Displaying publications 1 - 20 of 284 in total

Abstract:
Sort:
  1. Hussin NA, Najimudin N, Ab Majid AH
    Heliyon, 2019 Dec;5(12):e02969.
    PMID: 31872129 DOI: 10.1016/j.heliyon.2019.e02969
    The subterranean termite Globitermus sulphureus is an important Southeast Asian pest with limited genomic resources that causes damages to agriculture crops and building structures. Therefore, the main goal of this study was to survey the G. sulphureus transcriptome composition. Here, we performed de novo transcriptome for G. sulphureus workers' heads using Illumina HiSeq paired-end sequencing technology. A total of 88, 639, 408 clean reads were collected and assembled into 243, 057 transcripts and 193, 344 putative genes. The transcripts were annotated with the Trinotate pipeline. In total, 27, 061 transcripts were successfully annotated using BLASTX against the SwissProt database and 17, 816 genes were assigned to 47, 598 GO terms. We classified 14, 223 transcripts into COG classification, resulting in 25 groups of functional annotations. Next, a total of 12, 194 genes were matched in the KEGG pathway and 392 metabolic pathways were predicted based on the annotation. Moreover, we detected two endogenous cellulases in the sequences. The RT-qPCR analysis showed that there were significant differences in the expression levels of two genes β-glucosidase and endo-β-1,4-glucanase between worker and soldier heads of G. sulphureus. This is the first study to characterize the complete head transcriptome of a higher termite G. sulphureus using a high-throughput sequencing. Our study may provide an overview and comprehensive molecular resource for comparative studies of the transcriptomics and genomics of termites.
    Matched MeSH terms: Transcriptome
  2. Mohamad Yusof A, Jamal R, Muhammad R, Abdullah Suhaimi SN, Mohamed Rose I, Saidin S, et al.
    PMID: 29713312 DOI: 10.3389/fendo.2018.00158
    The incidence rate of papillary thyroid carcinoma (PTC) has rapidly increased in the recent decades, and the microRNA (miRNA) is one of the potential biomarkers in this cancer. Despite good prognosis, certain features such as lymph node metastasis (LNM) and BRAF V600E mutation are associated with a poor outcome. More than 50% of PTC patients present with LNM and BRAF V600E is the most common mutation identified in this cancer. The molecular mechanisms underlying these features are yet to be elucidated. This study aims to elucidate miRNA-genes interaction networks in PTC with or without LNM and to determine the association of BRAF V600E mutation with miRNAs and genes expression profiles. Next generation sequencing was performed to characterize miRNA and gene expression profiles in 20 fresh frozen tumor and the normal adjacent tissues of PTC with LNM positive (PTC LNM-P) and PTC without LNM (PTC LNN). BRAF V600E was genotyped using Sanger sequencing. Bioinformatics integration and pathway analysis were performed to determine the regulatory networks involved. Based on network analysis, we then investigated the association between miRNA and gene biomarkers, and pathway enrichment analysis was performed to study the role of candidate biomarkers. We identified 138 and 43 significantly deregulated miRNAs (adjusted p value 
    Matched MeSH terms: Transcriptome
  3. Jaafaru MS, Nordin N, Rosli R, Shaari K, Bako HY, Saad N, et al.
    Neurotoxicology, 2019 12;75:89-104.
    PMID: 31521693 DOI: 10.1016/j.neuro.2019.09.008
    Neurodegenerative diseases (NDDs) are pathological conditions characterised by progressive damage of neuronal cells leading to eventual loss of structure and function of the cells. Due to implication of multi-systemic complexities of signalling pathways in NDDs, the causes and preventive mechanisms are not clearly delineated. The study was designed to investigate the potential signalling pathways involved in neuroprotective activities of purely isolated glucomoringin isothiocyanate (GMG-ITC) against H2O2-induced cytotoxicity in neuroblastoma (SH-SY5Y) cells. GMG-ITC was isolated from Moringa oleifera seeds, and confirmed with NMR and LC-MS based methods. Gene expression analysis of phase II detoxifying markers revealed significant increase in the expression of all the genes involved, due to GMG-ITC pre-treatment. GMG-ITC also caused significant decreased in the expression of NF-kB, BACE1, APP and increased the expressions of IkB and MAPT tau genes in the differentiated cells as confirmed by multiplex genetic system analysis. The effect was reflected on the expressed proteins in the differentiated cells, where GMG-ITC caused increased in expression level of Nrf2, SOD-1, NQO1, p52 and c-Rel of nuclear factor erythroid factor 2 (Nrf2) and nuclear factor kappa-B (NF-kB) pathways respectively. The findings revealed the potential of GMG-ITC to abrogate oxidative stress-induced neurodegeneration through Nrf2 and NF-kB signalling pathways.
    Matched MeSH terms: Transcriptome/drug effects
  4. Dirong G, Nematbakhsh S, Selamat J, Chong PP, Idris LH, Nordin N, et al.
    Molecules, 2021 Oct 28;26(21).
    PMID: 34770913 DOI: 10.3390/molecules26216502
    Chicken is known to be the most common meat type involved in food mislabeling and adulteration. Establishing a method to authenticate chicken content precisely and identifying chicken breeds as declared in processed food is crucial for protecting consumers' rights. Categorizing the authentication method into their respective omics disciplines, such as genomics, transcriptomics, proteomics, lipidomics, metabolomics, and glycomics, and the implementation of bioinformatics or chemometrics in data analysis can assist the researcher in improving the currently available techniques. Designing a vast range of instruments and analytical methods at the molecular level is vital for overcoming the technical drawback in discriminating chicken from other species and even within its breed. This review aims to provide insight and highlight previous and current approaches suitable for countering different circumstances in chicken authentication.
    Matched MeSH terms: Transcriptome
  5. Arcana Thirumorthy, De-Ming Chau, Khatijah Yusoff, Abhi Veerakumarasivam
    MyJurnal
    Introduction: Bladder cancer is associated with high risk of tumour recurrence and therapeutic resistance. Cancer stem cells (CSC) within a particular tumour are postulated to drive tumorigenesis and influence tumour behaviour. Recent studies have shown that Newcastle disease virus (NDV) is able to selectively kill and exert a strong oncolytic effect against various cancer types. However little is known about the oncolytic effect of NDV against CSC. In this study, the oncolytic effect of NDV against putative bladder CSC was examined. Methods: Putative bladder CSC was selectively grown in the form of 3D-spheroids from six different bladder cancer cell lines. The spheroid cells were characterised for their stemness properties to ensure that these cells truly represent CSC. This was conducted via the analysis of CSC associated genes and cell surface markers expression. Subsequently, the oncolytic effect of the wild-type NDV-AF2240 strain against the bladder cancer spheroids was investigated. Results: All the spheroids expressed significantly high levels of CSC-associated genes. Flow-cytometry analysis revealed that the expression pattern of the CSC-associated surface markers was different in the spheroid cells; suggesting heterogeneity in the expression signatures of these cells. The infection of spheroids with NDV showed that the NDV was able to target bladder cancer spheroids but there was a spectrum of response across the different spheroids. Intriguingly, NDV was able to persistently infect bladder cancer spheroids that were not sensitive towards NDV infection as the presence of NDV viral genes were detected in the spheroid cells. The NDV persistently infected bladder cancer spheroids were resistant to superinfection and developed an antiviral state by expressing low levels of interferon-beta (IFN-b). NDV persistency of infection affects the process of epithelial to mesenchymal transition (EMT) of cancer cells as the spheroid forming ability of an established NDV persistently infected bladder cancer cell line, EJ28-PI was shown to be impaired. The EJ28-PI cells expressed significantly high levels of the EN2 gene. Knockdown of the EN2 expression reduced the viability of EJ28-PI cells; suggesting a role for EN2 in mediating NDV persistency of infection in cancer cells. Conclusion: Bladder CSC gene expression signatures influence the efficacy of NDV-mediated oncolysis. Our current work is focused on identifying genes and signalling pathways that influence NDV-mediated oncolysis us-ing whole-transcriptomic sequencing. The findings of this study can potentially be used to enhance the efficacy of NDV-mediated oncolysis and accelerate the translation of NDV as an oncotherapeutic agent in the clinic.
    Matched MeSH terms: Transcriptome
  6. Hafidh RR, Hussein SZ, MalAllah MQ, Abdulamir AS, Abu Bakar F
    Curr Cancer Drug Targets, 2018;18(8):807-815.
    PMID: 29141549 DOI: 10.2174/1568009617666171114144236
    BACKGROUND: Citrus bioactive compounds, as active anticancer agents, have been under focus by several studies worldwide. However, the underlying genes responsible for the anticancer potential have not been sufficiently highlighted.

    OBJECTIVES: The current study investigated the gene expression profile of hepatocellular carcinoma, HepG2, cells after treatment with Limonene.

    METHODS: The concentration that killed 50% of HepG2 cells was used to elucidate the genetic mechanisms of limonene anticancer activity. The apoptotic induction was detected by flow cytometry and confocal fluorescence microscope. Two of the pro-apoptotic events, caspase-3 activation and phosphatidylserine translocation were manifested by confocal fluorescence microscopy. Highthroughput real-time PCR was used to profile 1023 cancer-related genes in 16 different gene families related to the cancer development.

    RESULTS: In comparison to untreated cells, limonene increased the percentage of apoptotic cells up to 89.61%, by flow cytometry, and 48.2% by fluorescence microscopy. There was a significant limonene- driven differential gene expression of HepG2 cells in 15 different gene families. Limonene was shown to significantly (>2log) up-regulate and down-regulate 14 and 59 genes, respectively. The affected gene families, from the most to the least affected, were apoptosis induction, signal transduction, cancer genes augmentation, alteration in kinases expression, inflammation, DNA damage repair, and cell cycle proteins.

    CONCLUSION: The current study reveals that limonene could be a promising, cheap, and effective anticancer compound. The broad spectrum of limonene anticancer activity is interesting for anticancer drug development. Further research is needed to confirm the current findings and to examine the anticancer potential of limonene along with underlying mechanisms on different cell lines.

    Matched MeSH terms: Transcriptome
  7. Woon JS, King PJH, Mackeen MM, Mahadi NM, Wan Seman WMK, Broughton WJ, et al.
    Mol Biotechnol, 2017 Jul;59(7):271-283.
    PMID: 28573450 DOI: 10.1007/s12033-017-0015-x
    Coptotermes curvignathus is a termite that, owing to its ability to digest living trees, serves as a gold mine for robust industrial enzymes. This unique characteristic reflects the presence of very efficient hydrolytic enzyme systems including cellulases. Transcriptomic analyses of the gut of C. curvignathus revealed that carbohydrate-active enzymes (CAZy) were encoded by 3254 transcripts and that included 69 transcripts encoding glycoside hydrolase family 7 (GHF7) enzymes. Since GHF7 enzymes are useful to the biomass conversion industry, a gene encoding for a GHF7 enzyme (Gh1254) was synthesized, sub-cloned and expressed in the methylotrophic yeast Pichia pastoris. Expressed GH1254 had an apparent molecular mass of 42 kDa, but purification was hampered by its low expression levels in shaken flasks. To obtain more of the enzyme, GH1254 was produced in a bioreactor that resulted in a fourfold increase in crude enzyme levels. The purified enzyme was active towards soluble synthetic substrates such as 4-methylumbelliferyl-β-D-cellobioside, 4-nitrophenyl-β-D-cellobioside and 4-nitrophenyl-β-D-lactoside but was non-hydrolytic towards Avicel or carboxymethyl cellulose. GH1254 catalyzed optimally at 35 °C and maintained 70% of its activity at 25 °C. This enzyme is thus potentially useful in food industries employing low-temperature conditions.
    Matched MeSH terms: Transcriptome
  8. Che Noh I, Avoi R, Abdullah Nurul A, Ahmad I, Abu Bakar R
    PeerJ, 2022;10:e13330.
    PMID: 35469194 DOI: 10.7717/peerj.13330
    BACKGROUND: Chronic hepatitis C virus (HCV) infection is one of the major causes of liver cirrhosis and liver carcinoma. Studies have indicated that an imbalance of cytokine activities could contribute to the pathogenesis of chronic HCV infection. This study aimed to investigate serum levels and gene expression of cytokines (IL-6, TNF-α and TGF-β1) in chronic HCV infection among Malay male subjects.

    METHODS: Thirty-nine subjects were enrolled from various health clinics in Kelantan, Malaysia, and divided into two groups: patients with chronic HCV infection (HP) and healthy control (HS). The serum cytokines IL-6, TNF-a-were measured using Luminex assay, and serum TGF-β1 was measured by ELISA. The mRNA gene expression for IL-6, TNF-α and TGF-β1 was measured by real-time reverse transcriptase polymerase chain reaction (RT-PCR).

    RESULTS: There were statistically significant differences in the mean serum levels of IL-6, and TGF-β1 in HP compared to HS group (p = 0.0180 and p = 0.0005, respectively). There was no significant difference in the mean serum level of TNF-α in HP compared to HS group. The gene expression for the studied cytokines showed no significant differences in HP compared to HS group.

    CONCLUSION: Serum IL-6 was significantly associated with chronic HCV infection.

    Matched MeSH terms: Transcriptome
  9. Seder N, Abu Bakar MH, Abu Rayyan WS
    PMID: 33488102 DOI: 10.2147/AABC.S292143
    Introduction: Malaysian stingless bee honey (Trigona) has been aroused as a potential antimicrobial compound with antibiofilm activity. The capability of the gram-negative bacillus P. aeruginosa to sustain a fatal infection is encoded in the bacterium genome.

    Methods: In the current study, a transcriptome investigation was performed to explore the mechanism underlying the biofilm dispersal of P. aeruginosa after the exposure to Trigona honey.

    Results: Microarray analysis of the Pseudomonas biofilm treated by 20% Trigona honey has revealed a down-regulation of 3478 genes among the 6085 screened genes. Specifically, around 13.5% of the down-regulated genes were biofilm-associated genes. The mapping of the biofilm-associated pathways has shown an ultimate decrease in the expression levels of the D-GMP signaling pathway and diguanylate cyclases (DGCs) genes responsible for c-di-GMP formation.

    Conclusion: We predominantly report the lowering of c-di-GMP through the down-regulation of DGC genes as the main mechanism of biofilm inhibition by Trigona honey.

    Matched MeSH terms: Transcriptome
  10. Sew YS, Aizat WM, Razak MSFA, Zainal-Abidin RA, Simoh S, Abu-Bakar N
    Data Brief, 2020 Aug;31:105927.
    PMID: 32642524 DOI: 10.1016/j.dib.2020.105927
    The proteome data of whole rice grain is considerably limited particularly for rice with pigmentations such as black and red rice. Hence, we performed proteome analysis of two black rice varieties (BALI and Pulut Hitam 9), two red rice varieties (MRM16 and MRQ100) and two white rice varieties (MR297 and MRQ76) using label-free liquid chromatography Triple TOF 6600 tandem mass spectrometry (LC-MS/MS). Our aim was to profile and identify proteins related to nutritional (i.e. antioxidant, folate and low glycaemic index) and quality (i.e. aromatic) traits based on peptide-centric scoring from the Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) approach. Both information dependent acquisition (IDA) and SWATH-MS run were performed in this analysis. Raw data was then processed using ProteinPilot software to identify and compare proteins from the six different varieties. In future, this proteomics data will be integrated with previously obtained genomics [1] and transcriptomics [2] data focusing on the above nutritional and quality traits, with an ultimate aim to develop a panel of functional biomarkers related to those traits for future rice breeding programme. The raw MS data of the pigmented and non-pigmented rice varieties have been deposited to ProteomeXchange database with accession number PXD018338.
    Matched MeSH terms: Transcriptome
  11. Thottathil, Gincy Paily, Jayasekaran, Kandakumar, Ahmad Sofiman Othman
    Trop Life Sci Res, 2016;27(1):93-114.
    MyJurnal
    Agricultural development in the tropics lags behind development in the
    temperate latitudes due to the lack of advanced technology, and various biotic and abiotic
    factors. To cope with the increasing demand for food and other plant-based products,
    improved crop varieties have to be developed. To breed improved varieties, a better
    understanding of crop genetics is necessary. With the advent of next-generation DNA
    sequencing technologies, many important crop genomes have been sequenced. Primary
    importance has been given to food crops, including cereals, tuber crops, vegetables, and
    fruits. The DNA sequence information is extremely valuable for identifying key genes
    controlling important agronomic traits and for identifying genetic variability among the
    cultivars. However, massive DNA re-sequencing and gene expression studies have to be
    performed to substantially improve our understanding of crop genetics. Application of the
    knowledge obtained from the genomes, transcriptomes, expression studies, and
    epigenetic studies would enable the development of improved varieties and may lead to a
    second green revolution. The applications of next generation DNA sequencing
    technologies in crop improvement, its limitations, future prospects, and the features of
    important crop genome projects are reviewed herein.
    Matched MeSH terms: Transcriptome
  12. Moradipoor S, Ismail P, Etemad A, Wan Sulaiman WA, Ahmadloo S
    Biomed Res Int, 2016;2016:1845638.
    PMID: 27781209 DOI: 10.1155/2016/1845638
    Endothelial dysfunction appears to be an early sign indicating vascular damage and predicts the progression of atherosclerosis and cardiovascular disorders. Extensive clinical and experimental evidence suggests that endothelial dysfunction occurs in Type 2 Diabetes Mellitus (T2DM) and prediabetes patients. This study was carried out with an aim to appraise the expression levels in the peripheral blood of 84 genes related to endothelial cells biology in patients with diagnosed T2DM or prediabetes, trying to identify new genes whose expression might be changed under these pathological conditions. The study covered a total of 45 participants. The participants were divided into three groups: group 1, patients with T2DM; group 2, patients with prediabetes; group 3, control group. The gene expression analysis was performed using the Endothelial Cell Biology RT(2) Profiler PCR Array. In the case of T2DM, 59 genes were found to be upregulated, and four genes were observed to be downregulated. In prediabetes patients, increased expression was observed for 49 genes, with two downregulated genes observed. Our results indicate that diabetic and prediabetic conditions change the expression levels of genes related to endothelial cells biology and, consequently, may increase the risk for occurrence of endothelial dysfunction.
    Matched MeSH terms: Transcriptome/genetics*
  13. Chan WH, Mohamad MS, Deris S, Zaki N, Kasim S, Omatu S, et al.
    Comput Biol Med, 2016 10 01;77:102-15.
    PMID: 27522238 DOI: 10.1016/j.compbiomed.2016.08.004
    Incorporation of pathway knowledge into microarray analysis has brought better biological interpretation of the analysis outcome. However, most pathway data are manually curated without specific biological context. Non-informative genes could be included when the pathway data is used for analysis of context specific data like cancer microarray data. Therefore, efficient identification of informative genes is inevitable. Embedded methods like penalized classifiers have been used for microarray analysis due to their embedded gene selection. This paper proposes an improved penalized support vector machine with absolute t-test weighting scheme to identify informative genes and pathways. Experiments are done on four microarray data sets. The results are compared with previous methods using 10-fold cross validation in terms of accuracy, sensitivity, specificity and F-score. Our method shows consistent improvement over the previous methods and biological validation has been done to elucidate the relation of the selected genes and pathway with the phenotype under study.
    Matched MeSH terms: Transcriptome/genetics*
  14. Ee Uli J, Yong CSY, Yeap SK, Rovie-Ryan JJ, Mat Isa N, Tan SG, et al.
    PeerJ, 2017;5:e3566.
    PMID: 28828235 DOI: 10.7717/peerj.3566
    The cynomolgus macaque (Macaca fascicularis) is an extensively utilised nonhuman primate model for biomedical research due to its biological, behavioural, and genetic similarities to humans. Genomic information of cynomolgus macaque is vital for research in various fields; however, there is presently a shortage of genomic information on the Malaysian cynomolgus macaque. This study aimed to sequence, assemble, annotate, and profile the Peninsular Malaysian cynomolgus macaque transcriptome derived from three tissues (lymph node, spleen, and thymus) using RNA sequencing (RNA-Seq) technology. A total of 174,208,078 paired end 70 base pair sequencing reads were obtained from the Illumina Hi-Seq 2500 sequencer. The overall mapping percentage of the sequencing reads to the M. fascicularis reference genome ranged from 53-63%. Categorisation of expressed genes to Gene Ontology (GO) and KEGG pathway categories revealed that GO terms with the highest number of associated expressed genes include Cellular process, Catalytic activity, and Cell part, while for pathway categorisation, the majority of expressed genes in lymph node, spleen, and thymus fall under the Global overview and maps pathway category, while 266, 221, and 138 genes from lymph node, spleen, and thymus were respectively enriched in the Immune system category. Enriched Immune system pathways include Platelet activation pathway, Antigen processing and presentation, B cell receptor signalling pathway, and Intestinal immune network for IgA production. Differential gene expression analysis among the three tissues revealed 574 differentially expressed genes (DEG) between lymph and spleen, 5402 DEGs between lymph and thymus, and 7008 DEGs between spleen and thymus. Venn diagram analysis of expressed genes revealed a total of 2,630, 253, and 279 tissue-specific genes respectively for lymph node, spleen, and thymus tissues. This is the first time the lymph node, spleen, and thymus transcriptome of the Peninsular Malaysian cynomolgus macaque have been sequenced via RNA-Seq. Novel transcriptomic data will further enrich the present M. fascicularis genomic database and provide future research potentials, including novel transcript discovery, comparative studies, and molecular markers development.
    Matched MeSH terms: Transcriptome
  15. Saad N, Alberio R, Johnson AD, Emes RD, Giles TC, Clarke P, et al.
    Oncotarget, 2018 Mar 23;9(22):16008-16027.
    PMID: 29662623 DOI: 10.18632/oncotarget.24664
    Inducing stable control of tumour growth by tumour reversion is an alternative approach to cancer treatment when eradication of the disease cannot be achieved. The process requires re-establishment of normal control mechanisms that are lost in cancer cells so that abnormal proliferation can be halted. Embryonic environments can reset cellular programmes and we previously showed that axolotl oocyte extracts can reprogram breast cancer cells and reverse their tumorigenicity. In this study, we analysed the gene expression profiles of oocyte extract-treated tumour xenografts to show that tumour reprogramming involves cell cycle arrest and acquisition of a quiescent state. Tumour dormancy is associated with increased P27 expression, restoration of RB function and downregulation of mitogen-activated signalling pathways. We also show that the quiescent state is associated with increased levels of H4K20me3 and decreased H4K20me1, an epigenetic profile leading to chromatin compaction. The epigenetic reprogramming induced by oocyte extracts is required for RB hypophosphorylation and induction of P27 expression, both occurring during exposure to the extracts and stably maintained in reprogrammed tumour xenografts. Therefore, this study demonstrates the value of oocyte molecules for inducing tumour reversion and for the development of new chemoquiescence-based therapies.
    Matched MeSH terms: Transcriptome
  16. Hassanudin SA, Ponnampalam SN, Amini MN
    Oncol Lett, 2019 Feb;17(2):1675-1687.
    PMID: 30675227 DOI: 10.3892/ol.2018.9811
    The aim of the present study was to determine the genetic aberrations and novel transcripts, particularly the fusion transcripts, involved in the pathogenesis of low-grade and anaplastic oligodendroglioma. In the present study, tissue samples were obtained from patients with oligodendroglioma and additionally from archived tissue samples from the Brain Tumor Tissue Bank of the Brain Tumor Foundation of Canada. Six samples were obtained, three of which were low-grade oligodendroglioma and the other three anaplastic oligodendroglioma. DNA and RNA were extracted from each tissue sample. The resulting genomic DNA was then hybridized using the Agilent CytoSure 4×180K oligonucleotide array. Human reference DNA and samples were labeled using Cy3 cytidine 5'-triphosphate (CTP) and Cy5 CTP, respectively, while human Cot-1 DNA was used to reduce non-specific binding. Microarray-based comparative genomic hybridization data was then analyzed for genetic aberrations using the Agilent Cytosure Interpret software v3.4.2. The total RNA isolated from each sample was mixed with oligo dT magnetic beads to enrich for poly(A) mRNA. cDNAs were then synthesized and subjected to end-repair, poly(A) addition and connected using sequencing adapters using the Illumina TruSeq RNA Sample Preparation kit. The fragments were then purified and selected as templates for polymerase chain reaction amplification. The final library was constructed with fragments between 350-450 base pairs and sequenced using deep transcriptome sequencing on an Illumina HiSeq 2500 sequencer. The array comparative genomic hybridization revealed numerous amplifications and deletions on several chromosomes in all samples. However, the most interesting result was from the next generation sequencing, where one anaplastic oligodendroglioma sample was demonstrated to have five novel fusion genes that may potentially serve a critical role in tumor pathogenesis and progression.
    Matched MeSH terms: Transcriptome
  17. Zhong J, Jermusyk A, Wu L, Hoskins JW, Collins I, Mocci E, et al.
    J Natl Cancer Inst, 2020 Oct 01;112(10):1003-1012.
    PMID: 31917448 DOI: 10.1093/jnci/djz246
    BACKGROUND: Although 20 pancreatic cancer susceptibility loci have been identified through genome-wide association studies in individuals of European ancestry, much of its heritability remains unexplained and the genes responsible largely unknown.

    METHODS: To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan. We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics [n = 95] and Genotype-Tissue Expression v7 [n = 174] datasets) and data from 48 different tissues (Genotype-Tissue Expression v7, n = 74-421 samples).

    RESULTS: We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate < .05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEP1) and 11 at six known risk loci (5p15.33: TERT, CLPTM1L, ZDHHC11B; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at known loci) remained statistically significant after Bonferroni correction.

    CONCLUSIONS: By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation.

    Matched MeSH terms: Transcriptome
  18. Tan SC, Ismail MP, Duski DR, Othman NH, Bhavaraju VM, Ankathil R
    Cancer Invest, 2017 Mar 16;35(3):163-173.
    PMID: 28301252 DOI: 10.1080/07357907.2017.1278767
    This study aimed to identify the most stably expressed reference genes from a panel of 32 candidate genes for normalization of reverse transcription-quantitative real-time polymerase chain reaction data in cancerous and non-cancerous tissues of human uterine cervix. Overall, PUM1, YWHAZ, and RPLP0 were identified as the most stably expressed genes in paired cancerous and non-cancerous tissues. The results were further stratified by the state of malignancy of the tissues, histopathological type of the cancer, and the human papillomavirus-type.
    Matched MeSH terms: Transcriptome
  19. Mazumdar P, Binti Othman R, Mebus K, Ramakrishnan N, Ann Harikrishna J
    Ann Bot, 2017 Nov 28;120(6):893-909.
    PMID: 29155926 DOI: 10.1093/aob/mcx112
    Background and Aims: Studies on codon usage in monocots have focused on grasses, and observed patterns of this taxon were generalized to all monocot species. Here, non-grass monocot species were analysed to investigate the differences between grass and non-grass monocots.

    Methods: First, studies of codon usage in monocots were reviewed. The current information was then extended regarding codon usage, as well as codon-pair context bias, using four completely sequenced non-grass monocot genomes (Musa acuminata, Musa balbisiana, Phoenix dactylifera and Spirodela polyrhiza) for which comparable transcriptome datasets are available. Measurements were taken regarding relative synonymous codon usage, effective number of codons, derived optimal codon and GC content and then the relationships investigated to infer the underlying evolutionary forces.

    Key Results: The research identified optimal codons, rare codons and preferred codon-pair context in the non-grass monocot species studied. In contrast to the bimodal distribution of GC3 (GC content in third codon position) in grasses, non-grass monocots showed a unimodal distribution. Disproportionate use of G and C (and of A and T) in two- and four-codon amino acids detected in the analysis rules out the mutational bias hypothesis as an explanation of genomic variation in GC content. There was found to be a positive relationship between CAI (codon adaptation index; predicts the level of expression of a gene) and GC3. In addition, a strong correlation was observed between coding and genomic GC content and negative correlation of GC3 with gene length, indicating a strong impact of GC-biased gene conversion (gBGC) in shaping codon usage and nucleotide composition in non-grass monocots.

    Conclusion: Optimal codons in these non-grass monocots show a preference for G/C in the third codon position. These results support the concept that codon usage and nucleotide composition in non-grass monocots are mainly driven by gBGC.

    Matched MeSH terms: Transcriptome*
  20. Kumaresan V, Pasupuleti M, Arasu MV, Al-Dhabi NA, Arshad A, Amin SMN, et al.
    Mol Biol Rep, 2018 Dec;45(6):2511-2523.
    PMID: 30306509 DOI: 10.1007/s11033-018-4418-y
    Snakehead murrel, Channa striatus is an economically important aquatic species in Asia and are widely cultured and captured because of its nutritious and medicinal values. Their growth is predominantly affected by epizootic ulcerative syndrome (EUS) which is primarily caused by an oomycete fungus, Aphanomyces invadans. However, the molecular mechanism of immune response in murrel against this infection is still not clear. In this study, transcriptome technique was used to understand the molecular changes involved in C. striatus during A. invadans infection. RNA from the control (CF) and infected fish (IF) groups were sequenced using Illumina Hi-seq sequencing technology. For control group, 28,952,608 clean reads were generated and de novo assembly was performed to produce 60,753 contigs. For fungus infected group, 25,470,920 clean reads were obtained and assembled to produce 58,654 contigs. Differential gene expression analysis revealed that a total of 146 genes were up-regulated and 486 genes were down regulated. Most of the differentially expressed genes were involved in innate immune mechanism such as pathogen recognition, signalling and antimicrobial mechanisms. Interestingly, few adaptive immune genes, especially immunoglobulins were also significantly up regulated during fungal infection. Also, the results were validated by qRT-PCR analysis. These results indicated the involvement of various immune genes involved in both innate and adaptive immune mechanism during fungal infection in C. striatus which provide new insights into murrel immune mechanisms against A. invadans.
    Matched MeSH terms: Transcriptome
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links