Displaying publications 1 - 20 of 51 in total

Abstract:
Sort:
  1. Chong LK, Omar AR, Yusoff K, Hair-Bejo M, Aini I
    Acta Virol., 2001;45(4):217-26.
    PMID: 11885928
    The complete nucleotide sequences encoding precursor polyprotein (VP2-VP3-VP4) and VP5 of a highly virulent (hv) infectious bursal disease virus (IBDV), UPM97/61 was determined. Comparison of the deduced amino acid sequences with the published ones revealed 8 common amino acid substitutions, which were found only in the hv IBDV including the UPM97/61 strain. Three of the amino acid substitutions (222 Ala, 256 Ile and 294 Ile) were used as a marker for determining hv IBDV strains. The other five substitutions (685 Asn, 715 Ser, 751 Asp, 990 Val and 1005 Ala) were also conserved in hv IBDV strains isolated in various countries. UPM97/61 strain demonstrated also 8 unique amino acid substitutions of which 3 were in VP2, 4 in VP3 and 1 in VP4. There was 1 unique amino acid substitution in VP5 at position 19 (Asp-->Gly) not found in other strains. However, all the strains have a conserved 49 Arg. The amino acid sequence of UPM97/61 strain differed by 1.09% from the Japanese (OKYM) and Hong Kong (HK46) strains, and by 1.48% from the Israeli (IBDVKS) and European (UK661) strains. Hence, UPM97/61 is more closely related to the hv strains from Asia. However, phylogenetic analysis indicated that the origin of UPM97/61 might be the same as that of other hv strains isolated from other parts of the world.
    Matched MeSH terms: Virulence/genetics
  2. Kong LL, Omar AR, Hair-Bejo M, Aini I, Seow HF
    Arch Virol, 2004 Feb;149(2):425-34.
    PMID: 14745606
    The deduced amino acid sequences of segment A and B of two very virulent Infectious bursal disease virus (vvIBDV) isolates, UPM94/273 and UPM97/61 were compared with 25 other IBDV strains. Twenty amino acid residues (8 in VP1, 5 in VP2, 2 in VP3, 4 in VP4, 1 in VP5) that were common to vvIBDV strains were detected. However, UPM94/273 is an exceptional vvIBDV with usual amino acid substitutions. The differences in the divergence of segment A and B indicated that the vvIBDV strains may have been derived from genetic reassortment of a single ancestral virus or both segments have different ability to undergo genetic variation due to their different functional constraints.
    Matched MeSH terms: Virulence/genetics
  3. Tan SY, Dutta A, Jakubovics NS, Ang MY, Siow CC, Mutha NV, et al.
    BMC Bioinformatics, 2015;16:9.
    PMID: 25591325 DOI: 10.1186/s12859-014-0422-y
    Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity.
    Matched MeSH terms: Virulence/genetics*
  4. Chin CY, Hara Y, Ghazali AK, Yap SJ, Kong C, Wong YC, et al.
    BMC Genomics, 2015;16:471.
    PMID: 26092034 DOI: 10.1186/s12864-015-1692-0
    Chronic bacterial infections occur as a result of the infecting pathogen's ability to live within a biofilm, hence escaping the detrimental effects of antibiotics and the immune defense system. Burkholderia pseudomallei, a gram-negative facultative pathogen, is distinctive in its ability to survive within phagocytic and non-phagocytic cells, to persist in vivo for many years and subsequently leading to relapse as well as the development of chronic disease. The capacity to persist has been attributed to the pathogen's ability to form biofilm. However, the underlying biology of B. pseudomallei biofilm development remains unresolved.
    Matched MeSH terms: Virulence/genetics*
  5. Wong MY, Govender NT, Ong CS
    BMC Res Notes, 2019 Sep 24;12(1):631.
    PMID: 31551084 DOI: 10.1186/s13104-019-4652-y
    OBJECTIVE: Basal stem rot disease causes severe economic losses to oil palm production in South-east Asia and little is known on the pathogenicity of the pathogen, the basidiomyceteous Ganoderma boninense. Our data presented here aims to identify both the house-keeping and pathogenicity genes of G. boninense using Illumina sequencing reads.

    DESCRIPTION: The hemibiotroph G. boninense establishes via root contact during early stage of colonization and subsequently kills the host tissue as the disease progresses. Information on the pathogenicity factors/genes that causes BSR remain poorly understood. In addition, the molecular expressions corresponding to G. boninense growth and pathogenicity are not reported. Here, six transcriptome datasets of G. boninense from two contrasting conditions (three biological replicates per condition) are presented. The first datasets, collected from a 7-day-old axenic condition provide an insight onto genes responsible for sustenance, growth and development of G. boninense while datasets of the infecting G. boninense collected from oil palm-G. boninense pathosystem (in planta condition) at 1 month post-inoculation offer a comprehensive avenue to understand G. boninense pathogenesis and infection especially in regard to molecular mechanisms and pathways. Raw sequences deposited in Sequence Read Archive (SRA) are available at NCBI SRA portal with PRJNA514399, bioproject ID.

    Matched MeSH terms: Virulence/genetics
  6. Ho WS, Tan LK, Ooi PT, Yeo CC, Thong KL
    BMC Vet Res, 2013;9:109.
    PMID: 23731465 DOI: 10.1186/1746-6148-9-109
    Postweaning diarrhea caused by pathogenic Escherichia coli, in particular verotoxigenic E. coli (VTEC), has caused significant economic losses in the pig farming industry worldwide. However, there is limited information on VTEC in Malaysia. The objective of this study was to characterize pathogenic E. coli isolated from post-weaning piglets and growers with respect to their antibiograms, carriage of extended-spectrum beta-lactamases, pathotypes, production of hemolysins and fimbrial adhesins, serotypes, and genotypes.
    Matched MeSH terms: Virulence/genetics
  7. Mohamad N, Amal MNA, Saad MZ, Yasin ISM, Zulkiply NA, Mustafa M, et al.
    BMC Vet Res, 2019 May 28;15(1):176.
    PMID: 31138199 DOI: 10.1186/s12917-019-1907-8
    BACKGROUND: Vibriosis is an important bacterial disease of cultured marine fishes worldwide. However, information on the virulence and antibiotic resistance of Vibrio spp. isolated from fish are scarce. This study investigates the distribution of virulence associated genes and antibiotic resistance patterns of Vibrio spp. isolated from cage-cultured marine fishes in Malaysia.

    RESULTS: A total of 63 Vibrio spp. isolated from 62 cultured marine fishes in various geographical regions in Peninsular Malaysia were analysed. Forty-two of the isolates (66.7%) were positive for all chiA, luxR and vhpA, the virulence genes produced by pathogenic V. harveyi. A total of 62 Vibrio isolates (98%) had tlh gene of V. parahaemolyticus, while flaC gene of V. anguillarum was detected in 43 of isolates (68%). Other virulence genes, including tdh, trh, hlyA and toxRvc were absent from any of the isolates. Multiple antibiotic resistance (MAR) was exhibited in all strains of Harveyi clade, particularly against ampicillin, penicillin, polypeptides, cephems and streptomycin. The MAR index ranged between 0.06 and 0.56, and 75% of the isolates have MAR index of higher than 0.20. Host species and geographical origin showed no correlation with the presence of virulence genes and the antibiotic resistance patterns of Vibrio spp.

    CONCLUSIONS: The study indicates that majority of Vibrio spp. isolated from cultured marine fishes possess virulence genes, but were not associated with human pathogen. However, the antibiotics resistance is a real concern and warrants ongoing surveillance. These findings represent an updated knowledge on the risk of Vibrio spp. to human health, and also provides valuable insight on alternative approaches to combat vibriosis in cultured fish.

    Matched MeSH terms: Virulence/genetics
  8. Kingma DW, Weiss WB, Jaffe ES, Kumar S, Frekko K, Raffeld M
    Blood, 1996 Jul 01;88(1):242-51.
    PMID: 8704180
    LMP-1, an Epstein-Barr viral (EBV) latency protein, is considered a viral oncogene because of its ability to transform rodent fibroblasts in vivo and render them tumorigenic in nude mice. In human B cells, EBV LMP-1 induces DNA synthesis and abrogates apoptosis. LMP-1 is expressed in EBV-transformed lymphoblastoid cell lines, nasopharyngeal carcinoma (NPC), a subset of Hodgkin's disease (HD), and in EBV-associated lymphoproliferative disorders (EBV-LPDs). Recently, focused deletions near the 3' end of the LMP-1 gene (del-LMP-1, amino acids 346-355), in a region functionally related to the half-life to the LMP-1 protein, have been reported frequently in human immunodeficiency virus (HIV)-associated HD (100%) and EBV+ Malaysian and Danish peripheral T-cell lymphomas (100%, 61% respectively), but less frequently in cases of HD not associated with HIV (28%, 33%) and infectious mononucleosis (33%). To further investigate the potential relationship of del-LMP-1 to EBV-LPDs associated with immunosuppression or immunodeficiency, we studied 39 EBV-associated lymphoproliferations (10 benign, 29 malignant) from four distinct clinical settings: posttransplant (4 malignant, 1 reactive); HIV+ (18 malignant, 2 reactive); nonimmunodeficiency malignant lymphoma (ML) (7 cases); and sporadic EBV infection with lymphoid hyperplasia (7 cases). The presence of EBV within lymphoid cells was confirmed by EBV EBER1 RNA in situ hybridization or by polymerase chain reaction (PCR) analysis. EBV strain type and LMP-1 deletion status were determined by PCR. EBV strain types segregated into two distinct distributions: HIV+ (9 A; 11 B) and non-HIV (19 A, 0 B), consistent with previous reports. Overall, del-LMP-1 were found in 1 of 5 (20%) Burkitt lymphomas (BL); 17 of 24 (71%) aggressive non-Hodgkin's lymphoma (agg-NHL), and 2 of 10 (20%) reactive lymphoid proliferations. Of the agg-NHLs, del-LMP-1 were present in 4 of 4 PT-ML (100%); 10 of 15 HIV+ ML (67%); and 3 of 5 nonimmunodeficiency malignant lymphoma (ML, 60%). A total of 2 of 7 (28%) sporadic EBV-associated lymphoid hyperplasias contained a del-LMP-1. All del-LMP-1 were identical by DNA sequence analysis. No correlation was identified between the presence of del-LMP-1 and the EBV strain type observed. The high incidence of del-LMP-1 observed in agg-NHLs (71%), in contrast to the relatively low incidence observed in reactive lymphoid proliferations (28%), suggests that the deleted form may be preferentially selected in lymphomatous processes. All posttransplant agg-NHLs contained a del-LMP-1, and a similar frequency of del-LMP-1 was observed in both HIV-associated ML (66%) and nonimmunodeficiency ML (60%), suggesting that impairment of immune function alone is not a requirement for the expansion of malignant cells infected by EBV stains containing the deleted LMP-1 gene.
    Matched MeSH terms: Virulence/genetics
  9. Mobasseri G, Thong KL, Rajasekaram G, Teh CSJ
    Braz J Microbiol, 2020 Mar;51(1):189-195.
    PMID: 31838661 DOI: 10.1007/s42770-019-00208-w
    Multidrug-resistant (MDR) and extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae associated with nosocomial infections have caused serious problems in antibiotic management with limited therapeutic choices. This study aimed to determine the genotypic and phenotypic characteristics of K. pneumoniae strains isolated from a tertiary hospital in Malaysia. Ninety-seven clinical K. pneumoniae strains were analyzed for antimicrobial susceptibility, all of which were sensitive to amikacin and colistin (except one strain), while 31.9 % and 27.8 % were MDR and ESBL producers, respectively. PCR and DNA sequencing of the amplicons indicated that the majority of MDR strains (26/27) were positive for blaTEM, followed by blaSHV (24/27), blaCTX-M-1 group (23/27), blaCTX-M-9 group (2/27), and mcr-1 (1/27). Thirty-seven strains were hypervirulent and PCR detection of virulence genes showed 38.1 %, 22.7 %, and 16.5 % of the strains were positive for K1, wabG, and uge genes, respectively. Genotyping by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) showed that these strains were genetically diverse and heterogeneous. Sequence types, ST23, ST22, and ST412 were the predominant genotypes. This is the first report of colistin-resistant K. pneumoniae among clinical strains associated with mcr-1 plasmid in Malaysia. The findings in this study have contributed to the effort in combating the increase in antimicrobial resistance by providing better understanding of genotypic characteristics and resistance mechanisms of the organisms.
    Matched MeSH terms: Virulence/genetics*
  10. Ortiz RH, Leon DA, Estevez HO, Martin A, Herrera JL, Romo LF, et al.
    Clin Exp Immunol, 2009 Aug;157(2):271-81.
    PMID: 19604267 DOI: 10.1111/j.1365-2249.2009.03941.x
    Buruli ulcer (BU) is the third most common mycobacterial disease in immunocompetent hosts. BU is caused by Mycobacterium ulcerans, which produces skin ulcers and necrosis at the site of infection. The principal virulence factor of M. ulcerans is a polyketide-derived macrolide named mycolactone, which has cytotoxic and immunosuppressive activities. We determined the severity of inflammation, histopathology and bacillary loads in the subcutaneous footpad tissue of BALB/c mice infected with 11 different M. ulcerans isolates from diverse geographical areas. Strains from Africa (Benin, Ghana, Ivory Coast) induced the highest inflammation, necrosis and bacillary loads, whereas the strains collected from Australia, Asia (Japan, Malaysia, New Guinea), Europe (France) and America (Mexico) induced mild inflammation. Subsequently, animals were infected with the strain that exhibited the highest (Benin) or lowest (Mexico) level of virulence in order to analyse the local immune response generated. The Mexican strain, which does not produce mycolactone, induced a predominantly T helper type 1 (Th1) cytokine profile with constant high expression of the anti-microbial peptides beta defensins 3 and 4, in co-existence with low expression of the anti-inflammatory cytokines interleukin (IL)-10, IL-4 and transforming growth factor (TGF)-beta. The highly virulent strain from Benin which produces mycolactone A/B induced the opposite pattern. Thus, different local immune responses were found depending on the infecting M. ulcerans strain.
    Matched MeSH terms: Virulence/genetics
  11. Kho CJY, Lau MML, Chung HH, Chew IYY, Gan HM
    Curr Microbiol, 2023 Jun 25;80(8):255.
    PMID: 37356021 DOI: 10.1007/s00284-023-03354-5
    Unlike environmental P. koreensis isolated from soil, which has been studied extensively for its role in promoting plant growth, pathogenic P. koreensis isolated from fish has been rarely reported. Therefore, we investigated and isolated the possible pathogen that is responsible for the diseased state of Tor tambroides. Herein, we reported the morphological and biochemical characteristics, as well as whole-genome sequences of a newly identified P. koreensis strain. We assembled a high-quality draft genome of P. koreensis CM-01 with a contig N50 value of 233,601 bp and 99.5% BUSCO completeness. The genome assembly of P. koreensis CM-01 is consists of 6,171,880 bp with a G+C content of 60.5%. Annotation of the genome identified 5538 protein-coding genes, 3 rRNA genes, 54 tRNAs, and no plasmids were found. Besides these, 39 interspersed repeat and 141 tandem repeat sequences, 6 prophages, 51 genomic islands, 94 insertion sequences, 4 clustered regularly interspaced short palindromic repeats, 5 antibiotic-resistant genes, and 150 virulence genes were also predicted in the P. koreensis CM-01 genome. Culture-based approach showed that CM-01 strain exhibited resistance against ampicillin, aztreonam, clindamycin, and cefoxitin with a calculated multiple antibiotic resistance (MAR) index value of 0.4. In addition, the assembled CM-01 genome was successfully annotated against the Cluster of Orthologous Groups of proteins database, Gene Ontology database, and Kyoto Encyclopedia of Genes and Genome pathway database. A comparative analysis of CM-01 with three representative strains of P. koreensis revealed that 92% of orthologous clusters were conserved among these four genomes, and only the CM-01 strain possesses unique elements related to pathogenicity and virulence. This study provides fundamental phenotypic and genomic information for the newly identified P. koreensis strain.
    Matched MeSH terms: Virulence/genetics
  12. Quintero-Yanes A, Lee CM, Monson R, Salmond G
    Environ Microbiol, 2020 07;22(7):2921-2938.
    PMID: 32352190 DOI: 10.1111/1462-2920.15048
    Serratia sp. ATCC 39006 produces intracellular gas vesicles to enable upward flotation in water columns. It also uses flagellar rotation to swim through liquid and swarm across semi-solid surfaces. Flotation and motility can be co-regulated with production of a β-lactam antibiotic (carbapenem carboxylate) and a linear tripyrrole red antibiotic, prodigiosin. Production of gas vesicles, carbapenem and prodigiosin antibiotics, and motility are controlled by master transcriptional and post-transcriptional regulators, including the SmaI/SmaR-based quorum sensing system and the mRNA binding protein, RsmA. Recently, the ribose operon repressor, RbsR, was also defined as a pleiotropic regulator of flotation and virulence factor elaboration in this strain. Here, we report the discovery of a new global regulator (FloR; a DeoR family transcription factor) that modulates flotation through control of gas vesicle morphogenesis. The floR mutation is highly pleiotropic, down-regulating production of gas vesicles, carbapenem and prodigiosin antibiotics, and infection in Caenorhabditis elegans, but up-regulating flagellar motility. Detailed proteomic analysis using TMT peptide labelling and LC-MS/MS revealed that FloR is a physiological master regulator that operates through subordinate pleiotropic regulators including Rap, RpoS, RsmA, PigU, PstS and PigT.
    Matched MeSH terms: Virulence/genetics*
  13. Mohd-Assaad N, McDonald BA, Croll D
    Environ Microbiol, 2019 08;21(8):2677-2695.
    PMID: 30838748 DOI: 10.1111/1462-2920.14583
    Plant pathogens secrete effector proteins to manipulate the host and facilitate infection. Cognate hosts trigger strong defence responses upon detection of these effectors. Consequently, pathogens and hosts undergo rapid coevolutionary arms races driven by adaptive evolution of effectors and receptors. Because of their high rate of turnover, most effectors are thought to be species-specific and the evolutionary trajectories are poorly understood. Here, we investigate the necrosis-inducing protein 1 (NIP1) effector in the multihost pathogen genus Rhynchosporium. We retraced the evolutionary history of the NIP1 locus using whole-genome assemblies of 146 strains covering four closely related species. NIP1 orthologues were present in all species but the locus consistently segregated presence-absence polymorphisms suggesting long-term balancing selection. We also identified previously unknown paralogues of NIP1 that were shared among multiple species and showed substantial copy-number variation within R. commune. The NIP1A paralogue was under significant positive selection suggesting that NIP1A is the dominant effector variant coevolving with host immune receptors. Consistent with this prediction, we found that copy number variation at NIP1A had a stronger effect on virulence than NIP1B. Our analyses unravelled the origins and diversification mechanisms of a pathogen effector family shedding light on how pathogens gain adaptive genetic variation.
    Matched MeSH terms: Virulence/genetics
  14. Kim YB, Okuda J, Matsumoto C, Morigaki T, Asai N, Watanabe H, et al.
    FEMS Microbiol Lett, 1998 Sep 01;166(1):43-8.
    PMID: 9741083
    Escherichia coli strains isolated from patients with diarrhea or hemolytic uremic syndrome (HUS) at Pusan University Hospital, South Korea, between 1990 and 1996 were examined for traits of the O157:H7 serogroup. One strain isolated from a patient with HUS belonged to the O157:H7 serotype, possessed a 60-MDa plasmid, the eae gene, and ability to produce Shiga toxin 1 but not Shiga toxin 2. Arbitrarily primed PCR analysis suggested that this strain is genetically very close to a O157:H7 strain isolated in Japan.
    Matched MeSH terms: Virulence/genetics
  15. McMinn PC
    FEMS Microbiol Rev, 2002 Mar;26(1):91-107.
    PMID: 12007645
    Since its discovery in 1969, enterovirus 71 (EV71) has been recognised as a frequent cause of epidemics of hand-foot-and-mouth disease (HFMD) associated with severe neurological sequelae in a small proportion of cases. There has been a significant increase in EV71 epidemic activity throughout the Asia-Pacific region since 1997. Recent HFMD epidemics in this region have been associated with a severe form of brainstem encephalitis associated with pulmonary oedema and high case-fatality rates. The emergence of large-scale epidemic activity in the Asia-Pacific region has been associated with the circulation of three genetic lineages that appear to be undergoing rapid evolutionary change. Two of these lineages (B3 and B4) have not been described previously and appear to have arisen from an endemic focus in equatorial Asia, which has served as a source of virus for HFMD epidemics in Malaysia, Singapore and Australia. The third lineage (C2) has previously been identified [Brown, B.A. et al. (1999) J. Virol. 73, 9969-9975] and was primarily responsible for the large HFMD epidemic in Taiwan during 1998. As EV71 appears not to be susceptible to newly developed antiviral agents and a vaccine is not currently available, control of EV71 epidemics through high-level surveillance and public health intervention needs to be maintained and extended throughout the Asia-Pacific region. Future research should focus on (1) understanding the molecular genetics of EV71 virulence, (2) identification of the receptor(s) for EV71, (3) development of antiviral agents to ameliorate the severity of neurological disease and (4) vaccine development to control epidemics. Following the successful experience of the poliomyelitis control programme, it may be possible to control EV71 epidemics if an effective live-attenuated vaccine is developed.
    Matched MeSH terms: Virulence/genetics
  16. Shabani NRM, Mokhtar M, Leow CH, Lean QY, Chuah C, Singh KKB, et al.
    Infect Genet Evol, 2020 11;85:104532.
    PMID: 32911076 DOI: 10.1016/j.meegid.2020.104532
    Shigella is an intracellular bacterial pathogen that causes bacterial dysentery called shigellosis. The assessment of pro- and anti-inflammatory mediators produced by immune cells against this bacteria are vital in identifying the effectiveness of the immune reaction in protecting the host. In Malaysia, Shigella is ranked as the third most common bacteria causing diarrheal disease among children below 5 years old. In the present study, we aim to examine the differential cytokine gene expressions of macrophages in response to two types of clinical strains of Shigella flexneri 2a (S. flexneri 2a) isolated from patients admitted in Hospital Universiti Sains Malaysia, Kelantan, Malaysia. THP-1-derived macrophages, as the model of human macrophages, were infected separately with S. flexneri 2a mild (SH062) and virulence (SH057) strains for 6, 12, and 24 h, respectively. The gene expression level of inflammatory mediators was identified using real-time quantitative polymerase chain reaction (RT-qPCR). The production of nitric oxide (NO) by the macrophages was measured by using a commercialized NO assay kit. The ability of macrophages to kill the intracellular bacteria was assessed by intracellular killing assay. Induction of tumor necrosis factor-alpha (TNFα), interleukin (IL)-1β, IL-6, IL-12, inducible NO synthase (iNOS), and NO, confirmed the pro-inflammatory reaction of the THP-1-derived macrophages in response to S. flexneri 2a, especially against the SH507 strain. The SH057 also induced a marked increase in the expression levels of the anti-inflammatory cytokine mRNAs at 12 h and 24 h post-infection. In the intracellular killing assay, both strains showed less viable, indicating the generation of pro-inflammatory cytokines in the presence of iNOS and NO was crucial in the stimulation of macrophages for the host defense against shigellosis. Transcription analysis of THP-1-derived macrophages in this study identifies differentially expressed cytokine genes that correlated with the virulence factor of S. flexneri 2a.
    Matched MeSH terms: Virulence/genetics*
  17. Puah SM, Chua KH, Tan JA
    Int J Environ Res Public Health, 2016 Feb;13(2):199.
    PMID: 26861367 DOI: 10.3390/ijerph13020199
    Staphylococcus aureus is one of the leading causes of food poisoning. Its pathogenicity results from the possession of virulence genes that produce different toxins which result in self-limiting to severe illness often requiring hospitalization. In this study of 200 sushi and sashimi samples, S. aureus contamination was confirmed in 26% of the food samples. The S. aureus isolates were further characterized for virulence genes and antibiotic susceptibility. A high incidence of virulence genes was identified in 96.2% of the isolates and 20 different virulence gene profiles were confirmed. DNA amplification showed that 30.8% (16/52) of the S. aureus carried at least one SE gene which causes staphylococcal food poisoning. The most common enterotoxin gene was seg (11.5%) and the egc cluster was detected in 5.8% of the isolates. A combination of hla and hld was the most prevalent coexistence virulence genes and accounted for 59.6% of all isolates. Antibiotic resistance studies showed tetracycline resistance to be the most common at 28.8% while multi-drug resistance was found to be low at 3.8%. In conclusion, the high rate of S. aureus in the sampled sushi and sashimi indicates the need for food safety guidelines.
    Matched MeSH terms: Virulence/genetics*
  18. Abatcha MG, Effarizah ME, Rusul G
    Int J Food Microbiol, 2019 Feb 02;290:180-183.
    PMID: 30342248 DOI: 10.1016/j.ijfoodmicro.2018.09.021
    Salmonella enterica serovar Paratyphi B (S. Paratyphi B) is a major foodborne pathogen distributed all over the world. However, little is known about the antibiotic resistance, genetic relatedness and virulence profile of S. Paratyphi B isolated from leafy vegetables and the processing environment in Malaysia. In this study, 6 S. Paratyphi B isolates were recovered from different vegetables and drain water of processing areas obtained from fresh food markets in Malaysia. The isolates were characterized by antibiogram, Pulsed-field gel electrophoresis (PFGE) and virulence genes. Antibiotic susceptibility test showed that 3 of the isolates were resistant to the antibiotics. These include S. Paratyphi B SP251 isolate, which was resistant to chloramphenicol, ampicillin, sulfonamides and streptomycin; Isolate SP246 which was resistant to chloramphenicol, sulfonamides and streptomycin and Isolate SP235 showing resistance to nalidixic acid only. PFGE subtyped the 6 S. Paratyphi B isolates into 6 distinct XbaI-pulsotypes, with a wide range of genetic similarity (0.55 to 0.9). The isolates from different sources and fresh food markets location were genetically diverse. Thirteen (tolC, orgA, spaN, prgH, sipB, invA, pefA, sofB, msgA, cdtB, pagC, spiA and spvB) out of the 17 virulence genes tested were found in all of the S. Paratyphi B isolates. Another gene (lpfC), was found only in one isolate (SP051). None of the isolates possessed sifA, sitC and ironN genes. In summary, this study provides unique information on antibiotic resistance, genetic relatedness, and virulotyping of S. Paratyphi B isolated from leafy vegetables and processing environment.
    Matched MeSH terms: Virulence/genetics
  19. Ansari S, Yamaoka Y
    Int J Mol Sci, 2020 Oct 08;21(19).
    PMID: 33050101 DOI: 10.3390/ijms21197430
    Helicobacter pylori causes persistent infection in the gastric epithelium of more than half of the world's population, leading to the development of severe complications such as peptic ulcer diseases, gastric cancer, and gastric mucosa-associated lymphoid tissue (MALT) lymphoma. Several virulence factors, including cytotoxin-associated gene A (CagA), which is translocated into the gastric epithelium via the type 4 secretory system (T4SS), have been indicated to play a vital role in disease development. Although infection with strains harboring the East Asian type of CagA possessing the EPIYA-A, -B, and -D sequences has been found to potentiate cell proliferation and disease pathogenicity, the exact mechanism of CagA involvement in disease severity still remains to be elucidated. Therefore, we discuss the possible role of CagA in gastric pathogenicity.
    Matched MeSH terms: Virulence/genetics
  20. Hoque MM, Omar AR, Hair-Bejo M, Aini I
    J. Biochem. Mol. Biol. Biophys., 2002 Apr;6(2):93-9.
    PMID: 12186763
    Previously we have shown that very virulent infectious bursal disease viruses (vvIBDV) that are SspI, TaqI and StyI positive (92/04, 97/61 and 94/B551) but not SspI and TaqI positive and StyI negative (94/273) cause high mortality, up to 80% in specific-pathogen-free chickens with significant damage of the bursal as well as nonbursal tissues. In this study, we sequenced the VP2 gene (1351 bp) of the 92/04, 94/273 and 94/B551 and compared them with other IBDV strains. All the isolates have the unique amino acid residues at positions 222A, 256I, 294I and 299S found in other vvIBDV strains. The deduced VP2 amino acids encoded by 92/04 is identical to the vvIBDV strains from Israel (IBDVKS), Japan (OKYM) and Europe (UK661), whereas the 94/273 and 94/B551 isolates have one to three amino acid substitutions. The 94/273 has two amino acid substitutions at positions 254 G to S and at 270 A to E that have not been reported before from vvIBDV strains. The 94/B551 also has one amino acid substitution at position 300 E to S, which is uncommon among other vvIBDV strains. However, phylogenetic analysis suggested that the isolates are very close to each other and all of them may have derived from the same origin as vvIBDV strains isolated from China, Japan and Europe. Even though antigenic index analysis of the 94/273 and 94/B551 indicated that the isolates are unique compared to other IBDV strains, their antigenic variation remain to be determined by monoclonal antibody study.
    Matched MeSH terms: Virulence/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links