Displaying publications 1 - 20 of 104 in total

Abstract:
Sort:
  1. Abd Razak NA, Abu Osman NA, Gholizadeh H, Ali S
    Biomed Eng Online, 2014 Apr 23;13:49.
    PMID: 24755242 DOI: 10.1186/1475-925X-13-49
    BACKGROUND: The design and performance of a new development prosthesis system known as biomechatronics wrist prosthesis is presented in this paper. The prosthesis system was implemented by replacing the Bowden tension cable of body powered prosthesis system using two ultrasonic sensors, two servo motors and microcontroller inside the prosthesis hand for transradial user.

    METHODS: The system components and hand prototypes involve the anthropometry, CAD design and prototyping, biomechatronics engineering together with the prosthetics. The modeler construction of the system develop allows the ultrasonic sensors that are placed on the shoulder to generate the wrist movement of the prosthesis. The kinematics of wrist movement, which are the pronation/supination and flexion/extension were tested using the motion analysis and general motion of human hand were compared. The study also evaluated the require degree of detection for the input of the ultrasonic sensor to generate the wrist movements.

    RESULTS: The values collected by the vicon motion analysis for biomechatronics prosthesis system were reliable to do the common tasks in daily life. The degree of the head needed to bend to give the full input wave was about 45°-55° of rotation or about 14 cm-16 cm. The biomechatronics wrist prosthesis gave higher degree of rotation to do the daily tasks but did not achieve the maximum degree of rotation.

    CONCLUSION: The new development of using sensor and actuator in generating the wrist movements will be interesting for used list in medicine, robotics technology, rehabilitations, prosthetics and orthotics.

    Matched MeSH terms: Ultrasonics/instrumentation*
  2. Abdul Ghani Rafek, Azimah Hussin, Lee KE, Ailie Sofyiana Serasa, Goh TL
    Sains Malaysiana, 2016;45:185-193.
    The uniaxial compressive strength (UCS) is one of the most common mechanical parameters required in geotechnical engineering to characterize the compressive strength of rock material. Measurements of UCS are expensive, time consuming, destructive and thus, not favorable in the presence of limited samples. Therefore, a simple yet practical application is needed for the estimation of UCS. This research presents two correlations to predict UCS values for granite and schist by using ultrasonic velocity travel time (tp) from ultrasonic tests. The validity of the practical approach presented in this research is confirmed based on the strong correlations developed from the experimental tests conducted. For the entire data set, the correlation between UCS and ultrasonic velocity travel time was expressed as UCS = 217.2 e-0.016(tp) for granite and UCS = 1110.6 e-0.037(tp) for schist and the coefficient of determination (R2) value for both granite and schist is 0.93. These correlations may be useful for applications related to geotechnical engineering designs.
    Matched MeSH terms: Ultrasonics
  3. Abdullah AZ, Ling PY
    J Hazard Mater, 2010 Jan 15;173(1-3):159-67.
    PMID: 19740600 DOI: 10.1016/j.jhazmat.2009.08.060
    The ambient sonocatalytic degradation of congo red, methyl orange, and methylene blue by titanium dioxide (TiO(2)) catalyst at initial concentrations between 10 and 50mg/L, catalyst loadings between 1.0 and 3.0mg/L and hydrogen peroxide (H(2)O(2)) concentrations up to 600 mg/L is reported. A 20 kHz ultrasonic processor at 50 W was used to accelerate the reaction. The catalysts were exposed to heat treatments between 400 and 1000 degrees C for up to 4h to induce phase change. Sonocatalysts with small amount of rutile phase showed better sonocatalytic activity but excessive rutile phase should be avoided. TiO(2) heated to 800 degrees C for 2h showed the highest sonocatalytic activity and the degradation of dyes was influenced by their chemical structures, chemical phases and characteristics of the catalysts. Congo red exhibited the highest degradation rate, attributed to multiple labile azo bonds to cause highest reactivity with the free radicals generated. An initial concentration of 10mg/L, 1.5 g/L of catalyst loading and 450 ppm of H(2)O(2) gave the best congo red removal efficiency of above 80% in 180 min. Rate coefficients for the sonocatalytic process was successfully established and the reused catalyst showed an activity drop by merely 10%.
    Matched MeSH terms: Ultrasonics*
  4. Abidin NZ, Mitra SR
    Curr Gerontol Geriatr Res, 2021;2021:6634474.
    PMID: 33790963 DOI: 10.1155/2021/6634474
    Osteosarcopenic obesity (OSO) describes the concurrent presence of obesity, low bone mass, and low muscle mass in an individual. Currently, no established criteria exist to diagnose OSO. We hypothesized that obese individuals require different cut-points from standard cut-points to define low bone mass and low muscle mass due to their higher weight load. In this study, we determined cutoff values for the screening of osteosarcopenia (OS) in obese postmenopausal Malaysian women based on the measurements of quantitative ultrasound (QUS), bioelectrical impedance analysis (BIA), and functional performance test. Then, we compared the cutoff values derived by 3 different statistical modeling methods, (1) receiver operating characteristic (ROC) curve, (2) lowest quintile of the study population, and (3) 2 standard deviations (SD) below the mean value of a young reference group, and discussed the most suitable method to screen for the presence of OS in obese population. One hundred and forty-one (n = 141) postmenopausal Malaysian women participated in the study. Bone density was assessed using calcaneal quantitative ultrasound. Body composition was assessed using bioelectrical impedance analyzer. Handgrip strength was assessed using a handgrip dynamometer, and physical performance was assessed using a modified Short Physical Performance Battery test. ROC curve was determined to be the most suitable statistical modeling method to derive the cutoffs for the presence of OS in obese population. From the ROC curve method, the final model to estimate the probability of OS in obese postmenopausal women is comprised of five variables: handgrip strength (HGS, with area under the curve (AUC) = 0.698 and threshold ≤ 16.5 kg), skeletal muscle mass index (SMMI, AUC = 0.966 and threshold ≤ 8.2 kg/m2), fat-free mass index (FFMI, AUC = 0.946 and threshold ≤ 15.2 kg/m2), broadband ultrasonic attenuation (BUA, AUC = 0.987 and threshold ≤ 52.85 dB/MHz), and speed of sound (SOS, AUC = 0.991 and threshold ≤ 1492.15 m/s). Portable equipment may be used to screen for OS in obese women. Early identification of OS can help lower the risk of advanced functional impairment that can lead to physical disability in obese postmenopausal women.
    Matched MeSH terms: Ultrasonics
  5. Acharya UR, Molinari F, Sree SV, Swapna G, Saba L, Guerriero S, et al.
    Technol Cancer Res Treat, 2015 Jun;14(3):251-61.
    PMID: 25230716 DOI: 10.1177/1533034614547445
    Ovarian cancer is the most common cause of death among gynecological malignancies. We discuss different types of clinical and nonclinical features that are used to study and analyze the differences between benign and malignant ovarian tumors. Computer-aided diagnostic (CAD) systems of high accuracy are being developed as an initial test for ovarian tumor classification instead of biopsy, which is the current gold standard diagnostic test. We also discuss different aspects of developing a reliable CAD system for the automated classification of ovarian cancer into benign and malignant types. A brief description of the commonly used classifiers in ultrasound-based CAD systems is also given.
    Matched MeSH terms: Ultrasonics/methods
  6. Agi A, Junin R, Alqatta AYM, Gbadamosi A, Yahya A, Abbas A
    Ultrason Sonochem, 2019 Mar;51:214-222.
    PMID: 30401623 DOI: 10.1016/j.ultsonch.2018.10.023
    Ultrafiltration has been proven to be very effective in the treatment of oil-in-water emulsions, since no chemical additives are required. However, ultrafiltration has its limitations, the main limits are concentration polarization resulting to permeate flux decline with time. Adsorption, accumulation of oil and particles on the membrane surface which causes fouling of the membrane. Studies have shown that the ultrasonic is effective in cleaning of fouled membrane and enhancing membrane filtration performance. But the effectiveness also, depends on the selection of appropriate membrane material, membrane geometry, ultrasonic module design, operational and processing condition. In this study, a hollow and flat-sheet polyurethane (PU) membranes synthesized with different additives and solvent were used and their performance evaluated with oil-in-water emulsion. The steady-state permeate flux and the rejection of oil in percentage (%) at two different modes were determined. A dry/wet spinning technique was used to fabricate the flat-sheet and hollow fibre membrane (HFMs) using Polyethersulfone (PES) polymer base, Polyvinylpyrrolidone (PVP) additive and N, N-Dimethylacetamide (DMAc) solvent. Ultrasonic assisted cross-flow ultrafiltration module was built to avoid loss of ultrasonic to the surrounding. The polyurethane (PU) was synthesized by polymerization and sulphonation to have an anionic group (-OH; -COOH; and -SO3H) on the membrane surface. Changes in morphological properties of the membrane had a significant effect on the permeate flow rate and oil removal. Generation of cavitation and Brownian motion by the ultrasonic were the dominant mechanisms responsible for ultrafiltration by cracking the cake layers and reducing concentration polarization at the membrane surface. The percentage of oil after ultrafiltration process with ultrasonic is about 90% compared to 49% without ultrasonic. Ultrasonic is effective in enhancing the membrane permeate flux and controlling membrane fouling.
    Matched MeSH terms: Ultrasonics
  7. Ahmad KA, Rahman MFA, Zain KAM, Haron MN, Manaf AA
    Sensors (Basel), 2021 Aug 19;21(16).
    PMID: 34451023 DOI: 10.3390/s21165582
    In acoustic receiver design, the receiving sensitivity and bandwidth are two primary parameters that determine the performance of a device. The trade-off between sensitivity and bandwidth makes the design very challenging, meaning it needs to be fine-tuned to suit specific applications. The ability to design a PMUT with high receiving sensitivity and a wide bandwidth is crucial to allow a wide spectrum of transmitted frequencies to be efficiently received. This paper presents a novel structure involving a double flexural membrane with a fluidic backing layer based on an in-plane polarization mode to optimize both the receiving sensitivity and frequency bandwidth for medium-range underwater acoustic applications. In this structure, the membrane material and electrode configuration are optimized to produce good receiving sensitivity. Simultaneously, a fluidic backing layer is introduced into the double flexural membrane to increase the bandwidth. Several piezoelectric membrane materials and various electrode dimensions were simulated using finite element analysis (FEA) techniques to study the receiving performance of the proposed structure. The final structure was then fabricated based on the findings from the simulation work. The pulse-echo experimental method was used to characterize and verify the performance of the proposed device. The proposed structure was found to have an improved bandwidth of 56.6% with a receiving sensitivity of -1.8864 dB rel 1 V µPa. For the proposed device, the resonance frequency and center frequency were 600 and 662.5 kHz, respectively, indicating its suitability for the targeted frequency range.
    Matched MeSH terms: Ultrasonics*
  8. Ahmad Zaiki FW, Md Dom S, Abdul Razak HR, Hassan HF
    Quant Imaging Med Surg, 2013 Oct;3(5):262-8.
    PMID: 24273744 DOI: 10.3978/j.issn.2223-4292.2013.10.05
    Prenatal Ultrasound (US) is commonly used as a routine procedure on pregnant women. It is generally perceived as a safe procedure due to the use of non-ionizing radiation. However, the neurotoxicity of diagnostic prenatal US was detected to have a correlation with high susceptibility to early developing fetus. This research involved in vivo experimental model by using 3(rd) trimester pregnant Oryctolagus cuniculus and exposing them to US exposures for 30, 60, and 90 minutes at their gestational day (GD) 28-29. The output power and intensities, spatial peak temporal average intensity (ISPTA) of US were varied from 0.4 to 0.7 W and 0.13 to 0.19 W/cm(2) respectively were tested initially in free-field, water. Haematological analysis was carried out to detect any changes in blood constituents. Statistically significant differences were detected in red blood cell (RBC) count (P<0.001), haemoglobin (Hb) concentration (P<0.001) and also platelet (PLT) count (P<0.001) in newborn of Oryctolagus cuniculus. These findings indicate the possibility of US heating in causing defects on studied animal.
    Matched MeSH terms: Ultrasonics
  9. Alguri KS, Chia CC, Harley JB
    Ultrasonics, 2021 Mar;111:106338.
    PMID: 33338729 DOI: 10.1016/j.ultras.2020.106338
    Wavefield imaging is a powerful visualization tool in nondestructive evaluation for studying ultrasonic wave propagation and its interactions with damage. To isolate and study damage scattering, damage-free baseline data is often subtracted from a wavefield. This is often necessary because the damage wavefield can be orders of magnitude weaker than the incident waves. Yet, baselines are not always accessible. When the baselines are accessible, the experimental conditions for the baseline and test data must be extremely similar. Researchers have created several baseline-free approaches for isolating damage wavefields, but these often rely on specific experimental setups. In this paper, we discuss a flexible approach based on ultrasonic guided wave digital surrogates (i.e., numerical simulations of incident waves) and transfer learning. We demonstrate this approach with two setups. We first isolate reflections from a circular, 2 mm diameter half-thickness hole on a 10 × 10 cm steel plate. We then isolate 8 circular, half-thickness holes of various diameters from 1 mm to 40 mm on a 60 × 60 cm steel plate. The second plate has a non-square geometry and the data has multi-path reflections. With both data sets, we isolate damage reflections without explicit experimental baselines. We also briefly illustrate the comparison of our dictionary learning method with wavenumber filtering technique which is often used to enhance the defect wavefields.
    Matched MeSH terms: Ultrasonics
  10. Alhawari ARH, Majeed SF, Saeidi T, Mumtaz S, Alghamdi H, Hindi AT, et al.
    Micromachines (Basel), 2021 Apr 07;12(4).
    PMID: 33917167 DOI: 10.3390/mi12040411
    The increasing needs of free licensed frequency bands like Industrial, Scientific, and Medical (ISM), Wireless Local Area Network (WLAN), and 5G for underwater communications required more bandwidth (BW) with higher data transferring rate. Microwaves produce a higher transferring rate of data, and their associated devices are smaller in comparison with sonar and ultrasonic. Thus, transceivers should have broad BW to cover more of a frequency band, especially from ultra-wideband (UWB) systems, which show potential outcomes. However, previous designs of similar work for underwater communications were very complicated, uneasy to fabricate, and large. Therefore, to overcome these shortcomings, a novel compact elliptical UWB antenna is designed to resonate from 1.3 to 7.2 GHz. It is invented from a polytetrafluoroethylene (PTFE) layer with a dielectric constant of 2.55 mm and a thickness of 0.8 mm. The proposed antenna shows higher gain and radiation efficiency and stability throughout the working band when compared to recent similarly reported designs, even at a smaller size. The characteristics of the functioning antenna are investigated through fluid mediums of fresh-water, seawater, distilled water, and Debye model water. Later, its channel capacity, bit rate error, and data rate are evaluated. The results demonstrated that the antenna offers compact, easier fabrication with better UWB characteristics for underwater 5G communications.
    Matched MeSH terms: Ultrasonics
  11. Ali, G., Russly, A.R., Jamilah, B., Azizah, O., Mandana, B.
    MyJurnal
    This study aims to evaluate the effect of heat and the simultaneous application of heat (80-95°C) and ultrasonic waves (thermosonication) on the inactivation kinetic of peroxidase and vitamin C degradation in seedless guava. Ultrasonic wave’s amplitudes except 25 and 100% had significant (P 0.98). In the heat blanching process, the peroxidase inactivation rate constant increased from 1.1×10-2 to 4.6×10-2 s-1. However, the inactivation rate of peroxidase was increased by 1.5–3 times in the temperature range 80–95ºC, with the 50 and 75% ultrasonic wave amplitudes, respectively. Decreases in vitamin C contents due to blanching treatments were found. Blanching processes at high temperature and short time resulted in higher vitamin C retention. It was found that thermosonication treatment inactivates seedless guava peroxidase at less severe blanching conditions and consequently retains vitamin C content at higher levels. The present findings will help to design the blanching conditions in order to reduce the severity of conventional thermal treatments and, therefore, improving the quality of the thermally treated product.
    Matched MeSH terms: Ultrasonics
  12. Arafat MM, Dinan B, Akbar SA, Haseeb AS
    Sensors (Basel), 2012;12(6):7207-58.
    PMID: 22969344 DOI: 10.3390/s120607207
    Recently one dimensional (1-D) nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO(2), TiO(2), In(2)O(3), WO(x), AgVO(3), CdO, MoO(3), CuO, TeO(2) and Fe(2)O(3). Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research.
    Matched MeSH terms: Ultrasonics
  13. Arul P, Gowthaman NSK, John SA, Lim HN
    ACS Omega, 2020 Jun 23;5(24):14242-14253.
    PMID: 32596560 DOI: 10.1021/acsomega.9b03829
    Excess levels of nitrite ion in drinking water interact with amine functionalized compounds to form carcinogenic nitrosamines, which cause stomach cancer. Thus, it is indispensable to develop a simple protocol to detect nitrite. In this paper, a Cu-metal-organic framework (Cu-MOF) with graphene oxide (GO) composite was synthesized by ultrasonication followed by solvothermal method and then fabricated on a glassy carbon (GC) electrode for the sensitive and selective determination of nitrite contamination. The SEM image of the synthesized Cu-MOF showed colloidosome-like structure with an average size of 8 μm. Interestingly, the Cu-MOF-GO composite synthesized by ultrasonic irradiation followed by solvothermal process produce controlled size of 3 μm colloidosome-like structure. This was attributed to the formation of an exfoliated sheet-like structure of GO by ultrasonication in addition to the obvious influence of GO providing the oxygen functional groups as a nucleation node for size-controlled growth. On the other hand, the composite prepared without ultrasonication exhibited 6.6 μm size agglomerated colloidosome-like structures, indicating the crucial role of ultrasonication for the formation of size-controlled composites. XPS results confirmed the presence of Cu(II) in the as-synthesized Cu-MOF-GO based on the binding energies at 935.5 eV for Cu 2p3/2 and 955.4 eV for Cu 2p1/2. The electrochemical impedance studies in [Fe(CN)6]3-/4- redox couple at the composite fabricated electrode exhibited more facile electron transfer than that with Cu-MOF and GO modified electrodes, which helped to utilize Cu-MOF-GO for trace level determination of nitrite in environmental effluent samples. The Cu-MOF-GO fabricated electrode offered a superior sensitive platform for nitrite determination than the Cu-MOF and GO modified electrodes demonstrating oxidation at less positive potential with enhanced oxidation current. The present sensor detects nitrite in the concentration range of 1 × 10-8 to 1 × 10-4 M with the lowest limit of detection (LOD) of 1.47 nM (S/N = 3). Finally, the present Cu-MOF-GO electrode was successfully exploited for nitrite ion determination in lake and dye contaminated water samples.
    Matched MeSH terms: Ultrasonics
  14. Bhat R, Kamaruddin NS, Min-Tze L, Karim AA
    Ultrason Sonochem, 2011 Nov;18(6):1295-300.
    PMID: 21550834 DOI: 10.1016/j.ultsonch.2011.04.002
    Freshly squeezed kasturi lime fruit juice was sonicated (for 0, 30 and 60min at 20°C, 25kHz frequency) to evaluate its impact on selected physico-chemical and antioxidant properties, such as pH, °Brix, titratable acidity, Hunter color values (L(∗), a(∗), b(∗)), ascorbic acid, DPPH radical scavenging activity, total phenolics, antioxidant capacity, flavonoids and flavonols. Additionally, the effect of sonication treatments on the microbial load (TPC, yeast and mold) were also evaluated. Sonication of juice samples for 60min showed enhancement in most of the bioactive compounds compared to samples treated for 30min and control samples (untreated). Significant reductions in the microbial load corresponding to sonication time were also recorded. Results of the present study indicate that sonication may be employed as a suitable technique for kasturi lime juice processing, where antioxidant and other bioactive compound retention or enhancement is desired, along with the achievement of safety and quality standards.
    Matched MeSH terms: Ultrasonics*
  15. Bimakr, M., Rahman, R.A., Saleena Taip, F., Adzahan, N.M., Islam Sarker, Z., Ganjloo, A
    MyJurnal
    Ultrasound-assisted extraction (UAE) was applied for the extraction of bioactive valuable compounds from winter melon (Benincasa hispida) seeds. Effects of amplitude (25-75%), temperature (40-60°C) and sonication time (20-60 min) on crude extraction yield (CEY) and radical scavenging activities (RSA, % inhibition of DPPH˙ and ABTS˙+ free radicals) of extracts were determined using complete randomised design (CRD). The results showed that the CEY and RSA of extracts significantly affected by independent variables. The maximum value of CEY (97.14±0.36 mgg-1), scavenging of DPPH˙ radicals (32.12 ± 0.38%) and scavenging of ABTS˙+ radicals (40.52±0.73%) were obtained at the combined treatment conditions of 75%, 55°C and 40 min. The UAE results obtained were compared with those achieved by using conventional Soxhlet extraction (CSE) method. It was found UAE allowed extraction at lower temperature and the extracts obtained posses higher quality compare with CSE. UAE is a promising environment friendly technique for the extraction of bioactive compounds from winter melon (Benincasa hispida) seeds.
    Matched MeSH terms: Ultrasonics
  16. Chan CH, See TY, Yusoff R, Ngoh GC, Kow KW
    Food Chem, 2017 Apr 15;221:1382-1387.
    PMID: 27979103 DOI: 10.1016/j.foodchem.2016.11.016
    This work demonstrated the optimization and scale up of microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) of bioactive compounds from Orthosiphon stamineus using energy-based parameters such as absorbed power density and absorbed energy density (APD-AED) and response surface methodology (RSM). The intensive optimum conditions of MAE obtained at 80% EtOH, 50mL/g, APD of 0.35W/mL, AED of 250J/mL can be used to determine the optimum conditions of the scale-dependent parameters i.e. microwave power and treatment time at various extraction scales (100-300mL solvent loading). The yields of the up scaled conditions were consistent with less than 8% discrepancy and they were about 91-98% of the Soxhlet extraction yield. By adapting APD-AED method in the case of UAE, the intensive optimum conditions of the extraction, i.e. 70% EtOH, 30mL/g, APD of 0.22W/mL, AED of 450J/mL are able to achieve similar scale up results.
    Matched MeSH terms: Ultrasonics/methods*
  17. Chang, Kok Yung, Kwan, Wai Hoe, Kua, Hui Bun
    Scientific Research Journal, 2018;15(1):75-83.
    MyJurnal
    The massive growth of construction industry especially in the developing countries results in extensive quarrying activities which ultimately would lead to the depletion of natural resources. Apart from extensive extraction of the natural granite from the earth for concrete production, marble production industry is also majorly contributing to the quarrying activities. In addition, high volume of waste is generated by the marble production industry as 70% of marble is wasted during the production such as quarrying, cutting, processing and others which is environmental unfriendly. In a way to achieve sustainable construction, the present study is to utilise the waste marble in replacing the coarse aggregate in concrete production. The engineering performance including workability, compressive strength, ultrasonic pulse velocity (UPV) and chloride penetration were analysed. The raw waste marble obtained from the industry were crushed and sieved into maximum size 20 mm and used to replace the coarse aggregate at the level of 20%, 40%, 60%, 80% and 100% respectively. Results show that 60% of the replacement level has yield to optimum result by achieving the highest compressive strength and UPV at approximate 5% higher than the control. Meanwhile, the effect on chloride penetration resistance is more significant, i.e. approximate 19% better than the control. However, increasing the replacement level of waste marble has no significant effect on workability, although an increasing trend was observed.
    Matched MeSH terms: Ultrasonics
  18. Chen RS, Mohd Ruf MFH, Shahdan D, Ahmad S
    PLoS One, 2019;14(9):e0222662.
    PMID: 31545820 DOI: 10.1371/journal.pone.0222662
    Thermoplastic natural rubber (TPNR) was compounded with graphene nanoplatelets (GNP) via ultrasonication and melt blending. The effects of ultrasonication period (1-4 hours) and GNP weight fraction (0.5, 1.0, 1.5 and 2.0 wt.%) on the mechanical, thermal and conductivity properties were investigated. Results showed that the 3 hours of ultrasonic treatment on LNR/GNP gave the greatest improvement in tensile strength of 25.8% (TPNR/GNP nanocomposites) as compared to those without ultrasonication. The TPNR nanocomposites containing 1.5 wt.% GNP exhibited the highest strength (16 MPa for tensile, 14 MPa for flexural and 11 kJm-2 for impact) and modulus (556 MPa and 869 MPa for tensile and flexural, respectively). The incorporation of GNP had enhanced the thermal stability. It can be concluded that the GNP had imparted the thermally and electrically conductive nature to the TPNR blend.
    Matched MeSH terms: Ultrasonics
  19. Chong FC, Gwee XF
    Nat Prod Res, 2015;29(15):1485-7.
    PMID: 25836369 DOI: 10.1080/14786419.2015.1027892
    The ultrasonic extraction (UE) method of anthocyanin from Clitoria ternatea flowers using response surface methodology (RSM) was performed in this study. By using RSM, the objective is to optimise the extraction yield of anthocyanin from C. ternatea which is influenced by various factors, including the extraction temperature, time, ratio of solvent to solid and ultrasonic power. The empirical model was investigated by performing first-level optimisation in a two-level factorial design with Design Expert 7 software. In comparison with the conventional solvent extraction, UE showed a 246.48% better extraction yield and produced an anthocyanin extract with a radical scavenging activity of 68.48% at the optimised factors of 50°C, 150 min, 15 mL/g and 240 W.
    Matched MeSH terms: Ultrasonics/methods*
  20. Chong KH, Poh BK, Jamil NA, Kamaruddin NA, Deurenberg P
    Biomed Res Int, 2015;2015:232876.
    PMID: 25922831 DOI: 10.1155/2015/232876
    Aim. To validate a radial quantitative ultrasound (QUS) system with dual energy X-ray absorptiometry (DXA), a criterion technique in bone status assessment among children. Methods. Bone health was evaluated using a radial QUS system (Sunlight Omnisense 8000P) to measure the speed of sound (SOS) at one-third distal radius of the nondominant hand and DXA (Hologic QDR) was used to assess whole body bone mineral density (BMD). Results. Some 29.9% of the children were grossly misclassified according to quartiles of BMD and radial SOS. Poor agreement was observed between Z-scores of radial SOS and whole-body BMD (mean difference = 0.6 ± 0.9; 95% limits of agreement = -1.4 to 2.6). With a cut-off value of -1.0, radial SOS yielded satisfactory sensitivity (80%) and specificity (93%) for the detection of children with low BMD. Conclusion. The observed poor agreement in the present study suggests that radial QUS and DXA are not comparable and hence are not interchangeable in evaluating bone status of the children.
    Matched MeSH terms: Ultrasonics/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links