Displaying publications 1 - 20 of 78 in total

Abstract:
Sort:
  1. Abd Wahib SM, Wan Ibrahim WA, Sanagi MM, Kamboh MA, Abdul Keyon AS
    J Chromatogr A, 2018 Jan 12;1532:50-57.
    PMID: 29241956 DOI: 10.1016/j.chroma.2017.11.059
    A facile dispersive-micro-solid phase extraction (D-μ-SPE) method coupled with HPLC for the analysis of selected non-steroidal anti-inflammatory drugs (NSAIDs) in water samples was developed using a newly prepared magnetic sporopollenin-cyanopropyltriethoxysilane (MS-CNPrTEOS) sorbent. Sporopollenin homogenous microparticles of Lycopodium clavatum spores possessed accessible functional groups that facilitated surface modification. Simple modification was performed by functionalization with 3-cyanopropyltriethoxysilane (CNPrTEOS) and magnetite was introduced onto the biopolymer to simplify the extraction process. MS-CNPrTEOS was identified by infrared spectrometrywhile the morphology and the magnetic property were confirmed by scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), respectively. To maximize the extraction performance of ketoprofen, ibuprofen, diclofenac and mefenamic acid using the proposed MS-CNPrTEOS, important D-μ-SPE parameters were comprehensively optimized. The optimum extraction conditions were sorbent amount, 40 mg; extraction time, 5 min; desorption time; 5 min; sample volume, 15 mL; sample pH 2.0; and salt addition, 2.5% (w/v). The feasibility of the developed method was evaluated using spiked tap water, lake water, river water and waste water samples. Results showed that ketoprofen and ibuprofen were linear in the range of 1.0-1000 μg L-1whilst diclofenac and mefenamic acid were linear in the range 0.8-500 μg L-1. The results also showed good detection limits for the studied NSAIDs in the range of 0.21-0.51 μg L-1and good recoveries for spiked water samples in the range of 85.1-106.4%. The MS-CNPrTEOS proved a promising dispersive sorbent and applicable to facile and rapid assay of NSAIDs in water samples.
    Matched MeSH terms: Waste Water/chemistry
  2. Noruzman AH, Muhammad B, Ismail M, Abdul-Majid Z
    J Environ Manage, 2012 Nov 15;110:27-32.
    PMID: 22705857 DOI: 10.1016/j.jenvman.2012.05.019
    Conservation and preservation of freshwater is increasingly becoming important as the global population grows. Presently, enormous volumes of freshwater are used to mix concrete. This paper reports experimental findings regarding the feasibility of using treated effluents as alternatives to freshwater in mixing concrete. Samples were obtained from three effluent sources: heavy industry, a palm-oil mill and domestic sewage. The effluents were discharge into public drain without danger to human health and natural environment. Chemical compositions and physical properties of the treated effluents were investigated. Fifteen compositional properties of each effluent were correlated with the requirements set out by the relevant standards. Concrete mixes were prepared using the effluents and freshwater to establish a base for control performance. The concrete samples were evaluated with regard to setting time, workability, compressive strength and permeability. The results show that except for some slight excesses in total solids and pH, the properties of the effluents satisfy the recommended disposal requirements. Two concrete samples performed well for all of the properties investigated. In fact, one sample was comparatively better in compressive strength than the normal concrete; a 9.4% increase was observed at the end of the curing period. Indeed, in addition to environmental conservation, the use of treated effluents as alternatives to freshwater for mixing concrete could save a large amount of freshwater, especially in arid zones.
    Matched MeSH terms: Waste Water/chemistry*
  3. Moradihamedani P, Abdullah AH
    Water Sci Technol, 2018 Jan;77(1-2):346-354.
    PMID: 29377819 DOI: 10.2166/wst.2017.545
    Removal of low-concentration ammonia (1-10 ppm) from aquaculture wastewater was investigated via polysulfone (PSf)/zeolite mixed matrix membrane. PSf/zeolite mixed matrix membranes with different weight ratios (90/10, 80/20, 70/30 and 60/40 wt.%) were prepared and characterized. Results indicate that PSf/zeolite (80/20) was the most efficient membrane for removal of low-concentration ammonia. The ammonia elimination by PSf/zeolite (80/20) from aqueous solution for 10, 7, 5, 3 and 1 ppm of ammonia was 100%, 99%, 98.8%, 96% and 95% respectively. The recorded results revealed that pure water flux declined in higher loading of zeolite in the membrane matrix due to surface pore blockage caused by zeolite particles. On the other hand, ammonia elimination from water was decreased in higher contents of zeolite because of formation of cavities and macrovoids in the membrane substructure.
    Matched MeSH terms: Waste Water/chemistry*
  4. Hameed YT, Idris A, Hussain SA, Abdullah N
    J Environ Manage, 2016 Dec 15;184(Pt 3):494-503.
    PMID: 27789092 DOI: 10.1016/j.jenvman.2016.10.033
    Chemical composition and flocculation efficiency were investigated for a commercially produced tannin - based coagulant and flocculant (Tanfloc). The results of Fourier Transform Infrared Spectroscopy (FTIR) and Energy Dispersive Spectroscopy (EDX) confirmed what claimed about the chemical composition of Tanfloc. For moderate polluted municipal wastewater investigated in both jar test and pilot plant, Tanfloc showed high turbidity removal efficiency of approximately 90%, while removal efficiencies of BOD5 and COD were around 60%. According to floc size distribution, Tanfloc was able to show distinct performance compared to Polyaluminum chloride (PAC). While 90% of flocs produced by Tanfloc were smaller than 144 micron, they were smaller than 96 micron for PAC. Practically, zeta potential measurement showed the cationic nature of Tanfloc and suggested coincidence of charge neutralization and another flocculation mechanism (bridging or patch flocculation). Sludge Volumetric Index (SVI) measurements were in agreement with the numbers found in the literature, and they were less than 160 mL/g. Calcium cation as flocculation aid showed significant improvement of flocculation efficiency compared to other cations. Finally Tanfloc showed competing performance compared to PAC in terms of turbidity, BOD5 and COD removal, floc size and sludge characteristics.
    Matched MeSH terms: Waste Water/chemistry*
  5. Aljuboury DA, Palaniandy P, Abdul Aziz HB, Feroz S, Abu Amr SS
    Water Sci Technol, 2016 Sep;74(6):1312-1325.
    PMID: 27685961
    The aim of this study is to investigate the performance of combined solar photo-catalyst of titanium oxide/zinc oxide (TiO2/ZnO) with aeration processes to treat petroleum wastewater. Central composite design with response surface methodology was used to evaluate the relationships between operating variables for TiO2 dosage, ZnO dosage, air flow, pH, and reaction time to identify the optimum operating conditions. Quadratic models for chemical oxygen demand (COD) and total organic carbon (TOC) removals prove to be significant with low probabilities (<0.0001). The obtained optimum conditions included a reaction time of 170 min, TiO2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), and pH 6.8 COD and TOC removal rates of 99% and 74%, respectively. The TOC and COD removal rates correspond well with the predicted models. The maximum removal rate for TOC and COD was 99.3% and 76%, respectively at optimum operational conditions of TiO2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), reaction time (170 min) and pH (6.8). The new treatment process achieved higher degradation efficiencies for TOC and COD and reduced the treatment time comparing with other related processes.
    Matched MeSH terms: Waste Water/chemistry*
  6. Tee HC, Lim PE, Seng CE, Mohd Nawi MA, Adnan R
    J Environ Manage, 2015 Jan 1;147:349-55.
    PMID: 25284799 DOI: 10.1016/j.jenvman.2014.09.025
    Horizontal subsurface-flow (HSF) constructed wetland incorporating baffles was developed to facilitate upflow and downflow conditions so that the treatment of pollutants could be achieved under multiple aerobic, anoxic and anaerobic conditions sequentially in the same wetland bed. The performances of the baffled and conventional HSF constructed wetlands, planted and unplanted, in the removal of azo dye Acid Orange 7 (AO7) were compared at the hydraulic retention times (HRT) of 5, 3 and 2 days when treating domestic wastewater spiked with AO7 concentration of 300 mg/L. The planted baffled unit was found to achieve 100%, 83% and 69% AO7 removal against 73%, 46% and 30% for the conventional unit at HRT of 5, 3 and 2 days, respectively. Longer flow path provided by baffled wetland units allowed more contact of the wastewater with the rhizomes, microbes and micro-aerobic zones resulting in relatively higher oxidation reduction potential (ORP) and enhanced performance as kinetic studies revealed faster AO7 biodegradation rate under aerobic condition. In addition, complete mineralization of AO7 was achieved in planted baffled wetland unit due to the availability of a combination of aerobic, anoxic and anaerobic conditions.
    Matched MeSH terms: Waste Water/chemistry
  7. Masood N, Zakaria MP, Halimoon N, Aris AZ, Magam SM, Kannan N, et al.
    Mar Pollut Bull, 2016 Jan 15;102(1):160-75.
    PMID: 26616745 DOI: 10.1016/j.marpolbul.2015.11.032
    Polycyclic aromatic hydrocarbons (PAHs) and linear alkylbenzenes (LABs) were used as anthropogenic markers of organic chemical pollution of sediments in the Selangor River, Peninsular Malaysia. This study was conducted on sediment samples from the beginning of the estuary to the upstream river during dry and rainy seasons. The concentrations of ƩPAHs and ƩLABs ranged from 203 to 964 and from 23 to 113 ng g(-1) dry weight (dw), respectively. In particular, the Selangor River was found to have higher sedimentary levels of PAHs and LABs during the wet season than in the dry season, which was primarily associated with the intensity of domestic wastewater discharge and high amounts of urban runoff washing the pollutants from the surrounding area. The concentrations of the toxic contaminants were determined according to the Sediment Quality Guidelines (SQGs). The PAH levels in the Selangor River did not exceed the SQGs, for example, the effects range low (ERL) value, indicating that they cannot exert adverse biological effects.
    Matched MeSH terms: Waste Water/chemistry
  8. Altowayti WAH, Othman N, Al-Gheethi A, Dzahir NHBM, Asharuddin SM, Alshalif AF, et al.
    Molecules, 2021 Oct 13;26(20).
    PMID: 34684757 DOI: 10.3390/molecules26206176
    Sustainable wastewater treatment is one of the biggest issues of the 21st century. Metals such as Zn2+ have been released into the environment due to rapid industrial development. In this study, dried watermelon rind (D-WMR) is used as a low-cost adsorption material to assess natural adsorbents' ability to remove Zn2+ from synthetic wastewater. D-WMR was characterized using scanning electron microscope (SEM) and X-ray fluorescence (XRF). According to the results of the analysis, the D-WMR has two colours, white and black, and a significant concentration of mesoporous silica (83.70%). Moreover, after three hours of contact time in a synthetic solution with 400 mg/L Zn2+ concentration at pH 8 and 30 to 40 °C, the highest adsorption capacity of Zn2+ onto 1.5 g D-WMR adsorbent dose with 150 μm particle size was 25 mg/g. The experimental equilibrium data of Zn2+ onto D-WMR was utilized to compare nonlinear and linear isotherm and kinetics models for parameter determination. The best models for fitting equilibrium data were nonlinear Langmuir and pseudo-second models with lower error functions. Consequently, the potential use of D-WMR as a natural adsorbent for Zn2+ removal was highlighted, and error analysis indicated that nonlinear models best explain the adsorption data.
    Matched MeSH terms: Waste Water/chemistry
  9. Abu Bakar AF, Yusoff I, Fatt NT, Othman F, Ashraf MA
    Biomed Res Int, 2013;2013:890803.
    PMID: 24102060 DOI: 10.1155/2013/890803
    The potential of three submerged aquatic plant species (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata) to be used for As, Al, and Zn phytoremediation was tested. The plants were exposed for 14 days under hydroponic conditions to mine waste water effluents in order to assess the suitability of the aquatic plants to remediate elevated multi-metals concentrations in mine waste water. The results show that the E. densa and H. verticillata are able to accumulate high amount of arsenic (95.2%) and zinc (93.7%) and resulted in a decrease of arsenic and zinc in the ambient water. On the other hand, C. piauhyensis shows remarkable aluminium accumulation in plant biomass (83.8%) compared to the other tested plants. The ability of these plants to accumulate the studied metals and survive throughout the experiment demonstrates the potential of these plants to remediate metal enriched water especially for mine drainage effluent. Among the three tested aquatic plants, H. verticillata was found to be the most applicable (84.5%) and suitable plant species to phytoremediate elevated metals and metalloid in mine related waste water.
    Matched MeSH terms: Waste Water/chemistry
  10. Salihu SO, Bakar NKA
    Environ Monit Assess, 2018 May 30;190(6):369.
    PMID: 29850927 DOI: 10.1007/s10661-018-6727-y
    The analysis of total organic carbon (TOC) by the American Public Health Association (APHA) closed-tube reflux colorimetric method requires potassium dichromate (K2Cr2O7), silver sulfate (AgSO4), and mercury (HgSO4) sulfate in addition to large volumes of both reagents and samples. The method relies on the release of oxygen from dichromate on heating which is consumed by carbon associated with organic compounds. The method risks environmental pollution by discharging large amounts of chromium (VI) and silver and mercury sulfates. The present method used potassium monochromate (K2CrO4) to generate the K2Cr2O7 on demand in the first phase. In addition, miniaturizing the procedure to semi microanalysis decreased the consumption of reagents and samples. In the second phase, mercury sulfate was eliminated as part of the digestion mixture through the introduction of sodium bismuthate (NaBiO3) for the removal of chlorides from the sample. The modified method, the potassium monochromate closed-tube colorimetry with sodium bismuthate chloride removal (KMCC-Bi), generates the potassium dichromate on demand and eliminates mercury sulfate. The semi microanalysis procedure leads to a 60% reduction in sample volume and ≈ 33.33 and 60% reduction in monochromate and silver sulfate consumption respectively. The LOD and LOQ were 10.17 and 33.90 mg L-1 for APHA, and 4.95 and 16.95 mg L-1 for KMCC-Bi. Recovery was between 83 to 98% APHA and 92 to 104% KMCC-Bi, while the RSD (%) ranged between 0.8 to 5.0% APHA and 0.00 to 0.62% KMCC-Bi. The method was applied for the UV-Vis spectrometry determination of COD in water and wastewater. Statistics was done by MINITAB 17 or MS Excel 2016. ᅟ Graphical abstract.
    Matched MeSH terms: Waste Water/chemistry*
  11. Oruganti RK, Katam K, Show PL, Gadhamshetty V, Upadhyayula VKK, Bhattacharyya D
    Bioengineered, 2022 Apr;13(4):10412-10453.
    PMID: 35441582 DOI: 10.1080/21655979.2022.2056823
    The scarcity of water resources and environmental pollution have highlighted the need for sustainable wastewater treatment. Existing conventional treatment systems are energy-intensive and not always able to meet stringent disposal standards. Recently, algal-bacterial systems have emerged as environmentally friendly sustainable processes for wastewater treatment and resource recovery. The algal-bacterial systems work on the principle of the symbiotic relationship between algae and bacteria. This paper comprehensively discusses the most recent studies on algal-bacterial systems for wastewater treatment, factors affecting the treatment, and aspects of resource recovery from the biomass. The algal-bacterial interaction includes cell-to-cell communication, substrate exchange, and horizontal gene transfer. The quorum sensing (QS) molecules and their effects on algal-bacterial interactions are briefly discussed. The effect of the factors such as pH, temperature, C/N/P ratio, light intensity, and external aeration on the algal-bacterial systems have been discussed. An overview of the modeling aspects of algal-bacterial systems has been provided. The algal-bacterial systems have the potential for removing micropollutants because of the diverse possible interactions between algae-bacteria. The removal mechanisms of micropollutants - sorption, biodegradation, and photodegradation, have been reviewed. The harvesting methods and resource recovery aspects have been presented. The major challenges associated with algal-bacterial systems for real scale implementation and future perspectives have been discussed. Integrating wastewater treatment with the algal biorefinery concept reduces the overall waste component in a wastewater treatment system by converting the biomass into a useful product, resulting in a sustainable system that contributes to the circular bioeconomy.
    Matched MeSH terms: Waste Water/chemistry
  12. Ab Halim MH, Nor Anuar A, Abdul Jamal NS, Azmi SI, Ujang Z, Bob MM
    J Environ Manage, 2016 Dec 15;184(Pt 2):271-280.
    PMID: 27720606 DOI: 10.1016/j.jenvman.2016.09.079
    The effect of temperature on the efficiency of organics and nutrients removal during the cultivation of aerobic granular sludge (AGS) in biological treatment of synthetic wastewater was studied. With this aim, three 3 L sequencing batch reactors (SBRs) with influent loading rate of 1.6 COD g (L d)(-1) were operated at different high temperatures (30, 40 and 50 °C) for simultaneous COD, phosphate and ammonia removal at a complete cycle time of 3 h. The systems were successfully started up and progressed to steady state at different cultivation periods. The statistical comparison of COD, phosphate and ammonia for effluent from the three SBRs revealed that there was a significant difference between groups of all the working temperatures of the bioreactors. The AGS cultivated at different high temperatures also positively correlated with the accumulation of elements including carbon, oxygen, phosphorus, silicon, iron, aluminium, calcium and magnesium that played important roles in the granulation process.
    Matched MeSH terms: Waste Water/chemistry
  13. Sumisha A, Arthanareeswaran G, Lukka Thuyavan Y, Ismail AF, Chakraborty S
    Ecotoxicol Environ Saf, 2015 Nov;121:174-9.
    PMID: 25890841 DOI: 10.1016/j.ecoenv.2015.04.004
    In this study, laundry wastewater filtration was studied using hydrophilic polyvinylpyrollidone (PVP) modified polyethersulfone (PES) ultrafiltration membranes. The performances of PES/PVP membranes were assessed using commercial PES membrane with 10kDa in ultrafiltration. Operating parameters The influence of transmembrane pressure (TMP) and stirring speed on laundry wastewater flux was investigated. A higher permeate flux of 55.2L/m(2)h was obtained for modified PES membrane with high concentration of PVP at TMP of 500kPa and 750rpm of stirring speed. The separation efficiencies of membranes were also studied with respect to chemical oxygen demand (COD), total dissolved solids (TDS), turbidity and conductivity. Results showed that PES membrane with 10% of PVP had higher permeate flux, flux recovery and less fouling when compared with other membranes. Higher COD and TDS rejection of 88% and 82% were also observed for modified membranes due to the improved surface property of membranes. This indicated that modified PES membranes are suitable for the treatment of surfactant, detergent and oil from laundry wastewater.
    Matched MeSH terms: Waste Water/chemistry*
  14. Ng YS, Chan DJC
    Int J Phytoremediation, 2018;20(12):1179-1186.
    PMID: 29053371 DOI: 10.1080/15226514.2017.1375895
    Macrophytes have been used to mitigate eutrophication and upgrade effluent quality via their nutrient removal capability. However, the available data are influenced by factors such as microbial activities, weather, and wastewater quality, making comparison between nutrient removal performance of different macrophytes almost impossible. In this study, phytoremediation by Spirodela polyrhiza, Salvinia molesta and Lemna sp. were carried out axenically in synthetic wastewater under controlled condition to precisely evaluate nutrient removal efficiency of NO3--N, PO43-, NH3-N, COD and pH in the water sample. The results showed that ammonia removal was rapid, significant for S. polyrhiza and Lemna sp., with efficiency of 60% and 41% respectively within 2 days. S. polyrhiza was capable of reducing 30% of the nitrate. Lemna sp. achieved the highest phosphate reduction of 86% at day 12 to mere 1.07 mg/L PO43--P. Correlation was found between COD and TC, suggesting the release of organic substances by macrophytes into the medium. All the macrophytes showed biomass increment. S. polyrhiza outperformed other macrophytes in nutrient removal despite lower biomass production. The acquired nutrient removal profiles can serve as a guideline for the selection of suitable macrophytes in wastewater treatment and to evaluate microbial activity in non-aseptic phytoremediation system.
    Matched MeSH terms: Waste Water/chemistry*
  15. Huong DTM, Chai WS, Show PL, Lin YL, Chiu CY, Tsai SL, et al.
    Int J Biol Macromol, 2020 Dec 01;164:3873-3884.
    PMID: 32896561 DOI: 10.1016/j.ijbiomac.2020.09.020
    Water pollution caused by dyes has been a serious problem affecting human health and environment. The surface of polyacrylonitrile (PAN) nanofiber membranes was modified by mild hydrolysis and coupled with bovine serum albumin (BSA) obtained from the laboratory wastes, resulting in the synthesis of P-COOH and P-COOH-BSA nanofibers. The nanofibers with specific functional groups may enhance their potential applications toward the removal of ionic dyes in wastewater. Toluidine blue O (TBO) was applied as an example of cationic dye to evaluate the removal efficiency of P-COOH-BSA nanofiber. Results showed that the equilibrium dissociation constant and maximum removal capacity were 0.48 mg/mL and 434.78 mg/g, respectively, at pH 12, where the TBO removal can be explained based on Langmuir isotherm and pseudo-second-order model. Desorption studies have shown that TBO adsorbed on P-COOH-BSA protein membrane can be completely eluted with either 1 M NaCl or 50% glycerol. The results of repeated studies indicated that after five consecutive adsorption/desorption cycles, the removal efficiency of TBO can be maintained at ~97%. P-COOH-BSA has shown to be promising adsorbent in TBO dye removal from dye wastewater.
    Matched MeSH terms: Waste Water/chemistry*
  16. Cheng TH, Sankaran R, Show PL, Ooi CW, Liu BL, Chai WS, et al.
    Int J Biol Macromol, 2021 Aug 31;185:761-772.
    PMID: 34216668 DOI: 10.1016/j.ijbiomac.2021.06.177
    Cylinder-shaped NaY zeolite was used as an adsorbent for eradicating both heavy metal ions (Cu2+, Zn2+, Ni2+, and Co2+) and proteins from the waste streams. As a pseudo-metal ion affinity adsorbent, NaY zeolite was used in the capture of heavy metal ions in the first stage. The amount (molar basis) of metal ions adsorbed onto NaY zeolite decreased in the order of Cu2+ > Zn2+ > Co2+ > Ni2+. Bovine serum albumin (BSA) was utilized as a model of proteins used in the waste adsorption process by NaY zeolite. The adsorption capacities of NaY zeolite and Cu/NaY zeolite for BSA were 14.90 mg BSA/g zeolite and 84.61 mg BSA/g zeolite, respectively. Moreover, Cu/NaY zeolite was highly stable in the solutions made of 2 M NaCl, 500 mM imidazole or 125 mM EDTA solutions. These conditions indicated that the minimal probability of secondary contamination caused by metal ions and soluble proteins in the waste stream. This study demonstrates the potential of Cu/NaY zeolite complex as an efficient pseudo-metal chelate adsorbent that could remove metal ions and water-soluble proteins from wastewater concurrently.
    Matched MeSH terms: Waste Water/chemistry
  17. How SW, Nittami T, Ngoh GC, Curtis TP, Chua ASM
    Chemosphere, 2020 Nov;259:127444.
    PMID: 32640378 DOI: 10.1016/j.chemosphere.2020.127444
    In this study, we assessed and optimized a low-dissolved-oxygen oxic-anoxic (low-DO OA) process to achieve a low-cost and sustainable solution for wastewater treatment systems in the developing tropical countries treating low chemical oxygen demand-to-nitrogen ratio (COD/N) wastewater. The low-DO OA process attained complete ammonia removal and the effluent nitrate nitrogen (NO3-N) was below 0.3 mg/L. The recommended hydraulic retention time and sludge retention time (SRT) were 16 h and 20 days, respectively. The 16S rRNA sequencing data revealed that long SRT (20 days) encouraged the growth of nitrite-oxidizing bacteria (NOB) affiliated with "Candidatus Nitrospira defluvii". Comammox made up 10-20% of the Nitrospira community. NOB and comammox related to Nitrospira were enriched at long SRT (20 days) to achieve good low-DO nitrification performance. The low-DO OA process was efficient and has simpler design than conventional processes, which are keys for sustainable wastewater treatment systems in the developing countries treating low COD/N wastewater.
    Matched MeSH terms: Waste Water/chemistry
  18. How SW, Chua ASM, Ngoh GC, Nittami T, Curtis TP
    Sci Total Environ, 2019 Nov 25;693:133526.
    PMID: 31376760 DOI: 10.1016/j.scitotenv.2019.07.332
    Many wastewater treatment plants (WWTPs) operating in biological nitrogen removal activated sludge process in the tropics are facing the pressure of increasingly stringent effluent standards while seeking solutions to reduce the plants' energy consumption and operating cost. This study investigated the feasibility of applying low-dissolved oxygen (low-DO) nitrification and utilizing slowly-biodegradable chemical oxygen demand (sbCOD) for denitrification, which helps to reduce energy usage and operating cost in treating low soluble COD-to-nitrogen tropical wastewater. The tropical wastewater was first characterized using wastewater fractionation and respirometry batch tests. Then, a lab-scale sequencing batch reactor (SBR) was operated to evaluate the long-term stability of low-DO nitrification and utilizing sbCOD for denitrification in an anoxic-oxic (AO) process treating tropical wastewater. The wastewater fractionation experiment revealed that particulate settleable solids (PSS) in the wastewater provided slowly-biodegradable COD (sbCOD), which made up the major part (51 ± 10%) of the total COD. The PSS hydrolysis rate constant at tropical temperature (30 °C) was 2.5 times higher than that at 20 °C, suggesting that sbCOD may be utilized for denitrification. During the SBR operation, high nitrification efficiency (93 ± 6%) was attained at low-DO condition (0.9 ± 0.1 mg O2/L). Utilizing sbCOD for post-anoxic denitrification in the SBR reduced the effluent nitrate concentration. Quantitative polymerase chain reaction, 16S rRNA amplicon sequencing and fluorescence in-situ hybridization revealed that the genus Nitrospira was a dominant nitrifier. 16S rRNA amplicon sequencing result suggested that 50% of the Nitrospira-related operational taxonomic units were affiliated with comammox, which may imply that the low-DO condition and the warm wastewater promoted their growth. The nitrogen removal in a tropical AO process was enhanced by incorporating low-DO nitrification and utilizing sbCOD for post-anoxic denitrification, which contributes to an improved energy sustainability of WWTPs.
    Matched MeSH terms: Waste Water/chemistry
  19. Kardi SN, Ibrahim N, Rashid NAA, Darzi GN
    Environ Sci Pollut Res Int, 2019 Jul;26(21):21201-21215.
    PMID: 31115820 DOI: 10.1007/s11356-019-05204-z
    One of the biggest challenges of using single-chamber microbial fuel cells (MFCs) that utilize proton-exchange membrane (PEM) air cathode for bioenergy recovery from recalcitrant organic compounds present in wastewater is mainly attributed to their high internal resistance in the anodic chamber of the single microbial fuel cell (MFC) configurations. The high internal resistance is due to the small surface area of the anode and cathode electrodes following membrane biofouling and pH splitting conditions as well as substrate and oxygen crossover through the membrane pores by diffusion. To address this issue, the fabrication of new PEM air-cathode single-chamber MFC configuration was investigated with inner channel flow open assembled with double PEM air cathodes (two oxygen reduction activity zones) coupled with spiral-anode MFC (2MA-CsS-AMFC). The effect of various proton-exchange membranes (PEMs), including Nafion 117 (N-117), Nafion 115 (N-115), and Nafion 212 (N-212) with respective thicknesses of 183, 127, and 50.08 μ, was separately incorporated into carbon cloth as PEM air-cathode electrode to evaluate their influences on the performance of the 2MA-CsS-AMFC configuration operated in fed-batch mode, while Azorubine dye was selected as the recalcitrant organic compound. The fed-batch test results showed that the 2MA-CsS-AMFC configuration with PEM N-115 operated at Azorubine dye concentration of 300 mg L-1 produced the highest power density of 1022.5 mW m-2 and open-circuit voltage (OCV) of 1.20 V coupled with enhanced dye removal (4.77 mg L h-1) compared to 2MA-CsS-AMFCs with PEMs N-117 and N-212 and those in previously published data. Interestingly, PEM 115 showed remarkable reduction in biofouling and pH splitting. Apart from that, mass transfer coefficient of PEM N-117 was the most permeable to oxygen (KO = 1.72 × 10-4 cm s-1) and PEM N-212 was the most permeable membrane to Azorubine (KA = 7.52 × 10-8 cm s-1), while PEM N-115 was the least permeable to both oxygen (KO = 1.54 × 10-4) and Azorubine (KA = 7.70 × 10-10). The results demonstrated that the 2MA-CsS-AMFC could be promising configuration for bioenergy recovery from wastewater treatment under various PEMs, while application of PEM N-115 produced the best performance compared to PEMs N-212 and N-117 and those in previous studies of membrane/membrane-less air-cathode single-chamber MFCs that consumed dye wastewater.
    Matched MeSH terms: Waste Water/chemistry
  20. Tisa F, Raman AA, Daud WM
    ScientificWorldJournal, 2014;2014:348974.
    PMID: 25309949 DOI: 10.1155/2014/348974
    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe(3+) and Fe(2+) mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40-90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment.
    Matched MeSH terms: Waste Water/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links