Displaying publications 1 - 20 of 362 in total

Abstract:
Sort:
  1. Slik JW, Aiba S, Bastian M, Brearley FQ, Cannon CH, Eichhorn KA, et al.
    Proc Natl Acad Sci U S A, 2011 Jul 26;108(30):12343-7.
    PMID: 21746913 DOI: 10.1073/pnas.1103353108
    The marked biogeographic difference between western (Malay Peninsula and Sumatra) and eastern (Borneo) Sundaland is surprising given the long time that these areas have formed a single landmass. A dispersal barrier in the form of a dry savanna corridor during glacial maxima has been proposed to explain this disparity. However, the short duration of these dry savanna conditions make it an unlikely sole cause for the biogeographic pattern. An additional explanation might be related to the coarse sandy soils of central Sundaland. To test these two nonexclusive hypotheses, we performed a floristic cluster analysis based on 111 tree inventories from Peninsular Malaysia, Sumatra, and Borneo. We then identified the indicator genera for clusters that crossed the central Sundaland biogeographic boundary and those that did not cross and tested whether drought and coarse-soil tolerance of the indicator genera differed between them. We found 11 terminal floristic clusters, 10 occurring in Borneo, 5 in Sumatra, and 3 in Peninsular Malaysia. Indicator taxa of clusters that occurred across Sundaland had significantly higher coarse-soil tolerance than did those from clusters that occurred east or west of central Sundaland. For drought tolerance, no such pattern was detected. These results strongly suggest that exposed sandy sea-bed soils acted as a dispersal barrier in central Sundaland. However, we could not confirm the presence of a savanna corridor. This finding makes it clear that proposed biogeographic explanations for plant and animal distributions within Sundaland, including possible migration routes for early humans, need to be reevaluated.
    Matched MeSH terms: Tropical Climate
  2. Goh LC, Shakri ED, Ong HY, Mustakim S, Shaariyah MM, Ng WSJ, et al.
    J Laryngol Otol, 2017 Sep;131(9):813-816.
    PMID: 28841131 DOI: 10.1017/S0022215117001505
    OBJECTIVE: To evaluate the clinicopathological and mycological manifestations of fungal rhinosinusitis occurring in the Tengku Ampuan Rahimah Hospital, in Klang, Malaysia, which has a tropical climate.

    METHODS: Records of patients treated from 2009 to 2016 were analysed retrospectively. Data from the records were indexed based on age, gender, clinical presentations, symptom duration, clinical signs and mycological growth.

    RESULTS: Of 80 samples, 27 (33.75 per cent) had fungal growth. Sixteen patients were classified as having non-invasive fungal rhinosinusitis and 11 as having invasive fungal rhinosinusitis. The commonest clinical presentation was nasal polyposis in non-invasive fungal rhinosinusitis patients (p < 0.05) and ocular symptoms in invasive fungal rhinosinusitis patients (p < 0.05). The commonest organism was aspergillus sp. (p < 0.05) in non-invasive fungal rhinosinusitis and mucorales in invasive fungal rhinosinusitis.

    CONCLUSION: There is an almost equal distribution of both invasive and non-invasive fungal rhinosinusitis, as seen in some Asian countries. Invasive fungal rhinosinusitis, while slightly uncommon when compared to non-invasive fungal rhinosinusitis, is potentially life threatening, and may require early and extensive surgical debridement. The clinical presentation of nasal polyposis was often associated with non-invasive fungal rhinosinusitis, whereas ocular symptoms were more likely to be associated with invasive fungal rhinosinusitis.

    Matched MeSH terms: Tropical Climate
  3. Russo SE, McMahon SM, Detto M, Ledder G, Wright SJ, Condit RS, et al.
    Nat Ecol Evol, 2021 Feb;5(2):174-183.
    PMID: 33199870 DOI: 10.1038/s41559-020-01340-9
    Resource allocation within trees is a zero-sum game. Unavoidable trade-offs dictate that allocation to growth-promoting functions curtails other functions, generating a gradient of investment in growth versus survival along which tree species align, known as the interspecific growth-mortality trade-off. This paradigm is widely accepted but not well established. Using demographic data for 1,111 tree species across ten tropical forests, we tested the generality of the growth-mortality trade-off and evaluated its underlying drivers using two species-specific parameters describing resource allocation strategies: tolerance of resource limitation and responsiveness of allocation to resource access. Globally, a canonical growth-mortality trade-off emerged, but the trade-off was strongly observed only in less disturbance-prone forests, which contained diverse resource allocation strategies. Only half of disturbance-prone forests, which lacked tolerant species, exhibited the trade-off. Supported by a theoretical model, our findings raise questions about whether the growth-mortality trade-off is a universally applicable organizing framework for understanding tropical forest community structure.
    Matched MeSH terms: Tropical Climate*
  4. Zhu H
    Ecol Evol, 2017 12;7(23):10398-10408.
    PMID: 29238563 DOI: 10.1002/ece3.3561
    The tropical climate in China exists in southeastern Xizang (Tibet), southwestern to southeastern Yunnan, southwestern Guangxi, southern Guangdon, southern Taiwan, and Hainan, and these southern Chinese areas contain tropical floras. I checked and synonymized native seed plants from these tropical areas in China and recognized 12,844 species of seed plants included in 2,181 genera and 227 families. In the tropical flora of southern China, the families are mainly distributed in tropical areas and extend into temperate zones and contribute to the majority of the taxa present. The genera with tropical distributions also make up the most of the total flora. In terms of geographical elements, the genera with tropical Asian distribution constitute the highest proportion, which implies tropical Asian or Indo-Malaysia affinity. Floristic composition and geographical elements are conspicuous from region to region due to different geological history and ecological environments, although floristic similarities from these regions are more than 90% and 64% at the family and generic levels, respectively, but lower than 50% at specific level. These differences in the regional floras could be influenced by historical events associated with the uplift of the Himalayas, such as the southeastward extrusion of the Indochina geoblock, clockwise rotation and southeastward movement of Lanping-Simao geoblock, and southeastward movement of Hainan Island. The similarity coefficients between the flora of southern China and those of Indochina countries are more than 96% and 80% at family and generic levels, indicating their close floristic affinity and inclusion in the same biogeographically floristic unit.
    Matched MeSH terms: Tropical Climate
  5. Cooper DLM, Lewis SL, Sullivan MJP, Prado PI, Ter Steege H, Barbier N, et al.
    Nature, 2024 Jan;625(7996):728-734.
    PMID: 38200314 DOI: 10.1038/s41586-023-06820-z
    Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.
    Matched MeSH terms: Tropical Climate*
  6. Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, et al.
    Nature, 2014 Mar 6;507(7490):90-3.
    PMID: 24429523 DOI: 10.1038/nature12914
    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.
    Matched MeSH terms: Tropical Climate
  7. Kura NU, Ramli MF, Ibrahim S, Sulaiman WN, Aris AZ, Tanko AI, et al.
    Environ Sci Pollut Res Int, 2015 Jan;22(2):1512-33.
    PMID: 25163562 DOI: 10.1007/s11356-014-3444-0
    In this work, the DRASTIC and GALDIT models were employed to determine the groundwater vulnerability to contamination from anthropogenic activities and seawater intrusion in Kapas Island. In addition, the work also utilized sensitivity analysis to evaluate the influence of each individual parameter used in developing the final models. Based on these effects and variation indices of the said parameters, new effective weights were determined and were used to create modified DRASTIC and GALDIT models. The final DRASTIC model classified the island into five vulnerability classes: no risk (110-140), low (140-160), moderate (160-180), high (180-200), and very high (>200), covering 4, 26, 59, 4, and 7 % of the island, respectively. Likewise, for seawater intrusion, the modified GALDIT model delineates the island into four vulnerability classes: very low (<90), low (90-110), moderate (110-130), and high (>130) covering 39, 33, 18, and 9 % of the island, respectively. Both models show that the areas that are likely to be affected by anthropogenic pollution and seawater intrusion are within the alluvial deposit at the western part of the island. Pearson correlation was used to verify the reliability of the two models in predicting their respective contaminants. The correlation matrix showed a good relationship between DRASTIC model and nitrate (r = 0.58). In a similar development, the correlation also reveals a very strong negative relationship between GALDIT model and seawater contaminant indicator (resistivity Ωm) values (r = -0.86) suggesting that the model predicts more than 86 % of seawater intrusion. In order to facilitate management strategy, suitable areas for artificial recharge were identified through modeling. The result suggested some areas within the alluvial deposit at the western part of the island as suitable for artificial recharge. This work can serve as a guide for a full vulnerability assessment to anthropogenic pollution and seawater intrusion in small islands and will help policy maker and manager with understanding needed to ensure sustainability of the island's aquifer.
    Matched MeSH terms: Tropical Climate
  8. Slik JWF, Franklin J, Arroyo-Rodríguez V, Field R, Aguilar S, Aguirre N, et al.
    Proc Natl Acad Sci U S A, 2018 02 20;115(8):1837-1842.
    PMID: 29432167 DOI: 10.1073/pnas.1714977115
    Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world's tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.
    Matched MeSH terms: Tropical Climate*
  9. Hara H, Yusaimi YA, Zulkeflle SNM, Sugiura N, Iwamoto K, Goto M, et al.
    J Gen Appl Microbiol, 2019 Jan 24;64(6):284-292.
    PMID: 29877296 DOI: 10.2323/jgam.2018.02.003
    The emergence of antibiotic resistance among multidrug-resistant (MDR) microbes is of growing concern, and threatens public health globally. A total of 129 Escherichia coli isolates were recovered from lowland aqueous environments near hospitals and medical service centers in the vicinity of Kuala Lumpur, Malaysia. Among the eleven antibacterial agents tested, the isolates were highly resistant to trimethoprim-sulfamethoxazole (83.7%) and nalidixic acid (71.3%) and moderately resistant to ampicillin and chloramphenicol (66.7%), tetracycline (65.1%), fosfomycin (57.4%), cefotaxime (57.4%), and ciprofloxacin (57.4%), while low resistance levels were found with aminoglycosides (kanamycin, 22.5%; gentamicin, 21.7%). The presence of relevant resistance determinants was evaluated, and the genotypic resistance determinants were as follows: sulfonamides (sulI, sulII, and sulIII), trimethoprim (dfrA1 and dfrA5), quinolones (qnrS), β-lactams (ampC and blaCTX-M), chloramphenicol (cmlA1 and cat2), tetracycline (tetA and tetM), fosfomycin (fosA and fosA3), and aminoglycosides (aphA1 and aacC2). Our data suggest that multidrug-resistant E. coli strains are ubiquitous in the aquatic systems of tropical countries and indicate that hospital wastewater may contribute to this phenomenon.
    Matched MeSH terms: Tropical Climate
  10. Jhonson P, Goh HW, Chan DJC, Juiani SF, Zakaria NA
    Environ Sci Pollut Res Int, 2023 Feb;30(9):24562-24574.
    PMID: 36336739 DOI: 10.1007/s11356-022-23605-5
    Bioretention systems are among the most popular stormwater best management practices (BMPs) for urban runoff treatment. Studies on plant performance using bioretention systems have been conducted, especially in developed countries with a temperate climate, such as the USA and Australia. However, these results might not be applicable in developing countries with tropical climates due to the different rainfall regimes and the strength of runoff pollutants. Thus, this study focuses on the performance of tropical plants in treating urban runoff polluted with greywater using a bioretention system. Ten different tropical plant species were triplicated and planted in 30 mesocosms with two control mesocosms without vegetation. One-way ANOVA was used to analyze the performance of plants, which were then ranked based on their performance in removing pollutants using the total score obtained for each water quality test. Results showed that vetiver topped the table with 86.4% of total nitrogen (TN) removal, 93.5% of total phosphorus (TP) removal, 89.8% of biological oxygen demand (BOD) removal, 90% of total suspended solids (TSS) removal, and 92.5% of chemical oxygen demand (COD) removal followed by blue porterweed, Hibiscus, golden trumpet, and tall sedge which can be recommended to be employed in future bioretention studies.
    Matched MeSH terms: Tropical Climate
  11. Goh HW, Lem KS, Azizan NA, Chang CK, Talei A, Leow CS, et al.
    Environ Sci Pollut Res Int, 2019 May;26(15):14904-14919.
    PMID: 30977005 DOI: 10.1007/s11356-019-05041-0
    Bioretention systems have been implemented as stormwater best management practices (BMPs) worldwide to treat non-point sources pollution. Due to insufficient research, the design guidelines for bioretention systems in tropical countries are modeled after those of temperate countries. However, climatic factors and stormwater runoff characteristics are the two key factors affecting the capacity of bioretention system. This paper reviews and compares the stormwater runoff characteristics, bioretention components, pollutant removal requirements, and applications of bioretention systems in temperate and tropical countries. Suggestions are given for bioretention components in the tropics, including elimination of mulch layer and submerged zone. More research is required to identify suitable additives for filter media, study tropical shrubs application while avoiding using grass and sedges, explore function of soil faunas, and adopt final discharged pollutants concentration (mg/L) on top of percentage removal (%) in bioretention design guidelines.
    Matched MeSH terms: Tropical Climate
  12. Yap HH, Jahangir K, Zairi J
    J Am Mosq Control Assoc, 2000 Sep;16(3):241-4.
    PMID: 11081653
    Four insect repellent products (RPs) (RP 1, Experimental Repellent Lotion [Bayrepel 12%]; RP 2, Experimental Repellent Cream [Bayrepel 5%]; RP 3, Off! Insect Repellent II Aerosol [deet 15%]; and RP 4, Off! Skintastic II Cream [deet 7.5%]) were evaluated simultaneously for their efficacy against vector and nuisance mosquitoes. The aim of this study was to compare the relative efficacy of RPs based on a new repellent compound, Bayrepel (1-piperidinecarboxylic acid, 2-(2-hydroxyethyl)-1-methylpropylester), with deet (N,N-diethyl-m-toluamide)-based RPs. An 8-h field efficacy of above repellents was evaluated against the day-biting mosquito (Aedes albopictus) and night-biting mosquitoes (Culex quinquefasciatus and Anopheles spp.). Evaluation was carried out by exposing humans with repellent-treated bare limbs to mosquitoes landing and to mosquitoes landing and biting. Repellent product 1 or 2 was applied on the left arm and leg, whereas RP 3 or 4 was applied on the right arm and leg, respectively. Application of these 4 RPs significantly reduced (P < 0.05) the landing and the landing and biting of day-biting and night-biting mosquitoes. All 4 RPs were found to be equally effective (P < 0.05) against Ae. albopictus and Cx. quinquefasciatus. However, for protection against Anopheles spp., RPs 1 and 3 exhibited significantly (P < 0.05) better repellency effect than RPs 2 and 4.
    Matched MeSH terms: Tropical Climate*
  13. Ismail A, Yusof S
    Mar Pollut Bull, 2011;63(5-12):347-9.
    PMID: 21377175 DOI: 10.1016/j.marpolbul.2011.02.014
    Several organisms have been used as indicators, bio-monitoring agents or test organisms in ecotoxicological studies. A close relative of the well established Japanese medaka, the Java medaka (Oryzias javanicus), has the potential to be a test organism. The fish is native to the estuaries of the Malaysian Peninsula, Thailand, Indonesia and Singapore. In this study, newly fertilised eggs were exposed to different concentrations of Cd and Hg. Observations were done on the development of the embryos. Exposure to low levels of Cd and Hg (0.01-0.05 ppm) resulted in several developmental disorders that led to death. Exposure to ≥1.0 ppm Cd resulted in immediate developmental arrest. The embryos of Java medaka showed tolerance to a certain extent when exposed to ≥1.0 ppm Hg compared to Cd. Based on the sensitivity of the embryos, Java medaka is a suitable test organism for ecotoxicology in the tropical region.
    Matched MeSH terms: Tropical Climate
  14. Yakubu ML, Yusop Z, Yusof F
    ScientificWorldJournal, 2014;2014:361703.
    PMID: 25126597 DOI: 10.1155/2014/361703
    This paper presents the modelled raindrop size parameters in Skudai region of the Johor Bahru, western Malaysia. Presently, there is no model to forecast the characteristics of DSD in Malaysia, and this has an underpinning implication on wet weather pollution predictions. The climate of Skudai exhibits local variability in regional scale. This study established five different parametric expressions describing the rain rate of Skudai; these models are idiosyncratic to the climate of the region. Sophisticated equipment that converts sound to a relevant raindrop diameter is often too expensive and its cost sometimes overrides its attractiveness. In this study, a physical low-cost method was used to record the DSD of the study area. The Kaplan-Meier method was used to test the aptness of the data to exponential and lognormal distributions, which were subsequently used to formulate the parameterisation of the distributions. This research abrogates the concept of exclusive occurrence of convective storm in tropical regions and presented a new insight into their concurrence appearance.
    Matched MeSH terms: Tropical Climate
  15. Foster WA, Snaddon JL, Turner EC, Fayle TM, Cockerill TD, Ellwood MD, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3277-91.
    PMID: 22006968 DOI: 10.1098/rstb.2011.0041
    The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape.
    Matched MeSH terms: Tropical Climate
  16. Pyle JA, Warwick NJ, Harris NR, Abas MR, Archibald AT, Ashfold MJ, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3210-24.
    PMID: 22006963 DOI: 10.1098/rstb.2011.0060
    We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NO(x) emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere.
    Matched MeSH terms: Tropical Climate
  17. Loader NJ, Walsh RP, Robertson I, Bidin K, Ong RC, Reynolds G, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3330-9.
    PMID: 22006972 DOI: 10.1098/rstb.2011.0037
    Stable carbon isotope (δ(13)C) series were developed from analysis of sequential radial wood increments from AD 1850 to AD 2009 for four mature primary rainforest trees from the Danum and Imbak areas of Sabah, Malaysia. The aseasonal equatorial climate meant that conventional dendrochronology was not possible as the tree species investigated do not exhibit clear annual rings or dateable growth bands. Chronology was established using radiocarbon dating to model age-growth relationships and date the carbon isotopic series from which the intrinsic water-use efficiency (IWUE) was calculated. The two Eusideroxylon zwageri trees from Imbak yielded ages of their pith/central wood (±1 sigma) of 670 ± 40 and 759 ± 40 years old; the less dense Shorea johorensis and Shorea superba trees at Danum yielded ages of 240 ± 40 and 330 ± 40 years, respectively. All trees studied exhibit an increase in the IWUE since AD 1960. This reflects, in part, a response of the forest to increasing atmospheric carbon dioxide concentration. Unlike studies of some northern European trees, no clear plateau in this response was observed. A change in the IWUE implies an associated modification of the local carbon and/or hydrological cycles. To resolve these uncertainties, a shift in emphasis away from high-resolution studies towards long, well-replicated time series is proposed to develop the environmental data essential for model evaluation. Identification of old (greater than 700 years) ringless trees demonstrates their potential in assessing the impacts of climatic and atmospheric change. It also shows the scientific and applied value of a conservation policy that ensures the survival of primary forest containing particularly old trees (as in Imbak Canyon and Danum).
    Matched MeSH terms: Tropical Climate
  18. Asyraf MRM, Ishak MR, Sapuan SM, Yidris N
    Polymers (Basel), 2021 Feb 19;13(4).
    PMID: 33669491 DOI: 10.3390/polym13040620
    The application of pultruded glass fiber-reinforced polymer composites (PGFRPCs) as a replacement for conventional wooden cross-arms in transmission towers is relatively new. Although numerous studies have conducted creep tests on coupon-scale PGFRPC cross-arms, none had performed creep analyses on full-scale PGFRPC cross-arms under actual working load conditions. Thus, this work proposed to study the influence of an additional bracing system on the creep responses of PGFRPC cross-arms in a 132 kV transmission tower. The creep behaviors and responses of the main members in current and braced PGFRPC cross-arm designs were compared and evaluated in a transmission tower under actual working conditions. These PGFRPC cross-arms were subjected to actual working loads mimicking the actual weight of electrical cables and insulators for a duration of 1000 h. The cross-arms were installed on a custom test rig in an open area to simulate the actual environment of tropical climate conditions. Further creep analysis was performed by using Findley and Burger models on the basis of experimental data to link instantaneous and extended (transient and viscoelastic) creep strains. The addition of braced arms to the structure reduced the total strain of a cross-arm's main member beams and improved elastic and viscous moduli. The addition of bracing arms improved the structural integrity and stiffness of the cross-arm structure. The findings of this study suggested that the use of a bracing system in cross-arm structures could prolong the structures' service life and subsequently reduce maintenance effort and cost for long-term applications in transmission towers.
    Matched MeSH terms: Tropical Climate
  19. Yeang HY
    New Phytol, 2007;175(2):283-9.
    PMID: 17587376
    How tropical trees flower synchronously near the equator in the absence of significant day length variation or other meteorological cues has long been a puzzle. The rubber tree (Hevea brasiliensis) is used as a model to investigate this phenomenon. The annual cycle of solar radiation intensity is shown to correspond closely with the flowering of the rubber tree planted near the equator and in the subtropics. Unlike in temperate regions, where incoming solar radiation (insolation) is dependent on both day length and radiation intensity, insolation at the equator is due entirely to the latter. Insolation at the upper atmosphere peaks twice a year during the spring and autumn equinoxes, but the actual solar radiation that reaches the ground is attenuated to varying extents in different localities. The rubber tree shows one or two flowering seasons a year (with major and minor seasons in the latter) in accordance with the solar radiation intensity received. High solar radiation intensity, and in particular bright sunshine (as distinct from prolonged diffuse radiation), induces synchronous anthesis and blooming in Hevea around the time of the equinoxes. The same mechanism may be operational in other tropical tree species.
    Matched MeSH terms: Tropical Climate
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links