hence, additional studies are required to investigate and confirm these findings prior to their use as candidate genes.

    Matched MeSH terms: Transcriptome*
  17. Chan KL, Rosli R, Tatarinova TV, Hogan M, Firdaus-Raih M, Low EL
    BMC Bioinformatics, 2017 Jan 27;18(Suppl 1):1426.
    PMID: 28466793 DOI: 10.1186/s12859-016-1426-6
    BACKGROUND: Gene prediction is one of the most important steps in the genome annotation process. A large number of software tools and pipelines developed by various computing techniques are available for gene prediction. However, these systems have yet to accurately predict all or even most of the protein-coding regions. Furthermore, none of the currently available gene-finders has a universal Hidden Markov Model (HMM) that can perform gene prediction for all organisms equally well in an automatic fashion.

    RESULTS: We present an automated gene prediction pipeline, Seqping that uses self-training HMM models and transcriptomic data. The pipeline processes the genome and transcriptome sequences of the target species using GlimmerHMM, SNAP, and AUGUSTUS pipelines, followed by MAKER2 program to combine predictions from the three tools in association with the transcriptomic evidence. Seqping generates species-specific HMMs that are able to offer unbiased gene predictions. The pipeline was evaluated using the Oryza sativa and Arabidopsis thaliana genomes. Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis showed that the pipeline was able to identify at least 95% of BUSCO's plantae dataset. Our evaluation shows that Seqping was able to generate better gene predictions compared to three HMM-based programs (MAKER2, GlimmerHMM and AUGUSTUS) using their respective available HMMs. Seqping had the highest accuracy in rice (0.5648 for CDS, 0.4468 for exon, and 0.6695 nucleotide structure) and A. thaliana (0.5808 for CDS, 0.5955 for exon, and 0.8839 nucleotide structure).

    CONCLUSIONS: Seqping provides researchers a seamless pipeline to train species-specific HMMs and predict genes in newly sequenced or less-studied genomes. We conclude that the Seqping pipeline predictions are more accurate than gene predictions using the other three approaches with the default or available HMMs.

    Matched MeSH terms: Transcriptome*
  18. Zakaria N, Yusoff NM, Zakaria Z, Lim MN, Baharuddin PJ, Fakiruddin KS, et al.
    BMC Cancer, 2015;15:84.
    PMID: 25881239 DOI: 10.1186/s12885-015-1086-3
    Despite significant advances in staging and therapies, lung cancer remains a major cause of cancer-related lethality due to its high incidence and recurrence. Clearly, a novel approach is required to develop new therapies to treat this devastating disease. Recent evidence indicates that tumours contain a small population of cells known as cancer stem cells (CSCs) that are responsible for tumour maintenance, spreading and resistant to chemotherapy. The genetic composition of CSCs so far is not fully understood, but manipulation of the specific genes that maintain their integrity would be beneficial for developing strategies to combat cancer. Therefore, the goal of this study isto identify the transcriptomic composition and biological functions of CSCs from non-small cell lung cancer (NSCLC).
    Matched MeSH terms: Transcriptome*
  19. Chan LC, Kalyanasundram J, Leong SW, Masarudin MJ, Veerakumarasivam A, Yusoff K, et al.
    BMC Cancer, 2021 May 27;21(1):625.
    PMID: 34044804 DOI: 10.1186/s12885-021-08345-y
    BACKGROUND: Newcastle disease virus (NDV) is an oncolytic virus with excellent selectivity against cancer cells, both in vitro and in vivo. Unfortunately, prolonged in vitro NDV infection results in the development of persistent infection in the cancer cells which are then able to resist NDV-mediated oncolysis. However, the mechanism of persistency of infection remains poorly understood.

    METHODS: In this study, we established persistently NDV-infected EJ28 bladder cancer cells, designated as EJ28P. Global transcriptomic analysis was subsequently carried out by microarray analysis. Differentially expressed genes (DEGs) between EJ28 and EJ28P cells identified by the edgeR program were further analysed by Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) analyses. In addition, the microarray data were validated by RT-qPCR.

    RESULTS: Persistently NDV-infected EJ28 bladder cancer cells were successfully established and confirmed by flow cytometry. Microarray analysis identified a total of 368 genes as differentially expressed in EJ28P cells when compared to the non-infected EJ28 cells. GSEA revealed that the Wnt/β-catenin and KRAS signalling pathways were upregulated while the TGF-β signalling pathway was downregulated. Findings from this study suggest that the upregulation of genes that are associated with cell growth, pro-survival, and anti-apoptosis may explain the survivability of EJ28P cells and the development of persistent infection of NDV.

    CONCLUSIONS: This study provides insights into the transcriptomic changes that occur and the specific signalling pathways that are potentially involved in the development and maintenance of NDV persistency of infection in bladder cancer cells. These findings warrant further investigation and is crucial towards the development of effective NDV oncolytic therapy against cancer.

    Matched MeSH terms: Transcriptome
  20. Kong SL, Abdullah SNA, Ho CL, Musa MHB, Yeap WC
    BMC Genom Data, 2021 02 05;22(1):6.
    PMID: 33568046 DOI: 10.1186/s12863-021-00962-7
    BACKGROUND: Phosphorus (P), in its orthophosphate form (Pi) is an essential macronutrient for oil palm early growth development in which Pi deficiency could later on be reflected in lower biomass production. Application of phosphate rock, a non-renewable resource has been the common practice to increase Pi accessibility and maintain crop productivity in Malaysia. However, high fixation rate of Pi in the native acidic tropical soils has led to excessive utilization of P fertilizers. This has caused serious environmental pollutions and cost increment. Even so, the Pi deficiency response mechanism in oil palm as one of the basic prerequisites for crop improvement remains largely unknown.

    RESULTS: Using total RNA extracted from young roots as template, we performed a comparative transcriptome analysis on oil palm responding to 14d and 28d of Pi deprivation treatment and under adequate Pi supply. By using Illumina HiSeq4000 platform, RNA-Seq analysis was successfully conducted on 12 paired-end RNA-Seq libraries and generated more than 1.2 billion of clean reads in total. Transcript abundance estimated by fragments per kilobase per million fragments (FPKM) and differential expression analysis revealed 36 and 252 genes that are differentially regulated in Pi-starved roots at 14d and 28d, respectively. Genes possibly involved in regulating Pi homeostasis, nutrient uptake and transport, hormonal signaling and gene transcription were found among the differentially expressed genes.

    CONCLUSIONS: Our results showed that the molecular response mechanism underlying Pi starvation in oil palm is complexed and involved multilevel regulation of various sensing and signaling components. This contribution would generate valuable genomic resources in the effort to develop oil palm planting materials that possess Pi-use efficient trait through molecular manipulation and breeding programs.

    Matched MeSH terms: Transcriptome*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links