Displaying publications 1 - 20 of 241 in total

Abstract:
Sort:
  1. Vairappan CS, Ishii T, Lee TK, Suzuki M, Zhaoqi Z
    Mar Drugs, 2010;8(6):1743-9.
    PMID: 20631866 DOI: 10.3390/md8061743
    In our continuous interest to study the diversity of halogenated metabolites of Malaysian species of the red algal genus Laurencia, we examined the chemical composition of five populations of unrecorded Laurencia sp. A new brominated diterpene, 10-acetoxyangasiol (1), and four other known metabolites, aplysidiol (2), cupalaurenol (3), 1-methyl-2,3,5-tribromoindole (4), and chamigrane epoxide (5), were isolated and identified. Isolated metabolites exhibited potent antibacterial activities against clinical bacteria, Staphylococcus aureus, Staphylococcus sp., Streptococcus pyogenes, Salmonella sp. and Vibrio cholerae.
    Matched MeSH terms: Vibrio cholerae/drug effects
  2. Ina-Salwany MY, Al-Saari N, Mohamad A, Mursidi FA, Mohd-Aris A, Amal MNA, et al.
    J Aquat Anim Health, 2019 03;31(1):3-22.
    PMID: 30246889 DOI: 10.1002/aah.10045
    Current growth in aquaculture production is parallel with the increasing number of disease outbreaks, which negatively affect the production, profitability, and sustainability of the global aquaculture industry. Vibriosis is among the most common diseases leading to massive mortality of cultured shrimp, fish, and shellfish in Asia. High incidence of vibriosis can occur in hatchery and grow-out facilities, but juveniles are more susceptible to the disease. Various factors, particularly the source of fish, environmental factors (including water quality and farm management), and the virulence factors of Vibrio, influence the occurrence of the disease. Affected fish show weariness, with necrosis of skin and appendages, leading to body malformation, slow growth, internal organ liquefaction, blindness, muscle opacity, and mortality. A combination of control measures, particularly a disease-free source of fish, biosecurity of the farm, improved water quality, and other preventive measures (e.g., vaccination) might be able to control the infection. Although some control measures are expensive and less practical, vaccination is effective, relatively cheap, and easily implemented. In this review, the latest knowledge on the pathogenesis and control of vibriosis, including vaccination, is discussed.
    Matched MeSH terms: Vibrio Infections/microbiology; Vibrio Infections/epidemiology; Vibrio Infections/prevention & control; Vibrio Infections/veterinary*
  3. Ravichandran M, Ali SA, Rashid NH, Kurunathan S, Yean CY, Ting LC, et al.
    Vaccine, 2006 May 1;24(18):3750-61.
    PMID: 16102875
    In this paper, we describe the development of VCUSM2, a live metabolic auxotroph of Vibrio cholerae O139. Auxotrophy was achieved by mutating a house keeping gene, hemA, that encodes for glutamyl-tRNA reductase, an important enzyme in the C5 pathway for delta-aminolevulenic acid (ALA) biosynthesis, which renders this strain dependent on exogenous ALA for survival. Experiments using the infant mouse and adult rabbit models show that VCUSM2 is a good colonizer of the small intestine and elicits greater than a four-fold rise in vibriocidal antibodies in vaccinated rabbits. Rabbits vaccinated with VCUSM2 were fully protected against subsequent challenge with 1 x 10(11) CFU of the virulent wild type (WT) strain. Experiments using ligated ileal loops of rabbits show that VCUSM2 is 2.5-fold less toxic at the dose of 1 x 10(6) CFU compared to the WT strain. Shedding of VCUSM2 in rabbits were found to occur for no longer than 4 days and its maximum survival rate in environmental waters is 8 days compared to the greater than 20 days for the WT strain. VCUSM2 is thus a potential vaccine candidate against infection by V. cholerae O139.
    Matched MeSH terms: Vibrio cholerae O139/genetics; Vibrio cholerae O139/growth & development; Vibrio cholerae O139/immunology*
  4. Vengadesh, L., Son, R., Yoke-Kqueen, C.
    MyJurnal
    Vibrio cholerae still represents a significant threat to human health worldwide despite the advances in hygiene, consumer knowledge, food treatment and food processing. In Malaysia, statistics in year 2009 have shown that among the food and water borne diseases, food poisoning has the highest incidence rate of 36.17 per 100,000 populations and with a mortality rate of 0.01 per 100,000 populations. In this study, 22 seafood samples comprising of fish, squid, crustacean and mollusks purchased from wet market and supermarket were analyzed. The Most Probable Number (MPN) and real time PCR was used to enumerate the Vibrio cholerae in seafood sample. The results showed that MPN-real time PCR of the samples from wet market had a maximum of >1100 MPN/g compare to 93 MPN/g enumerated from the MPN plate. The MPN-real time PCR in the samples from supermarket indicated 290 MPN/g as compared to 240 MPN/g enumerated from the MPN plate. The standard curves showed that there was a good linear correlation between the Ct values. The minimum level of detection of Vibrio cholerae standard DNA at targeted gene was 3 x 10-5 ng/μl.
    Matched MeSH terms: Vibrio cholerae
  5. Low KF, Karimah A, Yean CY
    Biosens Bioelectron, 2013 Sep 15;47:38-44.
    PMID: 23545172 DOI: 10.1016/j.bios.2013.03.004
    Vibrio cholerae is a human pathogen that causes mild to severe diarrheal illnesses and has major public health significance. Herein, we present a thermostabilized electrochemical genosensing assay combining the use of magnetic beads as a biorecognition platform and gold nanoparticles as a hybridization tag for the detection and quantification of V. cholerae lolB gene single-stranded asymmetric PCR amplicons as an alternative to the time-consuming classical isolation method. This thermostabilized, pre-mixed, pre-aliquoted and ready-to-use magnetogenosensing assay simplified the procedures and permitted the reaction to be conducted at room temperature. The asymmetric PCR amplicons were hybridized to a magnetic bead-functionalized capture probe and a fluorescein-labeled detection probe followed by tagging with gold nanoparticles. Electrochemical detection of the chemically dissolved gold nanoparticles was performed using the differential pulse anodic stripping voltammetry method. The real-time stability evaluation of thermostabilized assay was found to be stable for at least 180 days at room temperature (25-30°C). The analytical specificity of the assay was 100%, while its analytical sensitivity was linearly related to different concentrations of 200-mer synthetic target, purified genomic DNA, and bacterial culture with a limit of detection (LoD) of 3.9nM, 5pg/µl, and 10(3)CFU/ml, respectively. The clinical applicability of the assay was successfully validated using spiked stool samples with an average current signal-to-cut-off ratio of 10.8. Overall, the precision of the assay via relative standard deviation was <10%, demonstrating its reliability and accuracy.
    Matched MeSH terms: Vibrio cholerae/genetics*; Vibrio cholerae/isolation & purification
  6. Ang GY, Yu CY, Yean CY
    Biosens Bioelectron, 2012 Oct-Dec;38(1):151-6.
    PMID: 22705404 DOI: 10.1016/j.bios.2012.05.019
    In the field of diagnostics, molecular amplification targeting unique genetic signature sequences has been widely used for rapid identification of infectious agents, which significantly aids physicians in determining the choice of treatment as well as providing important epidemiological data for surveillance and disease control assessment. We report the development of a rapid nucleic acid lateral flow biosensor (NALFB) in a dry-reagent strip format for the sequence-specific detection of single-stranded polymerase chain reaction (PCR) amplicons at ambient temperature (22-25°C). The NALFB was developed in combination with a linear-after-the-exponential PCR assay and the applicability of this biosensor was demonstrated through detection of the cholera toxin gene from diarrheal-causing toxigenic Vibrio cholerae. Amplification using the advanced asymmetric PCR boosts the production of fluorescein-labeled single-stranded amplicons, allowing capture probes immobilized on the NALFB to hybridize specifically with complementary targets in situ on the strip. Subsequent visual formation of red lines is achieved through the binding of conjugated gold nanoparticles to the fluorescein label of the captured amplicons. The visual detection limit observed with synthetic target DNA was 0.3 ng and 1 pg with pure genomic DNA. Evaluation of the NALFB with 164 strains of V. cholerae and non-V. cholerae bacteria recorded 100% for both sensitivity and specificity. The whole procedure of the low-cost NALFB, which is performed at ambient temperature, eliminates the need for preheated buffers or additional equipment, greatly simplifying the protocol for sequence-specific PCR amplicon analysis.
    Matched MeSH terms: Vibrio cholerae/genetics*; Vibrio cholerae/isolation & purification
  7. Yu CY, Ang GY, Yean CY
    Chem Commun (Camb), 2013 Mar 11;49(20):2019-21.
    PMID: 23370051 DOI: 10.1039/c3cc39144b
    We developed a multiplex enzyme-based electrochemical genosensor for sequence-specific detection of multiplex linear-after-the-exponential-PCR amplicons that targeted toxigenic Vibrio cholerae O1 and O139 using novel screen-printed gold electrode bisensors.
    Matched MeSH terms: Vibrio cholerae O1/genetics; Vibrio cholerae O1/isolation & purification*; Vibrio cholerae O139/genetics; Vibrio cholerae O139/isolation & purification*
  8. Al-Fendi A, Shueb RH, Ravichandran M, Yean CY
    J Basic Microbiol, 2014 Oct;54(10):1036-43.
    PMID: 24532381 DOI: 10.1002/jobm.201300458
    Water samples from a variety of sources in Kelantan, Malaysia (lakes, ponds, rivers, ditches, fish farms, and sewage) were screened for the presence of bacteriophages infecting Vibrio cholerae. Ten strains of V. cholerae that appeared to be free of inducible prophages were used as the host strains. Eleven bacteriophage isolates were obtained by plaque assay, three of which were lytic and further characterized. The morphologies of the three lytic phages were similar with each having an icosahedral head (ca. 50-60 nm in diameter), a neck, and a sheathed tail (ca. 90-100 nm in length) characteristic of the family Myoviridae. The genomes of the lytic phages were indistinguishable in length (ca. 33.5 kb), nuclease sensitivity (digestible with DNase I, but not RNase A or S1 nuclease), and restriction enzyme sensitivity (identical banding patterns with HindIII, no digestion with seven other enzymes). Testing for infection against 46 strains of V. cholerae and 16 other species of enteric bacteria revealed that all three isolates had a narrow host range and were only capable of infecting V. cholerae O1 El Tor Inaba. The similar morphologies, indistinguishable genome characteristics, and identical host ranges of these lytic isolates suggests that they represent one phage, or several very closely related phages, present in different water sources. These isolates are good candidates for further bio-phage-control studies.
    Matched MeSH terms: Vibrio cholerae O1/virology*
  9. Low KF, Zain ZM, Yean CY
    Biosens Bioelectron, 2017 Jan 15;87:256-263.
    PMID: 27567251 DOI: 10.1016/j.bios.2016.08.064
    A novel enzyme/nanoparticle-based DNA biosensing platform with dual colorimetric/electrochemical approach has been developed for the sequence-specific detection of the bacterium Vibrio cholerae, the causative agent of acute diarrheal disease in cholera. This assay platform exploits the use of shelf-stable and ready-to-use (shelf-ready) reagents to greatly simplify the bioanalysis procedures, allowing the assay platform to be more amenable to point-of-care applications. To assure maximum diagnosis reliability, an internal control (IC) capable of providing instant validation of results was incorporated into the assay. The microbial target, single-stranded DNA amplified with asymmetric PCR, was quantitatively detected via electrochemical stripping analysis of gold nanoparticle-loaded latex microspheres as a signal-amplified hybridization tag, while the incorporated IC was analyzed using a simplified horseradish peroxidase enzyme-based colorimetric scheme by simple visual observation of enzymatic color development. The platform showed excellent diagnostic sensitivity and specificity (100%) when challenged with 145 clinical isolate-spiked fecal specimens. The limits of detection were 0.5ng/ml of genomic DNA and 10 colony-forming units (CFU)/ml of bacterial cells with dynamic ranges of 0-100ng/ml (R(2)=0.992) and log10 (1-10(4) CFU/ml) (R(2)=0.9918), respectively. An accelerated stability test revealed that the assay reagents were stable at temperatures of 4-37°C, with an estimated ambient shelf life of 200 days. The versatility of the biosensing platform makes it easily adaptable for quantitative detection of other microbial pathogens.
    Matched MeSH terms: Vibrio cholerae/genetics; Vibrio cholerae/isolation & purification*
  10. Engku Nur Syafirah EAR, Nurul Najian AB, Foo PC, Mohd Ali MR, Mohamed M, Yean CY
    Acta Trop, 2018 Jun;182:223-231.
    PMID: 29545156 DOI: 10.1016/j.actatropica.2018.03.004
    Cholera, caused by Vibrio cholerae is a foodborne disease that frequently reported in food and water related outbreak. Rapid diagnosis of cholera infection is important to avoid potential spread of disease. Among available diagnostic platforms, loop-mediated isothermal amplification (LAMP) is regarded as a potential diagnostic tool due to its rapidity, high sensitivity and specificity and independent of sophisticated thermalcycler. However, the current LAMP often requires multiple pipetting steps, hence is susceptible to cross contamination. Besides, the strict requirement of cold-chain during transportation and storage make its application in low resource settings to be inconvenient. To overcome these problems, the present study is aimed to develop an ambient-temperature-stable and ready-to-use LAMP assay for the detection of toxigenic Vibrio cholerae in low resource settings. A set of specific LAMP primers were designed and tested against 155 V. cholerae and non-V. cholerae strains. Analytical specifity showed that the developed LAMP assay detected 100% of pathogenic V. cholerae and did not amplified other tested bacterial strains. Upon testing against stool samples spiked with toxigenic V. cholerae outbreak isolates, the LAMP assay detected all of the spiked samples (n = 76/76, 100%), in contrast to the conventional PCR which amplified 77.6% (n = 59/76) of the tested specimens. In term of sensitivity, the LAMP assay was 100-fold more sensitive as compared to the conventional PCR method, with LOD of 10 fg per μL and 10 CFU per mL. Following lyophilisation with addition of lyoprotectants, the dry-reagent LAMP mix has an estimated shelf-life of 90.75 days at room temperature.
    Matched MeSH terms: Vibrio cholerae/isolation & purification*
  11. Ang GY, Yu CY, Balqis K, Elina HT, Azura H, Hani MH, et al.
    J Clin Microbiol, 2010 Nov;48(11):3963-9.
    PMID: 20826646 DOI: 10.1128/JCM.01086-10
    A total of 20 Vibrio cholerae isolates were recovered for investigation from a cholera outbreak in Kelantan, Malaysia, that occurred between November and December 2009. All isolates were biochemically characterized as V. cholerae serogroup O1 Ogawa of the El Tor biotype. They were found to be resistant to multiple antibiotics, including tetracycline, erythromycin, sulfamethoxazole-trimethoprim, streptomycin, penicillin G, and polymyxin B, with 35% of the isolates being resistant to ampicillin. All isolates were sensitive to ciprofloxacin, norfloxacin, chloramphenicol, gentamicin, and kanamycin. Multiplex PCR analysis confirmed the biochemical identification and revealed the presence of virulence genes, viz., ace, zot, and ctxA, in all of the isolates. Interestingly, the sequencing of the ctxB gene showed that the outbreak strain harbored the classical cholera toxin gene and therefore belongs to the newly assigned El Tor variant biotype. Clonal analysis by pulsed-field gel electrophoresis demonstrated that a single clone of a V. cholerae strain was responsible for this outbreak. Thus, we present the first molecular evidence that the toxigenic V. cholerae O1 El Tor variant has invaded Malaysia, highlighting the need for continuous monitoring to facilitate early interventions against any potential epidemic by this biotype.
    Matched MeSH terms: Vibrio cholerae O1/classification*; Vibrio cholerae O1/genetics; Vibrio cholerae O1/isolation & purification; Vibrio cholerae O1/pathogenicity*
  12. Choo SW, Heydari H, Tan TK, Siow CC, Beh CY, Wee WY, et al.
    ScientificWorldJournal, 2014;2014:569324.
    PMID: 25243218 DOI: 10.1155/2014/569324
    To facilitate the ongoing research of Vibrio spp., a dedicated platform for the Vibrio research community is needed to host the fast-growing amount of genomic data and facilitate the analysis of these data. We present VibrioBase, a useful resource platform, providing all basic features of a sequence database with the addition of unique analysis tools which could be valuable for the Vibrio research community. VibrioBase currently houses a total of 252 Vibrio genomes developed in a user-friendly manner and useful to enable the analysis of these genomic data, particularly in the field of comparative genomics. Besides general data browsing features, VibrioBase offers analysis tools such as BLAST interfaces and JBrowse genome browser. Other important features of this platform include our newly developed in-house tools, the pairwise genome comparison (PGC) tool, and pathogenomics profiling tool (PathoProT). The PGC tool is useful in the identification and comparative analysis of two genomes, whereas PathoProT is designed for comparative pathogenomics analysis of Vibrio strains. Both of these tools will enable researchers with little experience in bioinformatics to get meaningful information from Vibrio genomes with ease. We have tested the validity and suitability of these tools and features for use in the next-generation database development.
    Matched MeSH terms: Vibrio/genetics*
  13. Chapman HC, Lacey LA, Yap HH
    J Am Mosq Control Assoc, 1987 Jun;3(2):306-8.
    PMID: 2904951
    Matched MeSH terms: Vibrio/isolation & purification
  14. JIAZHEN LIM, YANG LEE, BADIOZAMAN SULAIMAN, LESLEY MAURICE BILUNG, YEE LING CHONG
    MyJurnal
    The epidermal mucus of fish contains antimicrobial agents that act as biological defence against disease. This study aims to identify antibacterial activity and protein concentration of epidermal mucus of Barbodes everetti, a Bornean endemic freshwater fish. The epidermal mucus was extracted with 3% acetic acid, 0.85% sodium chloride and crude solvents. The mucus activity against eight strains of human pathogenic bacteria, including Bacillus cereus ATCC 33019, Escherichia coli O157:H7, Listeria monocytogenes ATCC 7644, Pseudomonas aeruginosa ATCC 27853, Salmonella braenderup ATCC BAA 664, Salmonella typhimurium, Staphylococcus aureus ATCC 25933, and Vibrio cholerae, were tested. The acetic acid mucus extract of B. everetti was able to inhibit five strains of bacteria and show no activity toward E. coli O157:H7, B. cereus ATCC 33019 and L. monocytogenes ATCC 7644. Moreover, the highest protein concentration was quantified in crude extract, followed by aqueous and acetic acid extracts. This study provides a preliminary knowledge on the activity of epidermal mucus of B. everetti towards five out of the eight human pathogens tested, therefore it may contain potential sources of novel antibacterial components which could be further extracted for the production of natural antibiotics towards human-related pathogenic bacteria.
    Matched MeSH terms: Vibrio cholerae
  15. Dutt AK, Alwi S, Velauthan T
    Trans R Soc Trop Med Hyg, 1971;65(6):815-8.
    PMID: 5157442
    Matched MeSH terms: Vibrio/isolation & purification
  16. Yaacob EN, De Geest BG, Goethals J, Bajek A, Dierckens K, Bossier P, et al.
    Vet Immunol Immunopathol, 2018 Oct;204:19-27.
    PMID: 30596377 DOI: 10.1016/j.vetimm.2018.09.001
    Vibrio anguillarum causes high mortality in European sea bass (Dicentrarchus labrax) larviculture. In this study, we evaluated if the recombinant sea bass ferritin-H could stimulate the innate immune system of gnotobiotic European sea bass larvae resulting in protection against a V. anguillarum challenge. We also evaluated the effect of a V. anguillarum infection on the transcription of immune-related genes in gnotobiotic European sea bass larvae. Recombinant sea bass ferritin-H was produced, encapsulated in calcium alginate microparticles and orally delivered to sea bass larvae at seven days after hatching. Our results showed V. anguillarum caused an acute infection, resulting in high mortality. The infection significantly upregulated the expression of tlr3, tlr5, cas1, il1β, tnfα, mif, il10, cc1, cxcl8 at 18, 24 and 36 h post infection, but not of the chemokine receptor genes cxcr4 and ccr9. There was no protective effect of ferritin-H. Remarkably, ferritin-H caused significantly higher transcript levels for cxcr4 and ccr9. Sea bass ferritin-H was more likely involved in immune-suppression and results point in the direction of a negative regulation of CXCR4 resulting in inhibition of cell proliferation, differentiation and migration which is detrimental to innate immunity and might explain the non-protective effect of ferritin-H in fish larvae.
    Matched MeSH terms: Vibrio/immunology*; Vibrio Infections/immunology; Vibrio Infections/prevention & control; Vibrio Infections/veterinary*
  17. Kamada T, Phan CS, Vairappan CS
    Nat Prod Res, 2019 Feb;33(4):464-471.
    PMID: 29092618 DOI: 10.1080/14786419.2017.1396593
    Three new halogenated tricyclic sesquiterpenes, omphalaurediol (1), rhodolaurenones B (2) and C (3) were isolated together with nine known haloganated sesquiterpenes such as rhodolaurenone A (4), rhodolaureol (5), isorhodolaureol (6), (-)-laurencenone D (7), elatol (8), (+)-deschloroelatol (9), cartilagineol (10), (+)-laurencenone B (11) and 2-chloro-3-hydroxy-α-chamigren-9-one (12) from a population of Bornean red algae Laurencia majuscula. The structures of three new metabolites were determined based on their spectroscopic data (IR, 1D and 2D NMR, and MS). These compounds showed antibacterial activity against three human pathogenic bacteria (Escherichia coli, Salmonella typhi and Vibrio cholera).
    Matched MeSH terms: Vibrio cholerae/drug effects
  18. Iyer L, Vadivelu J
    Asia Pac J Public Health, 2006;18(3):33-41.
    PMID: 17153080
    The genetic diversity or clonality among Vibrio cholerae O1, O139 and non-O1/ non-O139 of clinical and environmental origin using ribotyping and PFGE was performed in order to ascertain the public health implications of the different genotypes circulating within the Malaysian environment. Using an in-house typing scheme, of the 214 strains included, 202 strains were isolated locally between 1992 and 1998, seven were obtained from Bangladesh and five were reference strains. Amongst the 176 El Tor O1 strains, 152 clinical strains demonstrated five ribotypes--E1a, E1b, E2a, E3 and E1c. E1b was the most predominant ribotype demonstrated by 84% of the El Tor O1 strains and was present in all years demonstrating that this strain was intrinsic to Malaysia. PFGE analysis of these strains demonstrated minimal variation amongst the 15 PFGE profiles obtained. Ribotpye E2a amongst five clinical and two environmental O1 strains, were from one location and had previously been reported in Indonesia and the Philippines, thus demonstrating strong evidence that these strains may have been imported into Malaysia. Among Vibrio cholerae O139 strains, 91.7% were of ribotype A1a similar to the original O139, while two others were of ribotype A1b and one of A1e, corresponding to ribotypes 1, 2 and 3 of Dalsgaard and colleagues' scheme for O139 strains. PFGE analysis demonstrated that 89% of ribotype A1a could be differentiated into three PFGE genotypes which were very closely related. The eight non-O1/non-O139 serogroup strains were heterogeneous in both ribotype and PFGE patterns.
    Matched MeSH terms: Vibrio cholerae/classification; Vibrio cholerae/genetics*; Vibrio cholerae/isolation & purification
  19. Ling, S., Noramirah, R., Abidatul, A.A., Nurfarhanah, N.M.J., Noor-Azira, A.M., Jambari, N.N., et al.
    Food Research, 2018;2(3):240-246.
    MyJurnal
    Foodborne illness is a global burden that impacts a country politically, economically and
    socio-economically. The severity of the burden can be unmeasurable as foodborne illness
    is often an underestimated problem. In order to enlighten the burden, appropriate food
    safety control measures should be taken. This study aimed to optimize a multiplex
    Polymerase Chain Reaction (mPCR) detection method to identify foodborne pathogens
    simultaneously. Six foodborne pathogens namely, Salmonella spp., Escherichia coli O157,
    Vibrio parahaemolyticus, Vibrio cholerae, Listeria monocytogenes and Campylobacter
    spp., were targeted in the mPCR detection method. Each mPCR parameter was tested and
    the outcome was analysed to obtain a successful mPCR protocol to detect the targeted
    foodborne pathogens. The amplified PCR products showed that the optimized mPCR
    protocol will be a potential rapid diagnostic tool in foodborne pathogen detection.
    Matched MeSH terms: Vibrio cholerae; Vibrio parahaemolyticus
  20. Ummu SF, Ding CH, Wahab AA, Tzar MN
    Trop Biomed, 2023 Jun 01;40(2):170-173.
    PMID: 37650403 DOI: 10.47665/tb.40.2.007
    Vibrio cholerae is a gram-negative bacterium synonymous with its namesake disease, cholera. Thus, gastrointestinal symptoms are the norm and V. cholerae is very rarely associated with skin and soft tissue infections. We describe a case of a 63-year-old Chinese woman with multiple medical comorbidities on corticosteroid therapy who developed fever and a painful swelling on her left leg after being pricked by a branch while gardening. There was no abdominal pain, vomiting or diarrhea. A diagnosis of bullous cellulitis was made clinically, and blood was sent for bacteriological culture. A beta-hemolytic commashaped gram-negative bacillus was isolated from the blood. It was also oxidase-positive and produced an acid/alkaline (A/K) reaction on triple sugar iron agar. It was identified biochemically as Vibrio cholerae. After additional testing, it was found to be of the O1 serogroup and Ogawa serotype. The infection resolved following a 10-day course of high-dose co-trimoxazole therapy.
    Matched MeSH terms: Vibrio cholerae O1*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links