Displaying publications 1 - 20 of 86 in total

Abstract:
Sort:
  1. Seyedi SS, Shukri M, Hassandarvish P, Oo A, Shankar EM, Abubakar S, et al.
    Sci Rep, 2016 Apr 13;6:24027.
    PMID: 27071308 DOI: 10.1038/srep24027
    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya infection in humans. Despite the widespread distribution of CHIKV, no antiviral medication or vaccine is available against this virus. Therefore, it is crucial to find an effective compound to combat CHIKV. We aimed to predict the possible interactions between non-structural protein 3 (nsP) of CHIKV as one of the most important viral elements in CHIKV intracellular replication and 3 potential flavonoids using a computational approach. The 3-dimensional structure of nsP3 was retrieved from the Protein Data Bank, prepared and, using AutoDock Vina, docked with baicalin, naringenin and quercetagetin as ligands. The first-rated ligand with the strongest binding affinity towards the targeted protein was determined based on the minimum binding energy. Further analysis was conducted to identify both the active site of the protein that reacts with the tested ligands and all of the existing intermolecular bonds. Compared to the other ligands, baicalin was identified as the most potential inhibitor of viral activity by showing the best binding affinity (-9.8 kcal/mol). Baicalin can be considered a good candidate for further evaluation as a potentially efficient antiviral against CHIKV.
    Matched MeSH terms: Viral Nonstructural Proteins/metabolism; Viral Nonstructural Proteins/chemistry*
  2. Rothan HA, Mohamed Z, Paydar M, Rahman NA, Yusof R
    Arch Virol, 2014 Apr;159(4):711-8.
    PMID: 24142271 DOI: 10.1007/s00705-013-1880-7
    Doxycycline is an antibiotic derived from tetracycline that possesses antimicrobial and anti-inflammatory activities. Antiviral activity of doxycycline against dengue virus has been reported previously; however, its anti-dengue properties need further investigation. This study was conducted to determine the potential activity of doxycycline against dengue virus replication in vitro. Doxycycline inhibited the dengue virus serine protease (DENV2 NS2B-NS3pro) with an IC50 value of 52.3 ± 6.2 μM at 37 °C (normal human temperature) and 26.7 ± 5.3 μM at 40 °C (high fever temperature). The antiviral activity of doxycycline was first tested at different concentrations against DENV2 using a plaque-formation assay. The virus titter decreased significantly after applying doxycycline at levels lower than its 50 % cytotoxic concentration (CC50, 100 μM), showing concentration-dependent inhibition with a 50 % effective concentration (EC50) of approximately 50 μM. Doxycycline significantly inhibited viral entry and post-infection replication of the four dengue serotypes, with serotype-specific inhibition (high activity against DENV2 and DENV4 compared to DENV1 and DENV3). Collectively, these findings underline the need for further experimental and clinical studies on doxycycline, utilizing its anti-dengue and anti-inflammatory activities to attenuate the clinical symptoms of dengue virus infection.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors
  3. Rothan HA, Mohamed Z, Suhaeb AM, Rahman NA, Yusof R
    OMICS, 2013 Nov;17(11):560-7.
    PMID: 24044366 DOI: 10.1089/omi.2013.0056
    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors; Viral Nonstructural Proteins/metabolism
  4. Rothan HA, Zulqarnain M, Ammar YA, Tan EC, Rahman NA, Yusof R
    Trop Biomed, 2014 Jun;31(2):286-96.
    PMID: 25134897 MyJurnal
    Dengue virus infects millions of people worldwide and there is no vaccine or anti-dengue therapeutic available. Screening large numbers of medicinal plants for anti-dengue activities is an alternative strategy in order to find the potent therapeutic compounds. Therefore, this study was designed to identify anti-dengue activities in nineteen medicinal plant extracts that are used in traditional medicine. Local medicinal plants Vernonia cinerea, Hemigraphis reptans, Hedyotis auricularia, Laurentia longiflora, Tridax procumbers and Senna angustifolia were used in this study. The highest inhibitory activates against dengue NS2B-NS3pro was observed in ethanolic extract of S. angustifolia leaves, methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems. These findings were further verified by in vitro viral inhibition assay. Methanolic extract of V. cinerea leaves, ethanol extract of T. procumbens stems and at less extent ethanolic extract of S. angustifolia leaves were able to maintain the normal morphology of DENV2-infected Vero cells without causing much cytopathic effects (CPE). The percentage of viral inhibition of V. cinerea and T. procumbens extracts were significantly higher than S. angustifolia extract as measured by plaque formation assay and RT-qPCR. In conclusion, The outcome of this study showed that the methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems possessed high inhibitory activates against dengue virus that worth more investigation.
    Matched MeSH terms: Viral Nonstructural Proteins/metabolism*
  5. Rothan HA, Bahrani H, Mohamed Z, Abd Rahman N, Yusof R
    PLoS One, 2014;9(4):e94561.
    PMID: 24722532 DOI: 10.1371/journal.pone.0094561
    Dengue virus (DENV) broadly disseminates in tropical and sub-tropical countries and there are no vaccine or anti-dengue drugs available. DENV outbreaks cause serious economic burden due to infection complications that requires special medical care and hospitalization. This study presents a new strategy for inexpensive production of anti-DENV peptide-fusion protein to prevent and/or treat DENV infection. Antiviral cationic peptides protegrin-1 (PG1) and plectasin (PLSN) were fused with MAP30 protein to produce recombinant antiviral peptide-fusion protein (PG1-MAP30-PLSN) as inclusion bodies in E. coli. High yield production of PG1-MAP30-PLSN protein was achieved by solubilization of inclusion bodies in alkaline buffer followed by the application of appropriate refolding techniques. Antiviral PG1-MAP30-PLSN protein considerably inhibited DENV protease (NS2B-NS3pro) with half-maximal inhibitory concentration (IC50) 0.5±0.1 μM. The real-time proliferation assay (RTCA) and the end-point proliferation assay (MTT assay) showed that the maximal-nontoxic dose of the peptide-fusion protein against Vero cells is approximately 0.67±0.2 μM. The cell-based assays showed considerable inhibition of the peptide-fusion protein against binding and proliferating stages of DENV2 into the target cells. The peptide-fusion protein protected DENV2-challeged mice with 100% of survival at the dose of 50 mg/kg. In conclusion, producing recombinant antiviral peptide-fusion protein by combining short antiviral peptide with a central protein owning similar activity could be useful to minimize the overall cost of short peptide production and take advantage of its synergistic antiviral activities.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors; Viral Nonstructural Proteins/metabolism
  6. Rothan HA, Abdulrahman AY, Sasikumer PG, Othman S, Rahman NA, Yusof R
    J Biomed Biotechnol, 2012;2012:251482.
    PMID: 23093838 DOI: 10.1155/2012/251482
    Dengue diseases have an economic as well as social burden worldwide. In this study, the antiviral activity of protegrin-1 (PG-1, RGGRLCYCRRRFCVCVGR) peptide towards dengue NS2B-NS3pro and viral replication in Rhesus monkey kidney (MK2) cells was investigated. The peptide PG-1 was synthesized by solid-phase peptide synthesis, and disulphide bonds formation followed by peptide purification was confirmed by LC-MS and RPHPLC. Dengue NS2B-NS3pro was produced as a single-chain recombinant protein in E. coli. The NS2B-NS3pro assay was carried out by measuring the florescence emission of catalyzed substrate. Real-time PCR was used to evaluate the inhibition potential of PG-1 towards dengue serotype-2 (DENV-2) replication in MK2 cells. The results showed that PG-1 inhibited dengue NS2B-NS3pro at IC(50) of 11.7 μM. The graded concentrations of PG-1 at nontoxic range were able to reduce viral replication significantly (P < 0.001) at 24, 48, and 72 hrs after viral infection. However, the percentage of inhibition was significantly (P < 0.01) higher at 24 hrs compared to 48 and 72 hrs. These data show promising therapeutic potential of PG-1 against dengue infection, hence it warrants further analysis and improvement of the peptide features as a prospective starting point for consideration in designing attractive dengue virus inhibitors.
    Matched MeSH terms: Viral Nonstructural Proteins/metabolism*
  7. Panya A, Songprakhon P, Panwong S, Jantakee K, Kaewkod T, Tragoolpua Y, et al.
    Molecules, 2021 May 23;26(11).
    PMID: 34071102 DOI: 10.3390/molecules26113118
    Dengue virus (DENV) infection causes mild to severe illness in humans that can lead to fatality in severe cases. Currently, no specific drug is available for the treatment of DENV infection. Thus, the development of an anti-DENV drug is urgently required. Cordycepin (3'-deoxyadenosine), which is a major bioactive compound in Cordyceps (ascomycete) fungus that has been used for centuries in Chinese traditional medicine, was reported to exhibit antiviral activity. However, the anti-DENV activity of cordycepin is unknown. We hypothesized that cordycepin exerts anti-DENV activity and that, as an adenosine derivative, it inhibits DENV replication. To test this hypothesis, we investigated the anti-DENV activity of cordycepin in DENV-infected Vero cells. Cordycepin treatment significantly decreased DENV protein at a half-maximal effective concentration (EC50) of 26.94 μM. Moreover, DENV RNA was dramatically decreased in cordycepin-treated Vero cells, indicating its effectiveness in inhibiting viral RNA replication. Via in silico molecular docking, the binding of cordycepin to DENV non-structural protein 5 (NS5), which is an important enzyme for RNA synthesis, at both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, was predicted. The results of this study demonstrate that cordycepin is able to inhibit DENV replication, which portends its potential as an anti-dengue therapy.
    Matched MeSH terms: Viral Nonstructural Proteins/metabolism
  8. Tan TS, Syed Hassan S, Yap WB
    Lett Appl Microbiol, 2017 Jun;64(6):446-451.
    PMID: 28370088 DOI: 10.1111/lam.12738
    The study aimed to construct a recombinant Lactobacillus casei expressing the nonstructural (NS) 1 protein of influenza A virus H5N1 on its cell wall. The NS1 gene was first amplified and fused to the pSGANC332 expression plasmid. The NS1 protein expression was carried out by Lact. casei strain C1. PCR screening and DNA sequencing confirmed the presence of recombinant pSG-NS1-ANC332 plasmid in Lact. casei. The plasmid was stably maintained (98·94 ± 1·65%) by the bacterium within the first 20 generations without selective pressure. The NS1 was expressed as a 49-kDa protein in association with the anchoring peptide. The yield was 1·325 ± 0·065 μg mg(-1) of bacterial cells. Lactobacillus casei expressing the NS1 on its cell wall was red-fluorescently stained, but the staining was not observed on Lact. casei carrying the empty pSGANC332. The results implied that Lact. casei strain C1 is a promising host for the expression of surface-bound NS1 protein using the pSGANC332 expression plasmid.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The study has demonstrated, for the first time, the expression of nonstructural 1 (NS1) protein of influenza A virus H5N1 on the cell wall of Lactobacillus casei using the pSGANC332 expression plasmid. Display of NS1 protein on the bacterial cell wall was evident under an immunofluorescence microscopic observation. Lactobacillus casei carrying the NS1 protein could be developed into a universal oral influenza vaccine since the NS1 is highly conserved among influenza viruses.

    Matched MeSH terms: Viral Nonstructural Proteins/genetics; Viral Nonstructural Proteins/metabolism*
  9. Jiang H, Bai L, Ji L, Bai Z, Su J, Qin T, et al.
    J Virol, 2020 07 16;94(15).
    PMID: 32461319 DOI: 10.1128/JVI.00294-20
    Japanese encephalitis virus (JEV) infection alters microRNA (miRNA) expression in the central nervous system (CNS). However, the mechanism contributing to miRNA regulation in the CNS is not known. We discovered global degradation of mature miRNA in mouse brains and neuroblastoma (NA) cells after JEV infection. Integrative analysis of miRNAs and mRNAs suggested that several significantly downregulated miRNAs and their targeted mRNAs were clustered into an inflammation pathway. Transfection with miRNA 466d-3p (miR-466d-3p) decreased interleukin-1β (IL-1β) expression and inhibited JEV replication in NA cells. However, miR-466d-3p expression increased after JEV infection in the presence of cycloheximide, indicating that viral protein expression reduced miR-466d-3p expression. We generated all the JEV coding proteins and demonstrated NS3 helicase protein to be a potent miRNA suppressor. The NS3 proteins of Zika virus, West Nile virus, and dengue virus serotype 1 (DENV-1) and DENV-2 also decreased miR-466d-3p expression. Results from helicase-blocking assays and in vitro unwinding assays demonstrated that NS3 could unwind pre-miR-466d and induce miRNA dysfunction. Computational models and an RNA immunoprecipitation assay revealed arginine-rich domains of NS3 to be crucial for pre-miRNA binding and degradation of host miRNAs. Importantly, site-directed mutagenesis of conserved residues in NS3 revealed that R226G and R202W reduced the binding affinity and degradation of pre-miR-466d. These results expand the function of flavivirus helicases beyond unwinding duplex RNA to degrade pre-miRNAs. Hence, we revealed a new mechanism for NS3 in regulating miRNA pathways and promoting neuroinflammation.IMPORTANCE Host miRNAs have been reported to regulate JEV-induced inflammation in the CNS. We found that JEV infection could reduce expression of host miRNA. The helicase region of the NS3 protein bound specifically to miRNA precursors and could lead to incorrect unwinding of miRNA precursors, thereby reducing the expression of mature miRNAs. This observation led to two major findings. First, our results suggested that JEV NS3 protein induced miR-466d-3p degradation, which promoted IL-1β expression and JEV replication. Second, arginine molecules on NS3 were the main miRNA-binding sites, because we demonstrated that miRNA degradation was abolished if arginines at R226 and R202 were mutated. Our study provides new insights into the molecular mechanism of JEV and reveals several amino acid sites that could be mutated for a JEV vaccine.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics; Viral Nonstructural Proteins/metabolism*
  10. Shirako Y, Yamaguchi Y
    J Gen Virol, 2000 May;81(Pt 5):1353-60.
    PMID: 10769079
    Sagiyama virus (SAG) is a member of the genus Alphavirus in the family Togaviridae, isolated in Japan from mosquitoes in 1956. We determined the complete nucleotide sequence of the SAG genomic RNA from the original stock virus which formed a mixture of plaques with different sizes, and that from a full-length cDNA clone, pSAG2, infectious RNA transcripts from which formed uniform large plaques on BHK-21 cells. The SAG genome was 11698 nt in length exclusive of the 3' poly(A) tail. Between the complete nucleotide sequences of the full-length cDNA clone, pSAG2, and the consensus sequence from the original stock virus, there were nine amino acid differences; two each in nsP1, nsP2 and E1, and three in E2, some of which may be responsible for plaque phenotypic variants in the original virus stock. SAG was most closely related to Ross River virus among other alphaviruses fully sequenced, with amino acid sequence identities of 86% in the nonstructural proteins and of 83% in the structural proteins. The 3' terminal 280 nt region of SAG was 82% identical to that of Barmah Forest virus, which was otherwise not closely related to SAG. Comparison of the nucleotide sequence of SAG with partial nucleotide sequences of Getah virus (GET), which was originally isolated in Malaysia in 1955 and is closely related to SAG in serology and in biology, showed near identity between the two viruses, suggesting that SAG is a strain of GET.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics
  11. Sam JE, Gee TS, Wahab NA
    Asian J Neurosurg, 2018 3 2;13(1):56-58.
    PMID: 29492121 DOI: 10.4103/1793-5482.185056
    Dengue fever has been a major cause of morbidity and mortality in subtropical and tropical countries. We report a rare case of severe dengue with spontaneous intracranial hemorrhage. A search of literature through PubMed revealed that the largest series analyzed so far only included five cases. A 47-year-old man presented with 7 days history of fever, headache, myalgia, and vomiting with hematemesis. On the day of presentation, he had reduced consciousness and an episode of generalized tonic-clonic seizure. His Glasgow Coma Scale was E1V1M3 with anisocoria. Postresuscitation computed tomography of the brain revealed a right subdural and left thalamic hemorrhage. His blood investigations revealed thrombocytopenia, dengue virus type 1 nonstructural protein antigen test was positive, dengue IgM negative, and dengue IgG positive. A right decompressive craniectomy was done. Unfortunately, the patient died soon after. Spontaneous intracranial hemorrhage in patients with dengue fever is an uncommon entity but usually carry a grave prognosis. To date, there has been no clear management guideline for such cases, as both operative and nonoperative approaches have their own inherent risks.
    Matched MeSH terms: Viral Nonstructural Proteins
  12. Hariono M, Choi SB, Roslim RF, Nawi MS, Tan ML, Kamarulzaman EE, et al.
    PLoS One, 2019;14(1):e0210869.
    PMID: 30677071 DOI: 10.1371/journal.pone.0210869
    Dengue virus Type 2 (DENV-2) is predominant serotype causing major dengue epidemics. There are a number of studies carried out to find its effective antiviral, however to date, there is still no molecule either from peptide or small molecules released as a drug. The present study aims to identify small molecules inhibitor from National Cancer Institute database through virtual screening. One of the hits, D0713 (IC50 = 62 μM) bearing thioguanine scaffold was derivatised into 21 compounds and evaluated for DENV-2 NS2B/NS3 protease inhibitory activity. Compounds 18 and 21 demonstrated the most potent activity with IC50 of 0.38 μM and 16 μM, respectively. Molecular dynamics and MM/PBSA free energy of binding calculation were conducted to study the interaction mechanism of these compounds with the protease. The free energy of binding of 18 calculated by MM/PBSA is -16.10 kcal/mol compared to the known inhibitor, panduratin A (-11.27 kcal/mol), which corroborates well with the experimental observation. Results from molecular dynamics simulations also showed that both 18 and 21 bind in the active site and stabilised by the formation of hydrogen bonds with Asn174.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors
  13. Liew JWK, Selvarajoo S, Tan W, Ahmad Zaki R, Vythilingam I
    Infect Dis Poverty, 2019 Sep 03;8(1):71.
    PMID: 31477185 DOI: 10.1186/s40249-019-0584-y
    BACKGROUND: Dengue is a global disease, transmitted by the Aedes vectors. In 2018, there were 80 615 dengue cases with 147 deaths in Malaysia. Currently, the nationwide surveillance programs are dependent on Aedes larval surveys and notifications of lab-confirmed human infections. The existing, reactive programs appear to lack sensitivity and proactivity. More efficient dengue vector surveillance/control methods are needed.

    METHODS: A parallel, cluster, randomized controlled, interventional trial is being conducted for 18 months in Damansara Damai, Selangor, Malaysia, to determine the efficacy of using gravid oviposition sticky (GOS) trap and dengue non-structural 1 (NS1) antigen test for early surveillance of dengue among Aedes mosquitoes to reduce dengue outbreaks. Eight residential apartments were randomly assigned into intervention and control arms. GOS traps are set at the apartments to collect Aedes weekly, following which dengue NS1 antigen is detected in these mosquitoes. When a dengue-positive mosquito is detected, the community will be advised to execute vector search-and-destroy and protective measures. The primary outcome concerns the the percentage change in the (i) number of dengue cases and (ii) durations of dengue outbreaks. Whereas other outcome measures include the change in density threshold of Aedes and changes in dengue-related knowledge, attitude and practice among cluster inhabitants.

    DISCUSSION: This is a proactive and early dengue surveillance in the mosquito vector that does not rely on notification of dengue cases. Surveillance using the GOS traps should be able to efficiently provide sufficient coverage for multistorey dwellings where population per unit area is likely to be higher. Furthermore, trapping dengue-infected mosquitoes using the GOS trap, helps to halt the dengue transmission carried by the mosquito. It is envisaged that the results of this randomized controlled trial will provide a new proactive, cheap and targeted surveillance tool for the prevention and control of dengue outbreaks.

    TRIAL REGISTRATION: This is a parallel-cluster, randomized controlled, interventional trial, registered at ClinicalTrials.gov (ID: NCT03799237), on 8th January 2019 (retrospectively registered).

    Matched MeSH terms: Viral Nonstructural Proteins/analysis*
  14. Liew JWK, Selvarajoo S, Phang WK, Mah Hassan M, Redzuan MS, Selva Kumar S, et al.
    Acta Trop, 2021 Apr;216:105829.
    PMID: 33465350 DOI: 10.1016/j.actatropica.2021.105829
    The aim of this study is to investigate the feasibility and outcomes of using Gravid Oviposition Sticky (GOS) trap and dengue NS1 antigen tests for indoor and outdoor dengue/Aedes surveillance in the field. A one-year community-based study was carried out at Sungai Buloh Hospital Quarters, Selangor, Malaysia. GOS traps were first placed outdoors in three apartment blocks (Anggerik, Bunga Raya and Mawar). Beginning 29th week of the study, indoor traps were set in two apartment units on every floor in Anggerik. All female Aedes mosquitoes caught were tested for the presence of dengue NS1 antigen. Dengue seroprevalence and knowledge, attitude and practices on dengue prevention of the community and their reception to the surveillance approach were also assessed. Dengue-positive mosquitoes were detected at least 1 week before a dengue onset. More mosquitoes were caught indoors than outdoors in block Anggerik, but the total number of mosquitoes caught in all 3 blocks were similar. There was a significant difference in distribution of Ae. aegypti and Ae. albopictus between the 3 blocks. 66.1% and 3.4% of the community were positive for dengue IgG and IgM, respectively. Most respondents think that this surveillance method is Good (89%) and support its use nationwide. Dengue case ratio in the study apartment blocks decreased from year 2018 to 2019. This study demonstrated the practicality of performing proactive dengue/Aedes surveillance inside apartment units using the GOS traps. This surveillance method can be performed with immediate result output in the field.
    Matched MeSH terms: Viral Nonstructural Proteins/analysis*
  15. Lau SM, Chua TH, Sulaiman WY, Joanne S, Lim YA, Sekaran SD, et al.
    Parasit Vectors, 2017 Mar 21;10(1):151.
    PMID: 28327173 DOI: 10.1186/s13071-017-2091-y
    BACKGROUND: Dengue remains a serious public health problem in Southeast Asia and has increased 37-fold in Malaysia compared to decades ago. New strategies are urgently needed for early detection and control of dengue epidemics.

    METHODS: We conducted a two year study in a high human density dengue-endemic urban area in Selangor, where Gravid Ovipositing Sticky (GOS) traps were set up to capture adult Aedes spp. mosquitoes. All Aedes mosquitoes were tested using the NS1 dengue antigen test kit. All dengue cases from the study site notified to the State Health Department were recorded. Weekly microclimatic temperature, relative humidity (RH) and rainfall were monitored.

    RESULTS: Aedes aegypti was the predominant mosquito (95.6%) caught in GOS traps and 23% (43/187 pools of 5 mosquitoes each) were found to be positive for dengue using the NS1 antigen kit. Confirmed cases of dengue were observed with a lag of one week after positive Ae. aegypti were detected. Aedes aegypti density as analysed by distributed lag non-linear models, will increase lag of 2-3 weeks for temperature increase from 28 to 30 °C; and lag of three weeks for increased rainfall.

    CONCLUSION: Proactive strategy is needed for dengue vector surveillance programme. One method would be to use the GOS trap which is simple to setup, cost effective (below USD 1 per trap) and environmental friendly (i.e. use recyclable plastic materials) to capture Ae. aegypti followed by a rapid method of detecting of dengue virus using the NS1 dengue antigen kit. Control measures should be initiated when positive mosquitoes are detected.

    Matched MeSH terms: Viral Nonstructural Proteins/analysis*; Viral Nonstructural Proteins/genetics; Viral Nonstructural Proteins/immunology
  16. Chan, S.C., Teoh, L.C.
    MyJurnal
    The non-structural protein 1 (NS1) of the dengue viral genome has been found useful for diagnosis of acute dengue infections, being detected from one day and up to 18 days post onset of symptoms (1). Rapid Dengue NS1 antigen test was made available in commercial test kits for private clinics in Perak in 2014. This study aimed to determine the use usefulness of dengue NS1 test kits in suspected dengue cases in a general practice clinic in Perak and the period in which positive test results were obtained after the onset of symptoms. Clinic records of all suspected dengue cases seen in the ten months from October 2014 to July 2015 were traced. Patients’ demographic characteristics, presenting symptoms and the use of One Step Dengue NS1 Antigen test (Avo Diagnostics) were analyzed using SPSS version 17. Seventy one suspected dengue fever cases were seen in the study period, the highest number in July 2015 (25%). Majority were Chinese (80%), female (63%), and aged 40 years and above (51%). Most patients presented with fever (99%), body-ache (51%), gastrointestinal symptoms (51%) and headache (44%). Dengue NS1 antigen test was done in 94% of the suspected cases with 61% testing positive. The majority of the cases presenting one day to five days after onset of symptoms tested positive i.e. 59% (1 day), 90% (2 days), 54% (3-4 days) and 89% (5 days). Using dengue NS1 antigen test, positive results can be obtained as early as one day after the onset of symptoms. This test is a useful tool to aid primary care physicians detect dengue fever early.
    Matched MeSH terms: Viral Nonstructural Proteins
  17. Lim SV, Rahman MB, Tejo BA
    BMC Bioinformatics, 2011;12 Suppl 13:S24.
    PMID: 22373153 DOI: 10.1186/1471-2105-12-S13-S24
    The dengue virus is the most significant arthropod-borne human pathogen, and an increasing number of cases have been reported over the last few decades. Currently neither vaccines nor drugs against the dengue virus are available. NS5 methyltransferase (MTase), which is located on the surface of the dengue virus and assists in viral attachment to the host cell, is a promising antiviral target. In order to search for novel inhibitors of NS5 MTase, we performed a computer-aided virtual screening of more than 5 million commercially available chemical compounds using two approaches: i) structure-based screening using the crystal structure of NS5 MTase and ii) ligand-based screening using active ligands of NS5 MTase. Structure-based screening was performed using the LIDAEUS (LIgand Discovery At Edinburgh UniverSity) program. The ligand-based screening was carried out using the EDULISS (EDinburgh University LIgand Selection System) program.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors
  18. Mohd Abd Razak MR, Mohmad Misnan N, Md Jelas NH, Norahmad NA, Muhammad A, Ho TCD, et al.
    BMC Complement Altern Med, 2018 Dec 05;18(1):320.
    PMID: 30518360 DOI: 10.1186/s12906-018-2390-7
    BACKGROUND: Carica papaya leaf juice (CPLJ) was well known for its thrombocytosis activity in rodents and dengue patients. However, the effect of CPLJ treatment on other parameters that could contribute to dengue pathogenesis such as nonstructural protein 1 (NS1) production and viremia level have never been highlighted in any clinical and in vivo studies. The aim of this study is to investigate the effect of freeze-dried CPLJ treatment on NS1 and viremia levels of dengue fever mouse model.

    METHODS: The dengue infection in mouse model was established by inoculation of non-mouse adapted New Guinea C strain dengue virus (DEN-2) in AG129 mice. The freeze-dried CPLJ compounds were identified by Ultra-High Performance Liquid Chromatography High Resolution Accurate Mass Spectrometry analysis. The infected AG129 mice were orally treated with 500 mg/kg/day and 1000 mg/kg/day of freeze-dried CPLJ, starting on day 1 post infection for 3 consecutive days. The blood samples were collected from submandibular vein for plasma NS1 assay and quantitation of viral RNA level by quantitative reverse transcription PCR.

    RESULTS: The AG129 mice infected with dengue virus showed marked increase in the production of plasma NS1, which was detectable on day 1 post infection, peaked on day 3 post-infection and started to decline from day 5 post infection. The infection also caused splenomegaly. Twenty-four compounds were identified in the freeze-dried CPLJ. Oral treatment with 500 mg/kg/day and 1000 mg/kg/day of freeze-dried CPLJ did not affect the plasma NS1 and dengue viral RNA levels. However, the morbidity level of infected AG129 mice were slightly decreased when treated with freeze-dried CPLJ.

    CONCLUSION: Oral treatment of 500 mg/kg/day and 1000 mg/kg/day of freeze-dried CPLJ at the onset of viremia did not affect the plasma NS1 and viral RNA levels in AG129 mice infected with non-mouse adapted New Guinea C strain dengue virus.

    Matched MeSH terms: Viral Nonstructural Proteins/blood*
  19. Guan J, He Z, Qin M, Deng X, Chen J, Duan S, et al.
    BMC Infect Dis, 2021 Feb 10;21(1):166.
    PMID: 33568111 DOI: 10.1186/s12879-021-05823-3
    BACKGROUND: An unexpected dengue outbreak occurred in Hunan Province in 2018. This was the first dengue outbreak in this area of inland China, and 172 cases were reported.

    METHODS: To verify the causative agent of this outbreak and characterise the viral genes, the genes encoding the structural proteins C/prM/E of viruses isolated from local residents were sequenced followed by mutation and phylogenetic analysis. Recombination, selection pressure, potential secondary structure and three-dimensional structure analyses were also performed.

    RESULTS: Phylogenetic analysis revealed that all epidemic strains were of the cosmopolitan DENV-2 genotype and were most closely related to the Zhejiang strain (MH010629, 2017) and then the Malaysia strain (KJ806803, 2013). Compared with the sequence of DENV-2SS, 151 base substitutions were found in the sequences of 89 isolates; these substitutions resulted in 20 non-synonymous mutations, of which 17 mutations existed in all samples (two in the capsid protein, six in the prM/M proteins, and nine in the envelope proteins). Moreover, amino acid substitutions at the 602nd (E322:Q → H) and 670th (E390: N → S) amino acids may have enhanced the virulence of the epidemic strains. One new DNA binding site and five new protein binding sites were observed. Two polynucleotide binding sites and seven protein binding sites were lost in the epidemic strains compared with DENV-2SS. Meanwhile, five changes were found in helical regions. Minor changes were observed in helical transmembrane and disordered regions. The 429th amino acid of the E protein switched from a histamine (positively charged) to an asparagine (neutral) in all 89 isolated strains. No recombination events or positive selection pressure sites were observed. To our knowledge, this study is the first to analyse the genetic characteristics of epidemic strains in the first dengue outbreak in Hunan Province in inland China.

    CONCLUSIONS: The causative agent is likely to come from Zhejiang Province, a neighbouring province where dengue fever broke out in 2017. This study may help clarify the intrinsic geographical relatedness of DENV-2 and contribute to further research on pathogenicity and vaccine development.

    Matched MeSH terms: Viral Nonstructural Proteins/genetics; Viral Nonstructural Proteins/metabolism
  20. Wekesa SN, Inoshima Y, Murakami K, Sentsui H
    Vet Microbiol, 2001 Nov 08;83(2):137-46.
    PMID: 11557154
    Using the reverse transcription-polymerase chain reaction (RT-PCR) and direct sequencing, capsid protein and non-structural protein 1 (nsP1) regions of Sagiyama virus and eight Getah virus strains were analysed. The viruses were isolated from Malaysia and various areas of Japan over a period of 30 years. Based on the available published sequence data, oligonucleotide primers were designed for RT-PCR and the sequences were determined. Our findings showed that though there were differences in the nucleotide sequences in the nsP1 region, there was 100% amino acid homology. On the other hand, in the capsid region, the nucleotide differences caused a major difference in the amino acid sequence. Therefore, the difference in the capsid region is one of the useful markers in the genetic classification between Sagiyama virus and strains of Getah virus, and might be responsible for the serological difference in complement fixation test. The genomic differences among the Getah virus strains are due to time factor rather than geographical distribution.
    Matched MeSH terms: Viral Nonstructural Proteins/genetics*; Viral Nonstructural Proteins/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links