Displaying publications 1 - 20 of 53 in total

Abstract:
Sort:
  1. Low, Qin Jian, Lim, Tzyy Hue, Teoh, Kuo Zhau, Siow, Garry Peir Woeei, Go, Zher Lin, Tee, Vern Jun, et al.
    MyJurnal
    Purple urine bag syndrome (PUBS) is a rare presentation of urinary tract infections (UTIs). It is commonly seen in constipated patients. There is a deep purple discoloration of contents of urine bag due to presence of indigo and indirubin pigments which are metabolites of tryptophan. We would like to describe an interesting case of purple urine bag syndrome of 88-year-old woman who presented with catheter-related urinary tract infection. She had low-grade fever and suprapubic discomfort for three days duration. She had increased white cell count and C-reactive peptide (CRP). Urinalysis showed protein 2+, nitrite and leucocyte esterase positive. Urine culture grew Escherichia coli and Klebsiella pneumoniae. She was treated with oral cefuroxime and recovered. This case report may be the first case of PUBS reported in this region.
    Matched MeSH terms: Tryptophan
  2. Pan Q, Saiman MZ, Mustafa NR, Verpoorte R, Tang K
    PMID: 26854826 DOI: 10.1016/j.jchromb.2016.01.034
    A rapid and simple reversed phase liquid chromatographic system has been developed for simultaneous analysis of terpenoid indole alkaloids (TIAs) and their precursors. This method allowed separation of 11 compounds consisting of eight TIAs (ajmalicine, serpentine, catharanthine, vindoline, vindolinine, vincristine, vinblastine, and anhydrovinblastine) and three related precursors i.e., tryptophan, tryptamine and loganin. The system has been applied for screening the TIAs and precursors in Catharanthus roseus plant extracts. In this study, different organs i.e., flowers, leaves, stems, and roots of C. roseus were investigated. The results indicate that TIAs and precursor accumulation varies qualitatively and quantitatively in different organs of C. roseus. The precursors showed much lower levels than TIAs in all organs. Leaves and flowers accumulate higher level of vindoline, catharanthine and anhydrovinblastine while roots have higher level of ajmalicine, vindolinine and serpentine. Moreover, the alkaloid profiles of leaves harvested at different ages and different growth stages were studied. The results show that the levels of monoindole alkaloids decreased while bisindole alkaloids increased with leaf aging and upon plant growth. The HPLC method has been successfully applied to detect TIAs and precursors in different types of C. roseus samples to facilitate further study of the TIA pathway and its regulation in C. roseus plants.
    Matched MeSH terms: Tryptophan
  3. Wojciech L, Png CW, Koh EY, Kioh DYQ, Deng L, Wang Z, et al.
    EMBO J, 2023 Nov 02;42(21):e112963.
    PMID: 37743772 DOI: 10.15252/embj.2022112963
    The large intestine harbors microorganisms playing unique roles in host physiology. The beneficial or detrimental outcome of host-microbiome coexistence depends largely on the balance between regulators and responder intestinal CD4+ T cells. We found that ulcerative colitis-like changes in the large intestine after infection with the protist Blastocystis ST7 in a mouse model are associated with reduction of anti-inflammatory Treg cells and simultaneous expansion of pro-inflammatory Th17 responders. These alterations in CD4+ T cells depended on the tryptophan metabolite indole-3-acetaldehyde (I3AA) produced by this single-cell eukaryote. I3AA reduced the Treg subset in vivo and iTreg development in vitro by modifying their sensing of TGFβ, concomitantly affecting recognition of self-flora antigens by conventional CD4+ T cells. Parasite-derived I3AA also induces over-exuberant TCR signaling, manifested by increased CD69 expression and downregulation of co-inhibitor PD-1. We have thus identified a new mechanism dictating CD4+ fate decisions. The findings thus shine a new light on the ability of the protist microbiome and tryptophan metabolites, derived from them or other sources, to modulate the adaptive immune compartment, particularly in the context of gut inflammatory disorders.
    Matched MeSH terms: Tryptophan/metabolism
  4. Yan EB, Frugier T, Lim CK, Heng B, Sundaram G, Tan M, et al.
    J Neuroinflammation, 2015 May 30;12:110.
    PMID: 26025142 DOI: 10.1186/s12974-015-0328-2
    During inflammation, the kynurenine pathway (KP) metabolises the essential amino acid tryptophan (TRP) potentially contributing to excitotoxicity via the release of quinolinic acid (QUIN) and 3-hydroxykynurenine (3HK). Despite the importance of excitotoxicity in the development of secondary brain damage, investigations on the KP in TBI are scarce. In this study, we comprehensively characterised changes in KP activation by measuring numerous metabolites in cerebrospinal fluid (CSF) from TBI patients and assessing the expression of key KP enzymes in brain tissue from TBI victims. Acute QUIN levels were further correlated with outcome scores to explore its prognostic value in TBI recovery.

    METHODS: Twenty-eight patients with severe TBI (GCS ≤ 8, three patients had initial GCS = 9-10, but rapidly deteriorated to ≤8) were recruited. CSF was collected from admission to day 5 post-injury. TRP, kynurenine (KYN), kynurenic acid (KYNA), QUIN, anthranilic acid (AA) and 3-hydroxyanthranilic acid (3HAA) were measured in CSF. The Glasgow Outcome Scale Extended (GOSE) score was assessed at 6 months post-TBI. Post-mortem brains were obtained from the Australian Neurotrauma Tissue and Fluid Bank and used in qPCR for quantitating expression of KP enzymes (indoleamine 2,3-dioxygenase-1 (IDO1), kynurenase (KYNase), kynurenine amino transferase-II (KAT-II), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3HAO) and quinolinic acid phosphoribosyl transferase (QPRTase) and IDO1 immunohistochemistry.

    RESULTS: In CSF, KYN, KYNA and QUIN were elevated whereas TRP, AA and 3HAA remained unchanged. The ratios of QUIN:KYN, QUIN:KYNA, KYNA:KYN and 3HAA:AA revealed that QUIN levels were significantly higher than KYN and KYNA, supporting increased neurotoxicity. Amplified IDO1 and KYNase mRNA expression was demonstrated on post-mortem brains, and enhanced IDO1 protein coincided with overt tissue damage. QUIN levels in CSF were significantly higher in patients with unfavourable outcome and inversely correlated with GOSE scores.

    CONCLUSION: TBI induced a striking activation of the KP pathway with sustained increase of QUIN. The exceeding production of QUIN together with increased IDO1 activation and mRNA expression in brain-injured areas suggests that TBI selectively induces a robust stimulation of the neurotoxic branch of the KP pathway. QUIN's detrimental roles are supported by its association to adverse outcome potentially becoming an early prognostic factor post-TBI.

    Matched MeSH terms: Tryptophan/blood
  5. Karami A, Romano N, Hamzah H, Simpson SL, Yap CK
    Environ Pollut, 2016 May;212:155-165.
    PMID: 26845363 DOI: 10.1016/j.envpol.2016.01.055
    Information on the biological responses of polyploid animals towards environmental contaminants is scarce. This study aimed to compare reproductive axis-related gene expressions in the brain, plasma biochemical responses, and the liver and gill histopathological alterations in diploid and triploid full-sibling juvenile African catfish (Clarias gariepinus). Fish were exposed for 96 h to one of the two waterborne phenanthrene (Phe) concentrations [mean measured (SD): 6.2 (2.4) and 76 (4.2) μg/L]. In triploids, exposure to 76 μg/L Phe increased mRNA level of fushi tarazu-factor 1 (ftz-f1). Expression of tryptophan hydroxylase2 (tph2) was also elevated in both ploidies following the exposure to 76 μg/L Phe compared to the solvent control. In triploids, 76 μg/L Phe increased plasma alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) levels compared to the other Phe-exposed group. It also elevated lactate and glucose contents relative to the other groups. In diploids, however, biochemical biomarkers did not change. Phenanthrene exposures elevated glycogen contents and the prevalence of histopathological lesions in the liver and gills of both ploidies. This study showed substantial differences between diploids and triploids on biochemical and molecular biomarker responses, but similar histopathological alterations following acute Phe exposures.
    Matched MeSH terms: Tryptophan Hydroxylase/metabolism
  6. Wan Nasru WN, Ab Razak A, Yaacob NM, Wan Azman WN
    Malays J Pathol, 2021 Apr;43(1):25-32.
    PMID: 33903302
    INTRODUCTION: The amino acids that function as co-agonists at the N-methyl-D-aspartate (NMDA) receptor have been investigated in bipolar disorder (BD). However, studies comparing amino acid levels in the plasma of BD patients with healthy controls have yielded inconsistent results. We, therefore, conducted a study in Hospital Universiti Sains Malaysia to determine the plasma levels of glutamate, glycine, and alanine in BD patients and compared them with the healthy controls.

    MATERIALS AND METHODS: An overnight fast of 10-hour plasma levels of glutamate, glycine, alanine, and tryptophan were measured in 83 bipolar patients, and were compared to a group of 82 healthy controls.

    RESULTS: The mean (SD) age of bipolar patients was 40.9 (12.1), while the mean (SD) age for control groups was 35.6 (7.7) years. The median (25th, 75th percentile) of glutamate and alanine levels in bipolar patients was 111.0 (65.0,176.0) and 530.0 (446.0,629.0), respectively, while the mean (SD) of glycine level in bipolar patients was 304.0 (98.1). Significant higher glutamate, glycine, and alanine levels were found in bipolar disorder patients in the manic episode as compared to the healthy controls.

    CONCLUSION: Although the exact relationship between peripheral NMDA receptor co-agonist levels in the pathogenesis of BD is not well understood, these findings should be explored and may enlighten some new paths for BD therapy which could reward the patients also clinicians.

    Matched MeSH terms: Tryptophan
  7. Phing AH, Makpol S, Nasaruddin ML, Wan Zaidi WA, Ahmad NS, Embong H
    Int J Mol Sci, 2023 Mar 15;24(6).
    PMID: 36982655 DOI: 10.3390/ijms24065580
    Delirium, a common form of acute brain dysfunction, is associated with increased morbidity and mortality, especially in older patients. The underlying pathophysiology of delirium is not clearly understood, but acute systemic inflammation is known to drive delirium in cases of acute illnesses, such as sepsis, trauma, and surgery. Based on psychomotor presentations, delirium has three main subtypes, such as hypoactive, hyperactive, and mixed subtype. There are similarities in the initial presentation of delirium with depression and dementia, especially in the hypoactive subtype. Hence, patients with hypoactive delirium are frequently misdiagnosed. The altered kynurenine pathway (KP) is a promising molecular pathway implicated in the pathogenesis of delirium. The KP is highly regulated in the immune system and influences neurological functions. The activation of indoleamine 2,3-dioxygenase, and specific KP neuroactive metabolites, such as quinolinic acid and kynurenic acid, could play a role in the event of delirium. Here, we collectively describe the roles of the KP and speculate on its relevance in delirium.
    Matched MeSH terms: Tryptophan/metabolism
  8. Juneta-Nor AS, Noordin NM, Azra MN, Ma HY, Husin NM, Ikhwanuddin M
    J Zhejiang Univ Sci B, 2020 10 13;21(10):823-834.
    PMID: 33043647 DOI: 10.1631/jzus.B2000126
    Ecdysis is a common phenomenon that happens throughout the life phase of the giant freshwater prawn Macrobrachium rosenbergii. It is vital to better understand the correlation between cannibalism and biochemical compound that exists during the moulting process. The objective of the present study was to determine the amino acid profile released by M. rosenbergii during the ecdysis process that promotes cannibalism. To accomplish this, changes in amino acid levels (total amino acid (TAA) and free amino acid (FAA)) of tissue muscle, exoskeleton, and sample water of culture medium from the moulting (E-stage) and non-moulting (C-stage) prawns were analysed using high-performance liquid chromatography (HPLC). Comparison study revealed that among the TAA compounds, proline and sarcosine of tissues from moulting prawn were found at the highest levels. The level of FAA from water that contains moulting prawns (E-stage) was dominated by tryptophan and proline. Significant values obtained in the present study suggested that these amino acid compounds act as a chemical cue to promote cannibalism in M. rosenbergii during ecdysis. The knowledge of compositions and compounds that were released during the moulting process should be helpful for better understanding of the mechanism and chemical cues that play roles on triggering cannibalism, and also for future dietary manipulation to improve feeding efficiencies and feeding management, which indirectly impacts productivity and profitability.
    Matched MeSH terms: Tryptophan/chemistry
  9. Moriya S, Khel NB, Parhar IS
    Neuroscience, 2015 May 21;294:109-15.
    PMID: 25772790 DOI: 10.1016/j.neuroscience.2015.03.012
    Serotonin (5-HT) is a key regulator of mood and sexual behaviors. 5-HT reuptake inhibitors have been used as antidepressants. Really interesting new gene (RING) finger proteins have been associated with 5-HT regulation but their role remains largely unknown. Some RING finger proteins are involved in the serotonergic system, therefore, we speculate that the gene expression of RING finger protein38 (rnf38) is regulated by the serotonergic system. In the present study, we aimed to identify the full length sequence of medaka (Oryzias latipes) rnf38 mRNA and investigate its association with the serotonergic system using an antidepressant, citalopram (CIT). We identified the full length rnf38 cDNA, which consisted of 2726 nucleotides spanning 12 exons and the deduced protein sequence consisting of 518 amino acid residues including a RING finger domain, a KIT motif and a coiled-coil domain. Medaka exposed to 10(-7)M of CIT showed anxiety-like behavior. The expressions of 5-HT-related genes, pet1, solute carrier family 6, member 4A (slc6a4) and tryptophan hydroxylase (tph2) were significantly low (P<0.05) in the hindbrain. On the other hand, rnf38 gene was significantly high (P<0.05) in the telencephalon and the hypothalamus. This shows that 5-HT synthesis and transport in the hindbrain is suppressed by CIT, which induces rnf38 gene expression in the forebrain where 5-HT neurons project. Thus, the expression of rnf38 is negatively regulated by the serotonergic system.
    Matched MeSH terms: Tryptophan Hydroxylase/metabolism
  10. Herpandi, Huda, N., Rosma, A., Wan Nadiah W. A.
    MyJurnal
    Protein-rich by-products from the canning industry, especially dark flesh of skipjack, have limited uses due to several factors such as darken color, susceptibility to oxidation and off flavour. Protein hydrolysates from skipjack dark flesh was produced with different type of industrial proteases (Alcalase®2.4L FG, Protamex®, Neutrase®1.5MG and Flavourzyme®500MG) for 60, 120, 180 and 240 min with level of proteases used of 0.5, 1, 1.5 and 2% per weight of raw material. The degree of hydrolysis and free tryptophan content of hydrolysate were investigated. The results shows longer time with higher concentration of enzyme has increased the degree of hydrolysis. Alcalase®2.4L FG had the highest degree of hydrolysis among all proteases followed by Protamex®, Flavourzyme®500MG and Neutrase® 1.5MG. All enzymes increase free tryptophan content linearly with the increament of protease enzyme level. The longer the hydrolysis time, the higher the content of free tryptophan produced.
    Matched MeSH terms: Tryptophan
  11. Choong ML, Koay ES, Khoo KL, Khaw MC, Sethi SK
    Clin Chem, 1997 Jun;43(6 Pt 1):916-23.
    PMID: 9191540
    The Arg-to-Trp substitution at codon 3500 in the apolipoprotein (apo) B-100 gene is established as a cause of familial defective apo B-100 (FDB), a functional mutation, resulting in reduced LDL receptor binding and manifest hypercholesterolemia. In a search for similar mutations in 163 Malaysians, we screened the putative receptor-binding region (codons 3456-3553) of the apo B-100 gene by PCR amplification and denaturing gradient-gel electrophoresis. Four single-base mutations were detected and confirmed by DNA sequencing. Two females, a Chinese and a Malay, had the same CGG3500-->TGG mutation, resulting in an Arg3500-to-Trp substitution. This is the second published report of such an independent mutation involving the same codon as the established Arg3500-to-Gln mutation. The two other mutations detected, CTT3517-->CTG and GCC3527-->GCT, resulted in degenerate codons with no amino acid substitutions. All four mutations were associated with a unique apo B haplotype, different from those found in Caucasian FDB patients but concurring with that previously reported for two other Asians with FDB.
    Matched MeSH terms: Tryptophan/genetics*
  12. Baharuddin A, Amir Hassan A, Othman R, Xu Y, Huang M, Ario Tejo B, et al.
    Chem Pharm Bull (Tokyo), 2014;62(10):947-55.
    PMID: 25273053
    In the efforts to find an anti-viral treatment for dengue, a simple tryptophan fluorescence-screening assay aimed at identifying dengue domain III envelope (EIII) protein inhibitors was developed. Residue Trp391 of EIII was used as an intrinsic probe to monitor the change in fluorescence of the tryptophan residue upon binding to a peptide. The analysis was based on the electron excitation at 280 nm and fluorescence emission at 300-400 nm of EIII, followed by quenching of fluorescence in the presence of potential peptidic inhibitors coded DS36wt, DS36opt, DN58wt and DN58opt. The present study found that the fluorescence of the recombinant EIII was quenched following the binding of DS36opt, DN58wt and DN58opt in a concentration-dependent manner. Since the λmax for emission remained unchanged, the effect was not due to a change in the environment of the tryptophan side chain. In contrast, a minimal fluorescence-quenching effect of DS36wt at 20 and 40 µM suggested that the DS36wt does not have any binding ability to EIII. This was supported by a simple native-page gel retardation assay that showed a band shift of EIII domain when incubated with DS36opt, DN58wt and DN58opt but not with DS36wt. We thus developed a low-cost and convenient spectrophotometric binding assay for the analysis of EIII-peptide interactions in a drug screening application.
    Matched MeSH terms: Tryptophan/chemistry*
  13. Kato TA, Katsuki R, Kubo H, Shimokawa N, Sato-Kasai M, Hayakawa K, et al.
    Psychiatry Clin Neurosci, 2019 Aug;73(8):448-457.
    PMID: 30900331 DOI: 10.1111/pcn.12842
    AIM: Understanding premorbid personality is important, especially when considering treatment selection. Historically, the premorbid personality of patients with major depression in Japan was described as Shuchaku-kishitsu [similar to Typus melancholicus], as proposed by Shimoda in the 1930s. Since around 2000, there have been increased reports in Japan of young adults with depression who have had premorbid personality differing from the traditional type. In 2005, Tarumi termed this novel condition 'dysthymic-type depression,' and more recently the condition has been called Shin-gata/Gendai-gata Utsu-byo [modern-type depression (MTD)]. We recently developed a semi-structured diagnostic interview to evaluate MTD. Development of a tool that enables understanding of premorbid personality in a short time, especially at the early stage of treatment, is desirable. The object of this study was to develop a self-report scale to evaluate the traits of MTD, and to assess the scale's psychometric properties, diagnostic accuracy, and biological validity.

    METHODS: A sample of 340 participants from clinical and community settings completed measures. Psychometric properties were assessed with factor analysis. Diagnostic accuracy of the MTD traits was compared against a semi-structured interview.

    RESULTS: The questionnaire contained 22 items across three subscales, thus we termed it the 22-item Tarumi's Modern-Type Depression Trait Scale: Avoidance of Social Roles, Complaint, and Low Self-Esteem (TACS-22). Internal consistency, test-retest reliability, and convergent validity were all satisfactory. Among patients with major depression, the area under the curve was 0.757 (sensitivity of 63.1% and specificity of 82.9%) and the score was positively correlated with plasma tryptophan.

    CONCLUSION: The TACS-22 possessed adequate psychometric properties and diagnostic accuracy in an initial sample of Japanese adults. Additional research on its ability to support clinical assessment of MTD is warranted.

    Matched MeSH terms: Tryptophan/blood
  14. Bello AU, Idrus Z, Meng GY, Narayan EJ, Farjam AS
    Gen Comp Endocrinol, 2018 05 01;260:146-150.
    PMID: 29339185 DOI: 10.1016/j.ygcen.2018.01.012
    Tryptophan (Trp) has been associated with the regulation of several behavioral and physiological processes, through stimulation of serotonergic activity. Tryptophan utilization at the metabolic level is influenced by the competitive carrier system it shares with large neutral amino acids (LNAA). This study was carried out using meat-type chicken as a model, to investigate the dose response effects of Trp/LNAA on fear response (tonic immobility; TI) and hormonal responses, including corticosterone (CORT), serotonin (5-HT), triiodothyronine (T3) and thyroxine (T4). A total of 12 cages (48 birds) were assigned to each of the six experimental groups at 29-42 days of age. Experimental diets were formulated to have incremental levels of Trp/LNAA (0.025, 0.030, 0.035, 0.040, 0.045, and 0.050). The results revealed that, Trp/NAA had no significant effect on growth performance and TI of the birds. However, elevation of Trp/LNAA was concurred with a linear reduction in CORT (P 
    Matched MeSH terms: Tryptophan
  15. Soga T, Wong DW, Putteeraj M, Song KP, Parhar IS
    Neuroscience, 2012 Dec 6;225:172-84.
    PMID: 22960312 DOI: 10.1016/j.neuroscience.2012.08.061
    Postnatal treatment with selective serotonin reuptake inhibitors (SSRIs) has been found to affect brain development and the regulation of reproduction in rodent models. The normal masculinization process in the brain requires a transient decrease in serotonin (5-HT) levels in the brain during the second postnatal week. Strict regulation of androgen receptor (AR) and gonadotropin-releasing hormone (GnRH) expression is important to control male reproductive activity. Therefore, this study was designed to examine the effects of a potent SSRI (citalopram) on male sexual behavior and expression levels of AR and GnRH in adult male mice receiving either vehicle or citalopram (10mg/kg) daily during postnatal days 8-21. The citalopram-treated male mice showed altered sexual behavior, specifically a significant reduction in the number of intromissions preceding ejaculation compared with the vehicle-treated mice. The citalopram-treated male mice displayed elevated anxiety-like behavior in an open field test and lower locomotor activity in their home cage during the subjective night. Although there was no change in GnRH and AR mRNA levels in the preoptic area (POA), quantified by real-time polymerase chain reaction, immunostained AR cell numbers in the medial POA were decreased in the citalopram-treated male mice. These results suggest that the early-life inhibition of 5-HT transporters alters the regulation of AR expression in the medial POA, likely causing decreased sexual behavior and altered home cage activity in the subjective night.
    Matched MeSH terms: Tryptophan Hydroxylase/genetics; Tryptophan Hydroxylase/metabolism
  16. Khong TK, Selvanayagam VS, Hamzah SH, Yusof A
    J Appl Physiol (1985), 2018 10 01;125(4):1021-1029.
    PMID: 29975601 DOI: 10.1152/japplphysiol.00221.2018
    Both the quantity and quality of pre-exercise carbohydrate (CHO) meals have been shown to improve endurance performance. However, their role in attenuating central fatigue (CF) is inconclusive. The use of neurophysiological techniques, such as voluntary activation (VA) and the central activation ratio (CAR), alongside maximum voluntary contraction (MVC) and sustained MVC (sMVC) can provide information on CF. Hence, the objective of this study was to investigate the effects of isocaloric pre-exercise meals: 1) a high versus low quantity of CHO and 2) a high quantity of CHO with a high versus low glycemic index (GI) on MVC, VA, and CAR following a 90-min run. The high and low quantity of CHO was 1.5 and 0.8 g/kg body wt, respectively, and high and low GI was ~75 and ~40, respectively. Blood insulin, serotonin, tryptophan, and gaseous exchange were also measured. High CHO preserved sMVC, VA, CAR, and serotonin postrunning with greater CHO oxidation and insulin response, whereas in low CHO, greater reductions in sMVC, VA, and CAR were accompanied by higher serotonin and fat oxidation with lower insulin response. These observations indicate central involvements. Meanwhile, high GI CHO better preserved force (sMVC), CAR, and tryptophan with greater CHO oxidation and insulin response compared with low GI. The findings of this study suggest that pre-exercise meals with varying quantity and quality of CHO can have an effect on CF, where greater CHO oxidation and insulin response found in both high CHO and high GI lead to attenuation of CF. NEW & NOTEWORTHY This paper examined the effects of carbohydrate interventions (high and low: quantity and quality wise) on central activity during prolonged exercise using mainly neurophysiological techniques along with gaseous exchange and blood insulin, serotonin, and tryptophan data.
    Matched MeSH terms: Tryptophan/blood
  17. Sakurama K, Nishi K, Chuang VTG, Hashimoto M, Yamasaki K, Otagiri M
    Biol Pharm Bull, 2020;43(6):1023-1026.
    PMID: 32475912 DOI: 10.1248/bpb.b20-00205
    Aripiprazole (ARP) is one of antipsychotics and binds to human serum albumin (HSA) with a high affinity. In this study, we investigated the binding characteristics of ARP to oxidized HSA as observed in chronic disease conditions. Oxidized HSAs were prepared using chloramine-T (CT-HSA) or metal-catalyzed oxidation system (MCO-HSA) in vitro, respectively. An increase in the carbonyl content was confirmed in oxidized HSAs. From the results of circular dichroism (CD) and tryptophan fluorescence spectra, no significant structural change of oxidized HSAs was observed. These results indicate that prepared HSAs are mildly oxidized and well reflects the status of HSA during chronic diseases. However, oxidized HSAs were observed to have a significant decrease in binding to ARP. The results of the induced CD spectrum suggested that ARP bound to oxidized HSAs with a similar orientation. These results suggest that oxidation of HSA during chronic disease state significantly affected the microenvironment of the binding site for ARP and binding capacity of HSA to ARP.
    Matched MeSH terms: Tryptophan
  18. Aroyehun AQ, Palaniveloo K, Ghazali F, Rizman-Idid M, Abdul Razak S
    Molecules, 2019 Sep 10;24(18).
    PMID: 31510066 DOI: 10.3390/molecules24183298
    This study evaluated the effect of seasonal variation on the physicochemical, biochemical, and nutritional composition of Gracilaria manilaensis. Sampling was designed during the main monsoon seasons in Malaysia-the Southwest monsoon (SWM) and Northeast monsoon (NEM)-to understand the intraspecific variation (p < 0.05). Carbohydrates, protein, and dietary fiber were found to be higher in NEM-G. manilaensis, whereas a higher ash content was quantified in SWM-G. manilaensis. No significant differences were found in crude lipid and moisture content (p > 0.05). Vitamin B2 was calculated as (0.29 ± 0.06 mg 100 g-1) and (0.38 ± 0.06 mg 100 g-1) for the NEM and SWM samples, respectively (p < 0.05). The fatty acid profile showed the dominance of saturated fatty acids (SFAs)-palmitic acids, stearic acid, and myristic acid-while the mineral contents were found to be good sources of calcium (1750.97-4047.74 mg 100 g-1) and iron (1512.55-1346.05 mg 100 g-1). Tryptophan and lysine were recorded as the limiting essential amino acids (EAAs) in NEM G. manilaensis, while leucine and phenylalanine were found to be the limiting EAAs in the SWM samples. None of the extracts exhibited antibacterial properties against the screened strains. The study concluded that seasonal changes have a great effect on the biochemical composition of G. manilaensis.
    Matched MeSH terms: Tryptophan
  19. Yap MKK, Misuan N
    PMID: 30417596 DOI: 10.1111/bcpt.13169
    Type II diabetes mellitus (T2DM) is a chronic non-communicable disease due to abnormal insulin actions causing uncontrolled hyperglycaemia. The treatment for T2DM, for instance, metformin and incretin mimetic, mainly focuses on the restoration of insulin sensitivity and secretion. Exendin-4 is a short incretin-mimetic peptide consisting of 39 amino acids. It is discovered in the venom of Heloderma suspectum as a full agonist for the glucagon-like peptide 1 (GLP-1) receptor and produces insulinotropic effects. It is more resistant to enzymatic degradation by dipeptidyl-peptidase-4 and has a longer half-life than the endogenous GLP-1; thus, it is further developed as an incretin hormone analogue used to treat T2DM. The helical region of the peptide first interacts with the extracellular N-terminal domain (NTD) of GLP-1 receptor while the C-terminal extension containing the tryptophan cage further enhances its binding affinity. After binding to the NTD of the receptor, it may cause the receptor to switch from its auto-inhibited state of the receptor to its auto-activated state. Exendin-4 enhances the physiological functions of β-cells and the up-regulation of GLP-1 receptors, thus reducing the plasma glucose levels. Moreover, exendin-4 has also been found to ameliorate neuropathy, nephropathy and ventricular remodelling. The therapeutic effects of exendin-4 have also been extrapolated into several clinical trials. Although exendin-4 has a reasonable subcutaneous bioavailability, its half-life is rather short. Therefore, several modifications have been undertaken to improve its pharmacokinetics and insulinotropic potency. This review focuses on the pharmacology of exendin-4 and the structure-function relationships of exendin-4 with GLP-1 receptor. The review also highlights some challenges and future directions in the improvement of exendin-4 as an anti-diabetic drug.
    Matched MeSH terms: Tryptophan
  20. Soga T, Nakajima S, Parhar IS
    Front Neuroanat, 2020;14:599540.
    PMID: 33776659 DOI: 10.3389/fnana.2020.599540
    Repressor element-1 silencing transcription factor (REST) is highly expressed in the dorsal raphe where serotonin (5-hydroxytryptamine, 5-HT) neurons are located. REST works as a transcription factor for the 5-HT receptor and tryptophan hydroxylase two-gene expression. We hypothesized that REST is co-expressed in 5-HT neurons, which, if demonstrated, would be useful to understand the mechanism of 5-HT dysfunction-related disorders such as negative emotions and depression. Therefore, the present study was designed to examine the expression of the REST gene in the brain (forebrain, midbrain, and hindbrain) of adult male Nile tilapia (Oreochromis niloticus) using rt-PCR. Besides, using immunocytochemistry, co-localization of the REST gene was examined in 5-HT neurons and with neuronal-/glial-cell markers. We found a high expression of the REST gene in the midbrain region of the dorsal raphe, an area of 5-HT neurons. Double-label immunocytochemistry showed neuron-specific expression of REST co-localized in 5-HT neurons in the dorsal and ventral parts of the periventricular pretectal nucleus, paraventricular organ, and dorsal and medial raphe nucleus. Since midbrain 5-HT neurons express REST, we speculate that REST may control 5-HT neuronal activity related to negative emotions, including depression.
    Matched MeSH terms: Tryptophan Hydroxylase
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links