Displaying publications 1 - 20 of 81 in total

Abstract:
Sort:
  1. Zulaziz N, Azhim A, Himeno N, Tanaka M, Satoh Y, Kinoshita M, et al.
    Hum. Cell, 2015 Oct;28(4):159-66.
    PMID: 25997703 DOI: 10.1007/s13577-015-0118-2
    Antibacterial photodynamic therapy (PDT) has come to attract attention as an alternative therapy for drug-resistant bacteria. Recent reports revealed that antibacterial PDT induces innate immune response and stimulates abundant cytokine secretion as a part of inflammatory responses. However, the underlying mechanism how antibacterial PDT interacts with immune cells responsible for cytokine secretion has not been well outlined. In this study, we aimed to clarify the difference in gene expression and cytokine secretion between combined culture of fibroblasts and macrophages and their independent cultures. SCRC-1008, mouse fibroblast cell line and J774, mouse macrophage-like cell line were co-cultured and PDT treatments with different parameters were carried out. After various incubation periods (1-24 h), cells and culture medium were collected, and mRNA and protein levels for cytokines were measured using real-time PCR and ELISA, respectively. Our results showed that fibroblasts and macrophages interact with each other to mediate the immune response. We propose that fibroblasts initially respond to PDT by expressing Hspa1b, which regulates the NF-κB pathway via Tlr2 and Tlr4. Activation of the NF-κB pathway then results in an enhanced secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and neutrophil chemoattractant MIP-2 and KC from macrophages.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  2. Zhou Z, Zhao J, de Cruz CR, Xu H, Wang L, Xu Q
    Fish Physiol Biochem, 2023 Oct;49(5):951-965.
    PMID: 37665506 DOI: 10.1007/s10695-023-01234-0
    The study investigated the alleviated effects of Alpha-ketoglutaric acid (AKG) on the intestinal health of mirror carp (Cyprinus carpio Songpu) caused by soy antigenic protein. The diets were formulated from fishmeal (CON), 50% soybean meal (SBM), the mixture of glycinin and β-conglycinin (11 + 7S) and adding 1% AKG in the 11 + 7S (AKG). Carp (~ 4 g) in triplicate (30 fish per tank) was fed to apparent satiation thrice a day for six weeks. Compared with CON, SBM treatment resulted in significantly poor growth performance (P  0.05). Gene expression of tumor necrosis factor (TNF-α) and interleukin-1 β (IL-1β) in proximal intestines (PI) and distal intestines (DI) were increased (P factor (TGF-β) in PI and middle intestines (MI) was decreased (P 
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  3. Yeo AS, Azhar NA, Yeow W, Talbot CC, Khan MA, Shankar EM, et al.
    PLoS One, 2014;9(4):e92240.
    PMID: 24727912 DOI: 10.1371/journal.pone.0092240
    Dengue represents one of the most serious life-threatening vector-borne infectious diseases that afflicts approximately 50 million people across the globe annually. Whilst symptomatic infections are frequently reported, asymptomatic dengue remains largely unnoticed. Therefore, we sought to investigate the immune correlates conferring protection to individuals that remain clinically asymptomatic.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  4. Yap YH, Say YH
    Cell Biol Int, 2012 Mar 1;36(3):273-7.
    PMID: 21980981 DOI: 10.1042/CBI20110088
    Since the discovery of PrPC (cellular prion protein), most studies have focused on its role in neurodegenerative diseases, whereas its function outside the nervous system remains obscure. We investigated the ability of PrPC in resisting TNFα (tumour necrosis factor α) apoptosis in three PrPC-transiently transfected cancer cell lines, renal adenocarcinoma ACHN, oral squamous cell carcinoma HSC-2 and colon adenocarcinoma LS174T. PrPC-expressing ACHN and LS174T cells had higher viabilities compared with the mock-transfected cells, while the transient overexpression of PrPC had minimal overall effect on HSC-2 cells due to its high endogenous PrPC expression. Cell cycles were also analysed, with both PrPC expressing ACHN and LS174T cells having a significantly higher proliferative index than mock-transfected cells. Flow cytometry analysis indicated a G1/S-phase cell cycle transition in both PrPC-expressing ACHN and LS174T cells. PrPC resists TNFα apoptosis due to a modest, but statistically significant, cell-specific cytoprotection compared with mock-transfected cells.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism*
  5. Yap SH, Lee CS, Zulkifli ND, Suresh D, Hamase K, Das KT, et al.
    Amino Acids, 2024 Feb 03;56(1):6.
    PMID: 38310167 DOI: 10.1007/s00726-023-03360-8
    Studies in vivo have demonstrated that the accumulation of D-amino acids (D-AAs) is associated with age-related diseases and increased immune activation. However, the underlying mechanism(s) of these observations are not well defined. The metabolism of D-AAs by D-amino oxidase (DAO) produces hydrogen peroxide (H2O2), a reactive oxygen species involved in several physiological processes including immune response, cell differentiation, and proliferation. Excessive levels of H2O2 contribute to oxidative stress and eventual cell death, a characteristic of age-related pathology. Here, we explored the molecular mechanisms of D-serine (D-Ser) and D-alanine (D-Ala) in human liver cancer cells, HepG2, with a focus on the production of H2O2 the downstream secretion of pro-inflammatory cytokine and chemokine, and subsequent cell death. In HepG2 cells, we demonstrated that D-Ser decreased H2O2 production and induced concentration-dependent depolarization of mitochondrial membrane potential (MMP). This was associated with the upregulation of activated NF-кB, pro-inflammatory cytokine, TNF-α, and chemokine, IL-8 secretion, and subsequent apoptosis. Conversely, D-Ala-treated cells induced H2O2 production, and were also accompanied by the upregulation of activated NF-кB, TNF-α, and IL-8, but did not cause significant apoptosis. The present study confirms the role of both D-Ser and D-Ala in inducing inflammatory responses, but each via unique activation pathways. This response was associated with apoptotic cell death only with D-Ser. Further research is required to gain a better understanding of the mechanisms underlying D-AA-induced inflammation and its downstream consequences, especially in the context of aging given the wide detection of these entities in systemic circulation.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  6. Yadav M, Kamath KR, Iyngkaran N, Sinniah M
    FEMS Microbiol Immunol, 1991 Dec;4(1):45-9.
    PMID: 1815710 DOI: 10.1111/j.1574-6968.1991.tb04969.x
    A consecutive series of 24 patients with clinical features of primary dengue infection and 22 controls (14 patients with viral fever of unknown origin and 8 healthy subjects) were assayed for serum levels of tumour necrosis factor (TNF). The acute sera of the 24 patients with clinical dengue infection were positive for dengue virus-specific IgM antibody. Clinically, 8 had dengue fever (DF), 14 dengue haemorrhagic fever (DHF) and 2 dengue shock syndrome (DSS). All 16 patients with DHF/DSS had significantly elevated serum TNF levels but the 8 DF patients had TNF levels equivalent to that in the 22 controls. A case is made for augmented TNF production having a role for the pathophysiological changes observed in DHF/DSS and mediator modulation as a possible therapeutic approach to treatment.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism*
  7. Yadav M
    PMID: 1948253
    Serum tumor necrosis factor alpha (TNF) concentration was assayed in 105 patients with nasopharyngeal carcinoma using a sensitive ELISA technique with detection level of 10 pg/ml. The TNF levels were detectable in 45 of 63 (71.4%) patients newly diagnosed for the malignancy and 29 of 42 (69%) patients in remission following treatment with radiotherapy. In 25 normal controls the TNF were less than 10 pg/ml. While TNF may be present in the majority of the patients with the malignant disease, the TNF concentration appeared to have no clinical significance in diagnosis or prognosis of the patients.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism*
  8. Weinberg RP, Koledova VV, Schneider K, Sambandan TG, Grayson A, Zeidman G, et al.
    Sci Rep, 2018 Nov 06;8(1):16423.
    PMID: 30401897 DOI: 10.1038/s41598-018-34763-3
    Neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, are becoming more prevalent and an increasing burden on society. Neurodegenerative diseases often arise in the milieu of neuro-inflammation of the brain. Reactive astrocytes are key regulators in the development of neuro-inflammation. This study describes the effects of Palm Fruit Bioactives (PFB) on the behavior of human astrocytes which have been activated by IL-1β. When activated, the astrocytes proliferate, release numerous cytokines/chemokines including TNFα, RANTES (CCL5), IP-10 (CXCL10), generate reactive oxygen species (ROS), and express specific cell surface biomarkers such as the Intercellular Adhesion Molecule (ICAM), Vascular Cellular Adhesion Molecule (VCAM) and the Neuronal Cellular Adhesion Molecule (NCAM). Interleukin 1-beta (IL-1β) causes activation of human astrocytes with marked upregulation of pro-inflammatory genes. We show significant inhibition of these pro-inflammatory processes when IL-1β-activated astrocytes are exposed to PFB. PFB causes a dose-dependent and time-dependent reduction in specific cytokines: TNFα, RANTES, and IP-10. We also show that PFB significantly reduces ROS production by IL-1β-activated astrocytes. Furthermore, PFB also reduces the expression of ICAM and VCAM, both in activated and naïve human astrocytes in vitro. Since reactive astrocytes play an essential role in the neuroinflammatory state preceding neurodegenerative diseases, this study suggests that PFB may have a potential role in their prevention and/or treatment.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism*
  9. Veeraveedu PT, Sanada S, Okuda K, Fu HY, Matsuzaki T, Araki R, et al.
    Biochem Pharmacol, 2017 Aug 15;138:73-80.
    PMID: 28450225 DOI: 10.1016/j.bcp.2017.04.022
    BACKGROUND AND PURPOSE: ST2 is one of the interleukin (IL)-1 receptor family members comprising of membrane-bound (ST2L) and soluble (sST2) isoforms. Clinical trials have revealed that serum sST2 levels predict outcome in patient with myocardial infarction or chronic heart failure (HF). Meanwhile, we and others have reported that ablation of ST2 caused exaggerated cardiac remodeling in both ischemic and non-ischemic HF. Here, we tested whether IL-33, the ligand for ST2, protects myocardium against HF induced by mechanical overload using ligand specific knockout (IL-33(-/-)) mice.

    METHODS AND RESULTS: Transverse aortic constriction (TAC)/sham surgery were carried out in both IL-33 and WT-littermates. Echocardiographic measurements were performed at frequent interval during the study period. Heart was harvested for RNA and histological measurements. Following mechanical overload by TAC, myocardial mRNA expressions of Th1 cytokines, such as TNF-α were enhanced in IL-33(-/-) mice than in WT mice. After 8-weeks, IL-33(-/-) mice exhibited exacerbated left ventricular hypertrophy, increased chamber dilation, reduced fractional shortening, aggravated fibrosis, inflammation, and impaired survival compared with WT littermates. Accordingly, myocardial mRNA expressions of hypertrophic (c-Myc/BNP) molecular markers were also significantly enhanced in IL-33(-/-) mice than those in WT mice.

    CONCLUSIONS: We report for the first time that ablation of IL-33 directly and significantly leads to exacerbate cardiac remodeling with impaired cardiac function and survival upon mechanical stress. These data highlight the cardioprotective role of IL-33/ST2 system in the stressed myocardium and reveal a potential therapeutic role for IL-33 in non-ischemic HF.

    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  10. Tan SW, Israf Ali DAB, Khaza'ai H, Wong JW, Vidyadaran S
    Cell Immunol, 2020 11;357:104200.
    PMID: 32979761 DOI: 10.1016/j.cellimm.2020.104200
    Tocopherols long dominated studies on vitamin E, although interest has shifted to tocotrienols. It was previously shown that δ-tocotrienol derived from palm oil reduced nitric oxide released by BV2 microglia as early as 18 h after lipopolysaccharide stimulation. The current study measured δ-tocotrienol uptake by BV2 over a 24 h incubation period and its anti-inflammatory effects on primary microglia. Uptake of 17.5 μg/mL δ-tocotrienol by BV2 microglia began as early as 5 min and rose steeply to 21 ± 3% of the amount administered at 24 h. The amount of δ-tocotrienol retained in the lipopolysaccharide-stimulated microglia at 24 h was 14 ± 2%, with no substantial difference seen in unstimulated microglia. The same δ-tocotrienol regimen reduced nitric oxide levels by 82% at 24 h after lipopolysaccharide stimulation (p 
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  11. Tan JW, Wan Zahidi NF, Kow ASF, Soo KM, Shaari K, Israf DA, et al.
    Biosci Rep, 2019 06 28;39(6).
    PMID: 31110077 DOI: 10.1042/BSR20181273
    Mast cells (MCs), a type of immune effector cell, have recently become recognized for their ability to cause vascular leakage during dengue virus (DENV) infection. Although MC stabilizers have been reported to attenuate DENV induced infection in animal studies, there are limited in vitro studies on the use of MC stabilizers against DENV induced MC degranulation. 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA) has been reported to be a potential MC stabilizer by inhibiting IgE-mediated MC activation in both cellular and animal models. The present study aims to establish an in vitro model of DENV3-induced RBL-2H3 cells using ketotifen fumarate as a control drug, as well as to determine the effect of tHGA on the release of MC mediators upon DENV infection. Our results demonstrated that the optimal multiplicities of infection (MOI) were 0.4 × 10-2 and 0.8 × 10-2 focus forming units (FFU)/cell. Ketotifen fumarate was proven to attenuate DENV3-induced RBL-2H3 cells degranulation in this in vitro model. In contrast, tHGA was unable to attenuate the release of both β-hexosaminidase and tumor necrosis factor (TNF)-α. Nonetheless, our study has successfully established an in vitro model of DENV3-induced RBL-2H3 cells, which might be useful for the screening of potential MC stabilizers for anti-dengue therapies.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  12. Taha MM, Salga MS, Ali HM, Abdulla MA, Abdelwahab SI, Hadi AH
    J Ethnopharmacol, 2012 May 7;141(1):273-81.
    PMID: 22374081 DOI: 10.1016/j.jep.2012.02.030
    Turnera diffusa Willd. ex Schult. has been used for the treatment of several human disorders including peptic ulcer.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  13. Syahida A, Israf DA, Permana D, Lajis NH, Khozirah S, Afiza AW, et al.
    Immunol Cell Biol, 2006 Jun;84(3):250-8.
    PMID: 16509831
    Many plant-derived natural compounds have been reported previously to inhibit the production of important pro-inflammatory mediators such as nitric oxide, prostaglandin E2, TNF-alpha and reactive oxygen species by suppressing inducible enzyme expression via inhibition of the mitogen-activated protein kinase pathway and nuclear translocation of critical transcription factors. This study evaluates the effects of atrovirinone [2-(1-methoxycarbonyl-4,6-dihydroxyphenoxy)-3-methoxy-5,6-di-(3-methyl-2-butenyl)-1,4-benzoquinone)], a benzoquinone that we have previously isolated from Garcinia atroviridis, on two cellular systems that are repeatedly used in the analysis of anti-inflammatory bioactive compounds, namely, RAW 264.7 macrophage cells and whole blood. Atrovirinone inhibited the production of both nitric oxide and prostaglandin E2 from LPS-induced and IFN-gamma-induced RAW 264.7 cells and whole blood, with inhibitory concentration (IC)50 values of 4.62 +/- 0.65 and 9.33 +/- 1.47 micromol/L, respectively. Analysis of thromboxane B2 (TXB2) secretion from whole blood stimulated by either the cyclooxygenase (COX)-1 or the COX-2 pathway showed that atrovirinone inhibits the generation of TXB2 by both pathways, with IC50 values of 7.41 +/- 0.92 and 2.10 +/- 0.48 micromol/L, respectively. Analysis of IC50 ratios showed that atrovirinone was more COX-2 selective in its inhibition of TXB2, with a ratio of 0.32. Atrovirinone also inhibited the generation of intracellular reactive oxygen species and the secretion of TNF-alpha from RAW 264.7 cells in a dose-responsive manner, with IC50 values of 5.99 +/- 0.62 and 11.56 +/- 0.04 micromol/L, respectively. Lipoxygenase activity was also moderately inhibited by atrovirinone. Our results suggest that atrovirinone acts on important pro-inflammatory mediators possibly by the inhibition of the nuclear factor-kappaB pathway and also by the inhibition of the COX/lipoxygenase enzyme activity.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  14. Swamy M, Suhaili D, Sirajudeen KN, Mustapha Z, Govindasamy C
    PMID: 25395704
    BACKGROUND: Increased nitric oxide (NO), neuronal inflammation and apoptosis have been proposed to be involved in excitotoxicity plays a part in many neurodegenerative diseases. To understand the neuro-protective effects of propolis, activities of Nitric oxide synthase (NOS) and caspase-3 along with NO and tumor necrosis factor-α (TNF-α) levels were studied in cerebral cortex (CC), cerebellum (CB) and brain stem (BS) in rats supplemented with propolis prior to excitotoxic injury with kainic acid (KA).

    MATERIALS AND METHODS: Male Sprague-Dawley rats were divided into four groups (n=6 rats per group) as Control, KA, Propolis and KA+Propolis. The control group and KA group have received vehicle and saline. Propolis group and propolis + KA group were orally administered with propolis (150 mg/kg body weight), five times every 12 hours. KA group and propolis +KA group were injected subcutaneously with kainic acid (15 mg/kg body weight) and were sacrificed after 2 hrs. CC, CB and BS were separated, homogenized and used for estimation of NOS, caspase-3, NO and TNF-α by commercial kits. Results were analyzed by one way ANOVA, reported as mean + SD (n=6 rats), and p<0.05 was considered statistically significant.

    RESULTS: The concentration of NO, TNF-α, NOS and caspase-3 activity were increased significantly (p<0.001) in all the three brain regions tested in KA group compared to the control. Propolis supplementation significantly (p<0.001) prevented the increase in NOS, NO, TNF-α and caspase-3 due to KA.

    CONCLUSION: Results of this study clearly demonstrated that the propolis supplementation attenuated the NOS, caspase-3 activities, NO, and TNF-α concentration and in KA mediated excitotoxicity. Hence propolis can be a possible potential protective agent against excitotoxicity and neurodegenerative disorders.

    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism*
  15. Subramani T, Yeap SK, Ho WY, Ho CL, Omar AR, Aziz SA, et al.
    J Cell Mol Med, 2014 Feb;18(2):305-13.
    PMID: 24266867 DOI: 10.1111/jcmm.12188
    Vitamin C is generally thought to enhance immunity and is widely taken as a supplement especially during cancer treatment. Tamoxifen (TAM) has both cytostatic and cytotoxic properties for breast cancer. TAM engaged mitochondrial oestrogen receptor beta in MCF-7 cells and induces apoptosis by activation of pro-caspase-8 followed by downstream events, including an increase in reactive oxygen species and the release of pro-apoptotic factors from the mitochondria. In addition to that, TAM binds with high affinity to the microsomal anti-oestrogen-binding site and inhibits cholesterol esterification at therapeutic doses. This study aimed to investigate the role of vitamin C in TAM-mediated apoptosis. Cells were loaded with vitamin C by exposure to dehydroascorbic acid, thereby circumventing in vitro artefacts associated with the poor transport and pro-oxidant effects of ascorbic acid. Pre-treatment with vitamin C caused a dose-dependent attenuation of cytotoxicity, as measured by acridine-orange/propidium iodide (AO/PI) and Annexin V assay after treatment with TAM. Vitamin C dose-dependently protected cancer cells against lipid peroxidation caused by TAM treatment. By real-time PCR analysis, an impressive increase in FasL and tumour necrosis factor-α (TNF-α) mRNA was detected after TAM treatment. In addition, a decrease in mitochondrial transmembrane potential was observed. These results support the hypothesis that vitamin C supplementation during cancer treatment may detrimentally affect therapeutic response.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  16. Sivam HGP, Chin BY, Gan SY, Ng JH, Gwenhure A, Chan EWL
    Cancer Biol Ther, 2023 Dec 31;24(1):2284857.
    PMID: 38018872 DOI: 10.1080/15384047.2023.2284857
    Modified macrophages, tumor-associated macrophages (TAMs), are key contributors to the survival, growth, and metastatic behavior of pancreatic ductal adenocarcinoma (PDAC) cells. Central to the role of inflammation and TAMs lies the NLRP3 inflammasome. This study investigated the effects of LPS-stimulated inflammation on cell proliferation, levels of pro-inflammatory cytokines, and the NLRP3 inflammasome pathway in a co-culture model using PDAC cells and macrophages in the presence or absence of MCC950, a NLRP3-specific inhibitor. The effects of LPS-stimulated inflammation were tested on two PDAC cell lines (Panc 10.05 and SW 1990) co-cultured with RAW 264.7 macrophages. Cell proliferation was determined using the MTT assay. Levels of pro-inflammatory cytokines, IL-1β, and TNF-α were determined by ELISA. Western blot analyses were used to examine the expression of NLRP3 in both PDAC cells and macrophages. The co-culture and interaction between PDAC cell lines and macrophages led to pro-inflammatory microenvironment under LPS stimulation as evidenced by high levels of secreted IL-1β and TNF-α. Inhibition of the NLRP3 inflammasome by MCC950 counteracted the effects of LPS stimulation on the regulation of the NLRP3 inflammasome and pro-inflammatory cytokines in PDAC and macrophages. However, MCC950 differentially modified the viability of the metastatic vs primary PDAC cell lines. LPS stimulation increased PDAC cell viability by regulating the NLRP3 inflammasome and pro-inflammatory cytokines in the tumor microenvironment of PDAC cells/macrophages co-cultures. The specific inhibition of the NLRP inflammasome by MCC950 effectively counteracted the LPS-stimulated inflammation.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  17. Shu MH, Appleton D, Zandi K, AbuBakar S
    PMID: 23497105 DOI: 10.1186/1472-6882-13-61
    Gracilaria changii (Xia et Abbott) Abbott, Zhang et Xia, a red algae commonly found in the coastal areas of Malaysia is traditionally used for foods and for the treatment of various ailments including inflammation and gastric ailments. The aim of the study was to investigate anti-inflammatory, gastroprotective and anti-ulcerogenic activities of a mass spectrometry standardized methanolic extract of Gracilaria changii.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  18. Shawish HB, Wong WY, Wong YL, Loh SW, Looi CY, Hassandarvish P, et al.
    PLoS One, 2014;9(6):e100933.
    PMID: 24977407 DOI: 10.1371/journal.pone.0100933
    BACKGROUND: The biological properties of thiosemicarbazone have been widely reported. The incorporation of some transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity.

    METHODOLOGY/PRINCIPAL FINDINGS: Four ligands (1-4) and their respective nickel-containing complexes (5-8) were synthesized and characterized. The compounds synthesized were tested for their effects on NF-κB nuclear translocation, pro-inflammatory cytokines secretion and NF-κB transactivation activity. The active compound was further evaluated on its ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was also predicted by molecular docking analysis.

    CONCLUSIONS/SIGNIFICANCE: Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5) (complex 5), potently inhibited IκBα degradation and NF-κB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as well as TNFα-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFα-induced transcription of NF-κB target genes, including genes that encode the pro-inflammatory cytokines TNFα, IFNβ and IL6. Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-κB. Furthermore, the anti-inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact with the active site of IKKβ. Taken together, we suggest complex 5 as a novel NF-κB inhibitor with potent anti-inflammatory effects.

    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  19. Sharif U, Mahmud NM, Kay P, Yang YC, Harding SP, Grierson I, et al.
    J Cell Mol Med, 2019 01;23(1):405-416.
    PMID: 30338926 DOI: 10.1111/jcmm.13944
    The retinal pigment epithelium (RPE) plays a central role in neuroretinal homoeostasis throughout life. Altered proteolysis and inflammatory processes involving RPE contribute to the pathophysiology of age-related macular degeneration (AMD), but the link between these remains elusive. We report for the first time the effect of advanced glycation end products (AGE)-known to accumulate on the ageing RPE's underlying Bruch's membrane in situ-on both key lysosomal cathepsins and NF-κB signalling in RPE. Cathepsin L activity and NF-κB effector levels decreased significantly following 2-week AGE exposure. Chemical cathepsin L inhibition also decreased total p65 protein levels, indicating that AGE-related change of NF-κB effectors in RPE cells may be modulated by cathepsin L. However, upon TNFα stimulation, AGE-exposed cells had significantly higher ratio of phospho-p65(Ser536)/total p65 compared to non-AGEd controls, with an even higher fold increase than in the presence of cathepsin L inhibition alone. Increased proportion of active p65 indicates an AGE-related activation of NF-κB signalling in a higher proportion of cells and/or an enhanced response to TNFα. Thus, NF-κB signalling modulation in the AGEd environment, partially regulated via cathepsin L, is employed by RPE cells as a protective (para-inflammatory) mechanism but renders them more responsive to pro-inflammatory stimuli.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism*
  20. Selim K, Hüseyin C, Ibrahim KH, Hasan BU, Kazim U, Hüseyin K
    Med J Malaysia, 2004 Aug;59(3):391-4.
    PMID: 15727386
    Several pharmacological agents have been found to alter systemic concentrations and/or the activity of different cytokines via a variety of mechanisms, including changes in biosynthesis, secretion, and/or stability. Pentoxifylline (PTX), which is a methylxanthine derivative for example, has multiple effects on the immune system, but inhibition of pro-inflammatory cytokine release predominates. In this study we aimed to evaluate the influence of PTX on plasma levels of tumor necrosis factor (TNF) alpha and interleukin (IL)-6 in newborn infants with sepsis. The study included 20 infants with neonatal sepsis. In all subjects blood samples for serum C-reactive protein, TNF alpha and IL-6 determinations were received before giving PTX and at the 12th and 24th hours following PTX. In addition, white blood cell was counted before giving PTX and on the 3rd and 7th day following PTX. The infants were randomly divided into two groups. Firstly, PTX was used in infants who were successively admitted to the clinic and the subsequent infants were accepted as a control group. Of 20 infants, 13 infants received PTX and seven infants did not. We did not find any difference in the leukocyte count, serum C-reactive protein level, TNF alpha and IL-6 levels between the two groups of patients (P>0.05). While three infants died in the group of receiving PTX, death was not recorded in the group of non-receiving PTX (P>0.05). Our findings showed that PTX treatment did not affect leukocyte counts, serum CRP levels, TNF alpha and IL-6 levels and death ratio in newborn infants with sepsis. The last result may be due to the fact that the number of patients in the study was very small. We think that more extensive and controlled studies should be performed about this subject.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links