Displaying all 13 publications

Abstract:
Sort:
  1. Zainah S, Wahab AH, Mariam M, Fauziah MK, Khairul AH, Roslina I, et al.
    J Virol Methods, 2009 Feb;155(2):157-60.
    PMID: 19022293 DOI: 10.1016/j.jviromet.2008.10.016
    The performance of a commercial immunochromatography test for rapid detection of dengue NS1 antigen present in serum or plasma of patients was evaluated against a commercial dengue NS1 antigen-capture ELISA. The rapid immunochromatography test gave an overall sensitivity of 90.4% with a specificity of 99.5%. The sensitivity was highest for serum samples from which virus was isolated (96.3%) and lowest for those from which virus was not isolated and RT-PCR was negative (76.4%). The sensitivity was significantly higher for serum samples from patients with acute primary dengue (92.3%) than those from patients with acute secondary dengue (79.1%). The positive predictive value and negative predictive value of this commercial immunochromatography test were 99.6% and 87.9% respectively.
    Matched MeSH terms: Viral Nonstructural Proteins/blood*
  2. Wang SM, Sekaran SD
    J Clin Microbiol, 2010 Aug;48(8):2793-7.
    PMID: 20573879 DOI: 10.1128/JCM.02142-09
    Early definitive diagnosis of dengue virus infection may help in the timely management of dengue virus infection. We evaluated the Standard Diagnostics (SD, South Korea) dengue virus nonstructural protein NS1 antigen enzyme-linked immunosorbent assay (SD dengue NS1 Ag ELISA) for the detection of dengue virus NS1 antigen in patients' sera, using a total of 399 serum samples in a comparison with real-time reverse transcription (RT)-PCR, an in-house IgM capture (MAC)-ELISA, and a hemagglutination inhibition (HI) assay. Of the 320 dengue sera, 205 (64%) tested positive for NS1 antigen compared to 300 (93.75%) by either MAC-ELISA or RT-PCR, 161 (50.31%) by RT-PCR, and 226 (70.36%) by MAC-ELISA only. The assay was able to detect NS1 antigen in convalescent-phase sera until day 14 of infection. The NS1 detection rate is inversely proportional while the IgM detection rate is directly proportional to the presence of IgG antibodies. The overall sensitivity and specificity of the SD dengue NS1 Ag ELISA in the detection of "confirmed dengue virus" sera are 76.76% and 98.31%, respectively. This suggests that the SD kit is highly specific and sensitive for the detection of NS1 antigen. However, caution is needed when the kit is used as a single assay, as detection in samples that contained the virus was only about 81.97%. Combining this assay with an IgM and/or IgG assay will increase the sensitivity of detection, especially in areas with a higher prevalence of secondary dengue virus infections.
    Matched MeSH terms: Viral Nonstructural Proteins/blood*
  3. Thayan R, Huat TL, See LL, Tan CP, Khairullah NS, Yusof R, et al.
    Trans R Soc Trop Med Hyg, 2009 Apr;103(4):413-9.
    PMID: 19203772 DOI: 10.1016/j.trstmh.2008.12.018
    Dengue infection is a major public health problem affecting millions of people living in tropical countries. With no suitable vaccines and specific antiviral drugs, treatment for dengue is usually symptomatic and supportive. Early diagnosis and recognition of severe disease is therefore crucial for better management of the patient. Two-dimension electrophoresis was used to identify disease-associated proteins that can be used for diagnosis and as drug targets for treatment. Two markers, identified by mass spectrometry analysis as alpha1-antitrypsin and NS1 proteins were found to be upregulated in dengue fever (DF; n=10) and dengue haemorrhagic fever (DHF; n=10) patients compared with healthy individuals (n=8). Both alpha1-antitrypsin and NS1 proteins were overexpressed two-fold in DHF patients compared with DF patients. Our study suggests that alpha1-antitrypsin and NS1 protein could be used as biomarkers as early indicators of DHF risk among patients with suspected dengue infection.
    Matched MeSH terms: Viral Nonstructural Proteins/blood
  4. Tan PC, Soe MZ, Si Lay K, Wang SM, Sekaran SD, Omar SZ
    PLoS Negl Trop Dis, 2012;6(5):e1637.
    PMID: 22590658 DOI: 10.1371/journal.pntd.0001637
    Dengue is the most prevalent mosquito borne infection worldwide. Vertical transmissions after maternal dengue infection to the fetus and pregnancy losses in relation to dengue illness have been reported. The relationship of dengue to miscarriage is not known.
    Matched MeSH terms: Viral Nonstructural Proteins/blood
  5. Soe HJ, Manikam R, Raju CS, Khan MA, Sekaran SD
    PLoS One, 2020;15(8):e0237141.
    PMID: 32764789 DOI: 10.1371/journal.pone.0237141
    Severe dengue can be lethal caused by manifestations such as severe bleeding, fluid accumulation and organ impairment. This study aimed to investigate the role of dengue non-structural 1 (NS1) protein and host factors contributing to severe dengue. Electrical cell-substrate impedance sensing system was used to investigate the changes in barrier function of microvascular endothelial cells treated NS1 protein and serum samples from patients with different disease severity. Cytokines and metabolites profiles were assessed using a multiplex cytokine assay and liquid chromatography mass spectrometry respectively. The findings showed that NS1 was able to induce the loss of barrier function in microvascular endothelium in a dose dependent manner, however, the level of NS1 in serum samples did not correlate with the extent of vascular leakage induced. Further assessment of host factors revealed that cytokines such as CCL2, CCL5, CCL20 and CXCL1, as well as adhesion molecule ICAM-1, that are involved in leukocytes infiltration were expressed higher in dengue patients in comparison to healthy individuals. In addition, metabolomics study revealed the presence of deregulated metabolites involved in the phospholipid metabolism pathway in patients with severe manifestations. In conclusion, disease severity in dengue virus infection did not correlate directly with NS1 level, but instead with host factors that are involved in the regulation of junctional integrity and phospholipid metabolism. However, as the studied population was relatively small in this study, these exploratory findings should be confirmed by expanding the sample size using an independent cohort to further establish the significance of this study.
    Matched MeSH terms: Viral Nonstructural Proteins/blood*
  6. Mohd Abd Razak MR, Mohmad Misnan N, Md Jelas NH, Norahmad NA, Muhammad A, Ho TCD, et al.
    BMC Complement Altern Med, 2018 Dec 05;18(1):320.
    PMID: 30518360 DOI: 10.1186/s12906-018-2390-7
    BACKGROUND: Carica papaya leaf juice (CPLJ) was well known for its thrombocytosis activity in rodents and dengue patients. However, the effect of CPLJ treatment on other parameters that could contribute to dengue pathogenesis such as nonstructural protein 1 (NS1) production and viremia level have never been highlighted in any clinical and in vivo studies. The aim of this study is to investigate the effect of freeze-dried CPLJ treatment on NS1 and viremia levels of dengue fever mouse model.

    METHODS: The dengue infection in mouse model was established by inoculation of non-mouse adapted New Guinea C strain dengue virus (DEN-2) in AG129 mice. The freeze-dried CPLJ compounds were identified by Ultra-High Performance Liquid Chromatography High Resolution Accurate Mass Spectrometry analysis. The infected AG129 mice were orally treated with 500 mg/kg/day and 1000 mg/kg/day of freeze-dried CPLJ, starting on day 1 post infection for 3 consecutive days. The blood samples were collected from submandibular vein for plasma NS1 assay and quantitation of viral RNA level by quantitative reverse transcription PCR.

    RESULTS: The AG129 mice infected with dengue virus showed marked increase in the production of plasma NS1, which was detectable on day 1 post infection, peaked on day 3 post-infection and started to decline from day 5 post infection. The infection also caused splenomegaly. Twenty-four compounds were identified in the freeze-dried CPLJ. Oral treatment with 500 mg/kg/day and 1000 mg/kg/day of freeze-dried CPLJ did not affect the plasma NS1 and dengue viral RNA levels. However, the morbidity level of infected AG129 mice were slightly decreased when treated with freeze-dried CPLJ.

    CONCLUSION: Oral treatment of 500 mg/kg/day and 1000 mg/kg/day of freeze-dried CPLJ at the onset of viremia did not affect the plasma NS1 and viral RNA levels in AG129 mice infected with non-mouse adapted New Guinea C strain dengue virus.

    Matched MeSH terms: Viral Nonstructural Proteins/blood*
  7. Kumarasamy V, Chua SK, Hassan Z, Wahab AH, Chem YK, Mohamad M, et al.
    Singapore Med J, 2007 Jul;48(7):669-73.
    PMID: 17609831
    INTRODUCTION: The aim of this report is to establish an accurate diagnosis of acute dengue virus infection early, in order to provide timely information for the management of patients and early public health control of dengue outbreak.
    METHODS: 224 serum samples from patients with a clinical diagnosis of acute dengue infection, which were subsequently confirmed by laboratory tests, were used to evaluate the performance of a commercially-available dengue NS1 antigen-capture ELISA kit.
    RESULTS: The dengue NS1 antigen-capture ELISA gave an overall sensitivity rate of 93.3 percent (209/224). The sensitivity rate was significantly higher in acute primary dengue (97.4 percent) than in acute secondary dengue (68.8 percent). In comparison, the virus isolation gave an overall positive isolation rate of 64.7 percent, with a positive rate of 70.8 percent and 28.1 percent, for acute primary dengue and acute secondary dengue, respectively. Molecular detection of dengue RNA by RT-PCR gave an overall positive detection rate of 63.4 percent, with a positive rate of 62.5 percent and 68.8 percent, for acute primary dengue and acute secondary dengue, respectively. Of the 224 acute serum samples from patients with laboratory-confirmed acute dengue infection, dengue IgM was detected in 88 specimens, comprising 68 acute primary dengue specimens and 20 acute secondary dengue specimens. NS1 antigen-capture ELISA kit gave an overall sensitivity rate of 88.6 percent in the presence of anti-dengue IgM and 96.3 percent in the absence of anti-dengue IgM.
    CONCLUSION: Of the 224 acute serum samples, the sample ages of 166 acute serum samples are known. The positive detection rate of dengue NS1 antigen-capture ELISA, on the whole, was higher than the other three established diagnostic test methods for laboratory diagnosis of acute dengue infection.
    Matched MeSH terms: Viral Nonstructural Proteins/blood*
  8. Kumarasamy V, Wahab AH, Chua SK, Hassan Z, Chem YK, Mohamad M, et al.
    J Virol Methods, 2007 Mar;140(1-2):75-9.
    PMID: 17140671
    A commercial dengue NS1 antigen-capture ELISA was evaluated to demonstrate its potential application for early laboratory diagnosis of acute dengue virus infection. Dengue virus NS1 antigen was detected in 199 of 213 acute serum samples from patients with laboratory confirmation of acute dengue virus infection but none of the 354 healthy blood donors' serum specimens. The dengue NS1 antigen-capture ELISA gave an overall sensitivity of 93.4% (199/213) and a specificity of 100% (354/354). The sensitivity was significantly higher in acute primary dengue (97.3%) than in acute secondary dengue (70.0%). The positive predictive value of the dengue NS1 antigen-capture ELISA was 100% and negative predictive value was 97.3%. Comparatively, virus isolation gave an overall positive isolation rate of 68.1% with a positive isolation rate of 73.9 and 31.0% for acute primary dengue and acute secondary dengue, respectively. Molecular detection of dengue RNA by RT-PCR gave an overall positive detection rate of 66.7% with a detection rate of 65.2 and 75.9% for acute primary dengue and acute secondary dengue, respectively. The results indicate that the commercial dengue NS1 antigen-capture ELISA may be superior to virus isolation and RT-PCR for the laboratory diagnosis of acute dengue infection based on a single serum sample.
    Matched MeSH terms: Viral Nonstructural Proteins/blood*
  9. Kassim FM, Izati MN, TgRogayah TA, Apandi YM, Saat Z
    PMID: 21706934
    Accurate and timely diagnosis of dengue virus is important for early detection of dengue virus infection. In this study, the usefulness of the dengue NS1 antigen test was evaluated as a routine, rapid diagnostic test for dengue virus infection. A total of 208 sera from patients suspected of having dengue virus infection were collected and tested for dengue antibody, dengue genome and dengue NS1 antigen. Dengue antibody test, dengue PCR test and dengue antigen test were able to detect dengue virus infection from Days 1 to 8 in 72.8, 52.8 and 44.0% of samples, respectively. Of the 208 sera tested, 69.2% (144/208) of the acute sera were positive for dengue virus infection based on IgM antibody, IgG antibody, NS1 antigen and PCR tests. Thirty-two point two percent of the samples (67/208) were found positive for dengue NS1 antigen, 38.5% (80/208) were PCR positive, 40.9% (85/208) were IgM positive and 36.1% (75/208) were IgG positive for dengue virus. The results reveal the detection rate of dengue virus infection was similar for PCR and dengue antibody (65.9%) and for NS1 antigen and dengue antibody (62.0%) combinations. Therefore, the dengue NS1 antigen test can be used to complement the current antibody test used in peripheral laboratories. Thus, the combination of the NS1 antigen and antibody tests could increase the diagnostic efficiency for early diagnosis of dengue infection.
    Matched MeSH terms: Viral Nonstructural Proteins/blood*
  10. Hasan NH, Ignjatovic J, Peaston A, Hemmatzadeh F
    Viral Immunol, 2016 05;29(4):198-211.
    PMID: 26900835 DOI: 10.1089/vim.2015.0127
    Vaccination is becoming a more acceptable option in the effort to eradicate avian influenza viruses (AIV) from commercial poultry, especially in countries where AIV is endemic. The main concern surrounding this option has been the inability of the conventional serological tests to differentiate antibodies produced due to vaccination from antibodies produced in response to virus infection. In attempts to address this issue, at least six strategies have been formulated, aiming to differentiate infected from vaccinated animals (DIVA), namely (i) sentinel birds, (ii) subunit vaccine, (iii) heterologous neuraminidase (NA), (iv) nonstructural 1 (NS1) protein, (v) matrix 2 ectodomain (M2e) protein, and (vi) haemagglutinin subunit 2 (HA2) glycoprotein. This short review briefly discusses the strengths and limitations of these DIVA strategies, together with the feasibility and practicality of the options as a part of the surveillance program directed toward the eventual eradication of AIV from poultry in countries where highly pathogenic avian influenza is endemic.
    Matched MeSH terms: Viral Nonstructural Proteins/blood
  11. Fry SR, Meyer M, Semple MG, Simmons CP, Sekaran SD, Huang JX, et al.
    PLoS Negl Trop Dis, 2011 Jun;5(6):e1199.
    PMID: 21713023 DOI: 10.1371/journal.pntd.0001199
    BACKGROUND: Serological tests for IgM and IgG are routinely used in clinical laboratories for the rapid diagnosis of dengue and can differentiate between primary and secondary infections. Dengue virus non-structural protein 1 (NS1) has been identified as an early marker for acute dengue, and is typically present between days 1-9 post-onset of illness but following seroconversion it can be difficult to detect in serum.
    AIMS: To evaluate the performance of a newly developed Panbio® Dengue Early Rapid test for NS1 and determine if it can improve diagnostic sensitivity when used in combination with a commercial IgM/IgG rapid test.
    METHODOLOGY: The clinical performance of the Dengue Early Rapid was evaluated in a retrospective study in Vietnam with 198 acute laboratory-confirmed positive and 100 negative samples. The performance of the Dengue Early Rapid in combination with the IgM/IgG Rapid test was also evaluated in Malaysia with 263 laboratory-confirmed positive and 30 negative samples.
    KEY RESULTS: In Vietnam the sensitivity and specificity of the test was 69.2% (95% CI: 62.8% to 75.6%) and 96% (95% CI: 92.2% to 99.8) respectively. In Malaysia the performance was similar with 68.9% sensitivity (95% CI: 61.8% to 76.1%) and 96.7% specificity (95% CI: 82.8% to 99.9%) compared to RT-PCR. Importantly, when the Dengue Early Rapid test was used in combination with the IgM/IgG test the sensitivity increased to 93.0%. When the two tests were compared at each day post-onset of illness there was clear differentiation between the antigen and antibody markers.
    CONCLUSIONS: This study highlights that using dengue NS1 antigen detection in combination with anti-glycoprotein E IgM and IgG serology can significantly increase the sensitivity of acute dengue diagnosis and extends the possible window of detection to include very early acute samples and enhances the clinical utility of rapid immunochromatographic testing for dengue.
    Matched MeSH terms: Viral Nonstructural Proteins/blood
  12. Darwish NT, Sekaran SD, Alias Y, Khor SM
    J Pharm Biomed Anal, 2018 Feb 05;149:591-602.
    PMID: 29197806 DOI: 10.1016/j.jpba.2017.11.064
    The sharp increase in incidence of dengue infection has necessitated the development of methods for the rapid diagnosis of this deadly disease. Here we report the design and development of a reliable, sensitive, and specific optical immunosensor for the detection of the dengue nonstructural protein 1 (NS1) biomarker in clinical samples obtained during early stages of infection. The present optical NS1 immunosensor comprises a biosensing surface consisting of specific monoclonal NS1 antibody for immunofluorescence-based NS1 antigen determination using fluorescein isothiocyanate (FITC) conjugated to IgG antibody. The linear range of the optical immunosensor was from 15-500ngmL-1, with coefficient of determination (R2) of 0.92, high reproducibility (the relative standard deviation obtained was 2%), good stability for 21days at 4°C, and low detection limit (LOD) at 15ngmL-1. Furthermore, the optical immunosensor was capable of detecting NS1 analytes in plasma specimens from patients infected with the dengue virus, with low cross-reaction with plasma specimens containing the Japanese encephalitis virus (JEV) and Zika virus. No studies have been performed on the reproducibility and cross-reactivity regarding NS1 specificity, which is thus a limitation for optical NS1 immunosensors. In contrast, the present study addressed these limitations carefully where these two important experiments were conducted to showcase the robustness of our newly developed optical-based fluorescence immunosensor, which can be practically used for direct NS1 determination in any untreated clinical sample.
    Matched MeSH terms: Viral Nonstructural Proteins/blood
  13. Chong HY, Leow CY, Abdul Majeed AB, Leow CH
    Virus Res, 2019 12;274:197770.
    PMID: 31626874 DOI: 10.1016/j.virusres.2019.197770
    Flaviviruses are group of single stranded RNA viruses that cause severe endemic infection and epidemics on a global scale. It presents a significant health impact worldwide and the viruses have the potential to emerge and outbreak in a non-endemic geographical region. Effective vaccines for prophylaxis are only available for several flaviviruses such as Yellow Fever virus, Tick-borne Encephalitis Virus, Dengue Virus and Japanese Encephalitis Virus and there is no antiflaviviral agent being marketed. This review discusses the flavivirus genome, replication cycle, epidemiology, clinical presentation and pathogenesis upon infection. Effective humoral response is critical to confer protective immunity against flaviviruses. Hence, we have also highlighted the immune responses elicited upon infection, various diagnostic facilities available for flaviviral disease and monoclonal antibodies available to date against flavivirus infection.
    Matched MeSH terms: Viral Nonstructural Proteins/blood
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links