Displaying publications 1 - 20 of 78 in total

Abstract:
Sort:
  1. Nayeem A, Mizi F, Ali MF, Shariffuddin JH
    Environ Res, 2023 Jan 01;216(Pt 2):114514.
    PMID: 36216117 DOI: 10.1016/j.envres.2022.114514
    The paper demonstrates the capability of using cockle shells as an adsorbent for phosphorus removal from simulated petrochemical wastewater, focusing on the actual condition of the petrochemical facultative pond. In this study, the physicochemical properties of shell powder were determined, such as the functional groups, surface morphology, crystalline structure, and surface area using FTIR, SEM, EDX, XRD, and BET. It was observed that the optimum conditions for effective phosphorus removal are under the presence of rotational speed (125 rpm), higher dosage (7 g/L), and larger surface area (smaller particle size) of the shell powder. Fine powder achieved up to 52.27% of phosphorus removal after 40 min compared to coarse powder which could only give 16.67% removal. Additionally, calcined shell powder demonstrated a higher phosphorus removal rate, i.e., up to 62.37%, compared to raw shell powders. The adsorption isotherm was studied using Langmuir and Freundlich models, but the isothermal data fit better for the Freundlich model (R2 = 0.9836). Overall, this study has successfully generated a greener and low-cost adsorbent.
    Matched MeSH terms: Waste Water/chemistry
  2. Mohammed Modawe Alshik Edris N, Sulaiman Y
    Ecotoxicol Environ Saf, 2020 Oct 15;203:111026.
    PMID: 32888594 DOI: 10.1016/j.ecoenv.2020.111026
    The detection of phenolic compounds, i.e. resorcinol (RC) catechol (CC) and hydroquinone (HQ) are important due to their extremely hazardous impact and poor environmental degradation. In this work, a novel and sensitive composite of electrochemically reduced graphene oxide-poly(Procion Red MX-5B)/gold nanoparticles modified glassy carbon electrode (GCE/ERGO-poly(PR)/AuNPs) was assembled for voltammetric detection of benzenediol isomers (RC, CC, and HQ). The nanocomposite displayed high peak currents towards the oxidation of RC, HQ, and CC compared to non-modified GCE. The peak-to-peak separations were 0.44 and 0.10 V for RC-CC and CC-HQ, respectively. The limit of detections were 53, 53, and 79 nM for HQ, CC, and RC with sensitivities of 4.61, 4.38, and 0.56 μA/μM (S/N = 3), respectively. The nanocomposite displayed adequate reproducibility, besides good stability and acceptable recoveries for wastewater and cosmetic samples analyses.
    Matched MeSH terms: Waste Water/chemistry
  3. Yavari S, Malakahmad A, Sapari NB, Yavari S
    Water Sci Technol, 2017 Apr;75(7-8):1684-1692.
    PMID: 28402310 DOI: 10.2166/wst.2017.043
    Phytoremediation is an environmentally friendly and sustainable alternative for treatment of nitrogen-enriched wastewaters. In this study, Ta-khian (Hopea odorata) and Lagos mahogany (Khaya ivorensis), two tropical timber plants, were investigated for their performances in treatment of urea manufacturing factory effluent with high nitrogen (N) content. Plant seedlings received four concentrations of N (190, 240, 290 and 340 mg/L N) in laboratory-scale constructed wetlands every 4 days for a duration of 8 weeks. The solution volumes supplied to each container, amount of N recovered by plants and plant growth characteristics were measured throughout the experiment. Results showed that Ta-khian plants were highly effective at reducing N concentration and volume of water. A maximum of 63.05% N recovery was obtained by Ta-khian plants grown in 290 mg/L N, which was assimilated in the chlorophyll molecule structure and shoot biomass. Significant positive correlations have been shown between N recovery percentages and plant growth parameters. Ta-Khian plants can be applied as suitable phytoremediators for mitigating N pollution in water sources.
    Matched MeSH terms: Waste Water/chemistry
  4. Sumisha A, Arthanareeswaran G, Lukka Thuyavan Y, Ismail AF, Chakraborty S
    Ecotoxicol Environ Saf, 2015 Nov;121:174-9.
    PMID: 25890841 DOI: 10.1016/j.ecoenv.2015.04.004
    In this study, laundry wastewater filtration was studied using hydrophilic polyvinylpyrollidone (PVP) modified polyethersulfone (PES) ultrafiltration membranes. The performances of PES/PVP membranes were assessed using commercial PES membrane with 10kDa in ultrafiltration. Operating parameters The influence of transmembrane pressure (TMP) and stirring speed on laundry wastewater flux was investigated. A higher permeate flux of 55.2L/m(2)h was obtained for modified PES membrane with high concentration of PVP at TMP of 500kPa and 750rpm of stirring speed. The separation efficiencies of membranes were also studied with respect to chemical oxygen demand (COD), total dissolved solids (TDS), turbidity and conductivity. Results showed that PES membrane with 10% of PVP had higher permeate flux, flux recovery and less fouling when compared with other membranes. Higher COD and TDS rejection of 88% and 82% were also observed for modified membranes due to the improved surface property of membranes. This indicated that modified PES membranes are suitable for the treatment of surfactant, detergent and oil from laundry wastewater.
    Matched MeSH terms: Waste Water/chemistry*
  5. Mook WT, Ajeel MA, Aroua MK, Szlachta M
    J Environ Sci (China), 2017 Apr;54:184-195.
    PMID: 28391928 DOI: 10.1016/j.jes.2016.02.003
    In this work a novel anode configuration consisting of an iron mesh double layer is proposed for the electrochemical treatment of wastewater. The removal of Reactive Black 5 dye (RB5) from synthetic contaminated water was used as a model system. At a constant anode surface area, identical process operating parameters and batch process mode, the iron mesh double layer electrode showed better performance compared to the conventional single layer iron mesh. The double layer electrode was characterized by RB5 and chemical oxygen demand (COD) removal efficiency of 98.2% and 97.7%, respectively, kinetic rate constant of 0.0385/min, diffusion coefficient of 4.9×10(-5)cm(2)/sec and electrical energy consumption of 20.53kWh/kgdye removed. In the continuous flow system, the optimum conditions suggested by Response Surface Methodology (RSM) are: initial solution pH of 6.29, current density of 1.6mA/cm(2), electrolyte dose of 0.15g/L and flow rate of 11.47mL/min which resulted in an RB5 removal efficiency of 81.62%.
    Matched MeSH terms: Waste Water/chemistry
  6. Abdulsalam M, Che Man H, Isma Idris A, Zainal Abidin Z, Faezah Yunos K
    PMID: 30304814 DOI: 10.3390/ijerph15102200
    Palm oil mill effluent contains carcinogenic coloured compounds that are difficult to separate due to their aromatic structure. Though colour treatment using adsorption processes at lower pH (<4) have been reported effectual, due to its acidity the remediated effluent poses an environmental hazard as a result. Thus, the current study focused on achieving decolourization at neutral pH by enhancing the morphology of the coconut shell activated carbon (CSAC) using N₂ as activating-agent with microwave irradiation heating. The microwave pretreated and non-pretreated CSAC were characterized using scanned electron microscopy (SEM), energy dispersive X-ray (EDX) and Brunauer-Emmett-Teller (BET) analysis. A significant modification in the porous structure with a 66.62% increase in the specific surface area was achieved after the pretreatment. The adsorption experimental matrix was developed using the central composite design to investigate the colour adsorption performance under varied pH (6⁻7), dosage (2⁻6 g) and contact time (10⁻100 min). At optimum conditions of neutral pH (7), 3.208 g dosage and contact time of 35 min, the percentage of colour removal was 96.29% with negligible differences compared with the predicted value, 95.855%. The adsorption equilibrium capacity of 1430.1 ADMI × mL/g was attained at the initial colour concentration of 2025 ADMI at 27 °C. The experimental data fitted better with the Freundlich isotherm model with R² 0.9851.
    Matched MeSH terms: Waste Water/chemistry*
  7. Chen WL, Ling YS, Lee DJH, Lin XQ, Chen ZY, Liao HT
    Chemosphere, 2020 Mar;242:125268.
    PMID: 31896175 DOI: 10.1016/j.chemosphere.2019.125268
    This study investigated chlorinated transformation products (TPs) and their parent micropollutants, aromatic pharmaceuticals and personal care products (PPCPs) in the urban water bodies of two metropolitan cities. Nine PPCPs and 16 TPs were quantitatively or semi-quantitatively determined using isotope dilution techniques and liquid chromatography-tandem mass spectrometry. TPs and most PPCPs were effectively removed by conventional wastewater treatments in a wastewater treatment plant (WWTP). Chlorinated parabens and all PPCPs (at concentrations below 1000 ng/L) were present in the waters receiving treated wastewater. By contrast, the waters receiving untreated wastewater contained higher levels of PPCPs (up to 9400 ng/L) and more species of chlorinated TPs including chlorinated parabens, triclosan, diclofenac, and bisphenol A. The very different chemical profiles between the water bodies of the two cities of similar geographical and climatic properties may be attributed to their respective uses of chemicals and policies of wastewater management. No apparent increase in the number of species or abundances of TPs was observed in either the chlorinated wastewater or the seawater rich in halogens. This is the first study to elucidate and compare the profiles of multiple TPs and their parent PPCPs in the water bodies of coastal cities from tropical islands. Our findings suggest that chlorinated derivatives of bisphenol A, diclofenac, triclosan, and parabens in the surface water originate from sources other than wastewater disinfection or marine chlorination. Although further studies are needed to identify the origins, conventional wastewater treatments may protect natural water bodies against contamination by those chlorinated substances.
    Matched MeSH terms: Waste Water/chemistry*
  8. Abdullah Issa M, Z Abidin Z
    Molecules, 2020 Aug 03;25(15).
    PMID: 32756377 DOI: 10.3390/molecules25153541
    As a remedy for environmental pollution, a versatile synthetic approach has been developed to prepare polyvinyl alcohol (PVA)/nitrogen-doped carbon dots (CDs) composite film (PVA-CDs) for removal of toxic cadmium ions. The CDs were first synthesized using carboxymethylcellulose (CMC) of oil palms empty fruit bunch wastes with the addition of polyethyleneimine (PEI) and then the CDs were embedded with PVA. The PVA-CDs film possess synergistic functionalities through increasing the content of hydrogen bonds for chemisorption compared to the pure CDs. Optical analysis of PVA-CDs film was performed by ultraviolet-visible and fluorescence spectroscopy. Compared to the pure CDs, the solid-state PVA-CDs displayed a bright blue color with a quantum yield (QY) of 47%; they possess excitation-independent emission and a higher Cd2+ removal efficiency of 91.1%. The equilibrium state was achieved within 10 min. It was found that adsorption data fit well with the pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption uptake was 113.6 mg g-1 at an optimal pH of 7. Desorption experiments showhe that adsorbent can be reused fruitfully for five adsorption-desorption cycles using 0.1 HCl elution. The film was successfully applied to real water samples with a removal efficiency of 95.34% and 90.9% for tap and drinking water, respectively. The fabricated membrane is biodegradable and its preparation follows an ecofriendly green route.
    Matched MeSH terms: Waste Water/chemistry*
  9. Ting YF, Praveena SM
    Environ Monit Assess, 2017 Apr;189(4):178.
    PMID: 28342046 DOI: 10.1007/s10661-017-5890-x
    Steroid estrogens, such as estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethinylestradiol (EE2), are natural and synthetic hormones released into the environment through incomplete sewage discharge. This review focuses on the sources of steroid estrogens in wastewater treatment plants (WWTPs). The mechanisms and fate of steroid estrogens throughout the entire wastewater treatment system are also discussed, and relevant information on regulatory aspects is given. Municipal, pharmaceutical industry, and hospitals are the main sources of steroid estrogens that enter WWTPs. A typical WWTP comprises primary, secondary, and tertiary treatment units. Sorption and biodegradation are the main mechanisms for removal of steroid estrogens from WWTPs. The fate of steroid estrogens in WWTPs depends on the types of wastewater treatment systems. Steroid estrogens in the primary treatment unit are removed by sorption onto primary sludge, followed by sorption onto micro-flocs and biodegradation by microbes in the secondary treatment unit. Tertiary treatment employs nitrification, chlorination, or UV disinfection to improve the quality of the secondary effluent. Activated sludge treatment systems for steroid estrogens exhibit a removal efficiency of up to 100%, which is higher than that of the trickling filter treatment system (up to 75%). Moreover, the removal efficiency of advance treatment systems exceeds 90%. Regulatory aspects related to steroid estrogens are established, especially in the European Union. Japan is the only Asian country that implements a screening program and is actively involved in endocrine disruptor testing and assessment. This review improves our understanding of steroid estrogens in WWTPs, proposes main areas to be improved, and provides current knowledge on steroid estrogens in WWTPs for sustainable development.
    Matched MeSH terms: Waste Water/chemistry
  10. Osman WH, Abdullah SR, Mohamad AB, Kadhum AA, Rahman RA
    J Environ Manage, 2013 May 30;121:80-6.
    PMID: 23524399 DOI: 10.1016/j.jenvman.2013.02.005
    A lab-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR), a combined adsorption and biological process, was developed to treat real wastewater from a recycled paper mill. In this study, one-consortia of mixed culture (4000-5000 mg/L) originating from recycled paper mill activated sludge from Kajang, Malaysia was acclimatized. The GAC-SBBR was fed with real wastewater taken from the same recycled paper mill, which had a high concentration of chemical oxygen demand (COD) and adsorbable organic halides (AOX). The operational duration of the GAC-SBBR was adjusted from 48 h to 24, 12 and finally 8 h to evaluate the effect of the hydraulic retention time (HRT) on the simultaneous removal of COD and AOX. The COD and AOX removals were in the range of 53-92% and 26-99%, respectively. From this study, it was observed that the longest HRT (48 h) yielded a high removal of COD and AOX, at 92% and 99%, respectively.
    Matched MeSH terms: Waste Water/chemistry*
  11. Tisa F, Raman AA, Daud WM
    ScientificWorldJournal, 2014;2014:348974.
    PMID: 25309949 DOI: 10.1155/2014/348974
    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe(3+) and Fe(2+) mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40-90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment.
    Matched MeSH terms: Waste Water/chemistry*
  12. Harruddin N, Othman N, Ee Sin AL, Raja Sulaiman RN
    Environ Technol, 2015 Jan-Feb;36(1-4):271-80.
    PMID: 25514128 DOI: 10.1080/09593330.2014.943301
    Effluent containing colour/dyes, especially reactive dyes, becomes a great concern of wastewater treatment because it is toxic to human life and aquatic life. In this study, reactive dye of Black B was separated using the supported liquid membrane process. Commercial polypropylene membrane was used as a support of the kerosene-tridodecylamine liquid membrane. Several parameters were tested and the result showed that almost 100% of 70 ppm Black B was removed and 99% of 70 ppm Black B was recovered at pH 2 of the feed phase containing 0.00001 M Na2SiO3, flow rate of 150 ml/min and 0.2 M NaOH. The membrane support also remained stable for up to 36 hours under an optimum condition.
    Matched MeSH terms: Waste Water/chemistry*
  13. Tijani HI, Abdullah N, Yuzir A, Ujang Z
    Bioresour Technol, 2015 Jun;186:276-85.
    PMID: 25836036 DOI: 10.1016/j.biortech.2015.02.107
    The structural and hydrodynamic features for granules were characterized using settling experiments, predefined mathematical simulations and ImageJ-particle analyses. This study describes the rheological characterization of these biologically immobilized aggregates under non-Newtonian flows. The second order dimensional analysis defined as D2=1.795 for native clusters and D2=1.099 for dewatered clusters and a characteristic three-dimensional fractal dimension of 2.46 depicts that these relatively porous and differentially permeable fractals had a structural configuration in close proximity with that described for a compact sphere formed via cluster-cluster aggregation. The three-dimensional fractal dimension calculated via settling-fractal correlation, U∝l(D) to characterize immobilized granules validates the quantitative measurements used for describing its structural integrity and aggregate complexity. These results suggest that scaling relationships based on fractal geometry are vital for quantifying the effects of different laminar conditions on the aggregates' morphology and characteristics such as density, porosity, and projected surface area.
    Matched MeSH terms: Waste Water/chemistry*
  14. Cheng TH, Sankaran R, Show PL, Ooi CW, Liu BL, Chai WS, et al.
    Int J Biol Macromol, 2021 Aug 31;185:761-772.
    PMID: 34216668 DOI: 10.1016/j.ijbiomac.2021.06.177
    Cylinder-shaped NaY zeolite was used as an adsorbent for eradicating both heavy metal ions (Cu2+, Zn2+, Ni2+, and Co2+) and proteins from the waste streams. As a pseudo-metal ion affinity adsorbent, NaY zeolite was used in the capture of heavy metal ions in the first stage. The amount (molar basis) of metal ions adsorbed onto NaY zeolite decreased in the order of Cu2+ > Zn2+ > Co2+ > Ni2+. Bovine serum albumin (BSA) was utilized as a model of proteins used in the waste adsorption process by NaY zeolite. The adsorption capacities of NaY zeolite and Cu/NaY zeolite for BSA were 14.90 mg BSA/g zeolite and 84.61 mg BSA/g zeolite, respectively. Moreover, Cu/NaY zeolite was highly stable in the solutions made of 2 M NaCl, 500 mM imidazole or 125 mM EDTA solutions. These conditions indicated that the minimal probability of secondary contamination caused by metal ions and soluble proteins in the waste stream. This study demonstrates the potential of Cu/NaY zeolite complex as an efficient pseudo-metal chelate adsorbent that could remove metal ions and water-soluble proteins from wastewater concurrently.
    Matched MeSH terms: Waste Water/chemistry
  15. Rusmin R, Sarkar B, Tsuzuki T, Kawashima N, Naidu R
    Chemosphere, 2017 Nov;186:1006-1015.
    PMID: 28838038 DOI: 10.1016/j.chemosphere.2017.08.036
    A palygorskite-iron oxide nanocomposite (Pal-IO) was synthesized in situ by embedding magnetite into the palygorskite structure through co-precipitation method. The physico-chemical characteristics of Pal-IO and their pristine components were examined through various spectroscopic and micro-analytical techniques. Batch adsorption experiments were conducted to evaluate the performance of Pal-IO in removing Pb(II) from aqueous solution. The surface morphology, magnetic recyclability and adsorption efficiency of regenerated Pal-IO using desorbing agents HCl (Pal-IO-HCl) and ethylenediaminetetraacetic acid disodium salt (EDTA-Na2) (Pal-IO-EDTA) were compared. The nanocomposite showed a superparamagnetic property (magnetic susceptibility: 20.2 emu g-1) with higher specific surface area (99.8 m2 g-1) than the pristine palygorskite (49.4 m2 g-1) and iron oxide (72.6 m2 g-1). Pal-IO showed a maximum Pb(II) adsorption capacity of 26.6 mg g-1 (experimental condition: 5 g L-1 adsorbent loading, 150 agitations min-1, initial Pb(II) concentration from 20 to 500 mg L-1, at 25 °C) with easy separation of the spent adsorbent. The adsorption data best fitted to the Langmuir isotherm model (R2 = 0.9995) and pseudo-second order kinetic model (R2 = 0.9945). Pb(II) desorption using EDTA as the complexing agent produced no disaggregation of Pal-IO crystal bundles, and was able to preserve the composite's magnetic recyclability. Pal-IO-EDTA exhibited almost 64% removal capacity after three cycles of regeneration and preserved the nanocomposite's structural integrity and magnetic properties (15.6 emu g-1). The nanocomposite holds advantages as a sustainable material (easily separable and recyclable) for potential application in purifying heavy metal contaminated wastewaters.
    Matched MeSH terms: Waste Water/chemistry
  16. Choong CE, Ibrahim S, Yoon Y, Jang M
    Ecotoxicol Environ Saf, 2018 Feb;148:142-151.
    PMID: 29040822 DOI: 10.1016/j.ecoenv.2017.10.025
    In this work, palm shell waste powder activated carbon coated by magnesium silicate (PPAC-MS) were synthesized by the impregnation of magnesium silicate (MgSiO3) using economical material (silicon dioxide powder) via mild hydrothermal approach for the first time. As an effective adsorbent, PPAC-MS simultaneously removes BPA and Pb(II) in single and binary mode. Surprisingly, PPAC-MS exhibited a homogeneous thin plate mesh-like structure, as well as meso- and macropores with a high surface area of 772.1m2g-1. Due to its specific morphological characteristics, PPAC-MS had adsorption capacities of Pb(II) as high as 419.9mgg-1 and 408.8mgg-1 in single mode and binary mode based on Freudliuch isotherm model while those for BPA by PPAC-MS were 168.4mgg-1 and 254.7mgg-1 for single mode and binary modes corresponding to Langmuir isotherm model. Experiment results also indicated that the synergistic removal of BPA occurred because the precipitation process of Pb(II) leads to the co-precipitation of BPA with Pb(OH)2 compound. PPAC-MS showed a good reusability for 5 regeneration cycles using Mg(II) solution followed by thermal treatment. Overall, PPAC-MS has a high potential in the treatment process for wastewater containing both toxic heavy metals and emerging pollutants due to its high sorption capacities and reusability.
    Matched MeSH terms: Waste Water/chemistry*
  17. Huong DTM, Chai WS, Show PL, Lin YL, Chiu CY, Tsai SL, et al.
    Int J Biol Macromol, 2020 Dec 01;164:3873-3884.
    PMID: 32896561 DOI: 10.1016/j.ijbiomac.2020.09.020
    Water pollution caused by dyes has been a serious problem affecting human health and environment. The surface of polyacrylonitrile (PAN) nanofiber membranes was modified by mild hydrolysis and coupled with bovine serum albumin (BSA) obtained from the laboratory wastes, resulting in the synthesis of P-COOH and P-COOH-BSA nanofibers. The nanofibers with specific functional groups may enhance their potential applications toward the removal of ionic dyes in wastewater. Toluidine blue O (TBO) was applied as an example of cationic dye to evaluate the removal efficiency of P-COOH-BSA nanofiber. Results showed that the equilibrium dissociation constant and maximum removal capacity were 0.48 mg/mL and 434.78 mg/g, respectively, at pH 12, where the TBO removal can be explained based on Langmuir isotherm and pseudo-second-order model. Desorption studies have shown that TBO adsorbed on P-COOH-BSA protein membrane can be completely eluted with either 1 M NaCl or 50% glycerol. The results of repeated studies indicated that after five consecutive adsorption/desorption cycles, the removal efficiency of TBO can be maintained at ~97%. P-COOH-BSA has shown to be promising adsorbent in TBO dye removal from dye wastewater.
    Matched MeSH terms: Waste Water/chemistry*
  18. Lee SH, Choi H, Kim KW
    Environ Geochem Health, 2018 Oct;40(5):2119-2129.
    PMID: 29536286 DOI: 10.1007/s10653-018-0087-y
    To develop a novel granular adsorbent to remove arsenic and antimony from water, calcined Mg/Al-layered double-hydroxide (CLDH)-incorporated polyethersulfone (PES) granular adsorbents (PES-LDH) were prepared using a core-shell method having 25% PES in an N,N-dimethylformamide solution. The PES-LDH displayed a spherical hollow shape having a rough surface and the average particle size of 1-2 mm. On the PES-LDH surface, nanosized CLDH (100-150 nm) was successfully immobilized by consolidation between PES and CLDH. The adsorption of Sb(V) by PES-LDH was found to be more favorable than for As(V), with the maximum adsorption capacity of As(V) and Sb(V) being 7.44 and 22.8 mg/g, respectively. The regeneration results indicated that a 0.5 M NaOH and 5 M NaCl mixed solution achieved an 80% regeneration efficiency in As(V) adsorption and desorption. However, the regeneration efficiency of Sb(V) gradually decreased due to its strong binding affinity, even though the PES-LDH showed much higher Sb(V) adsorption efficiency than As(V). This study suggested that PES-LDH could be a promising granular adsorbent for the remediation of As(V) and Sb(V) contained in wastewater.
    Matched MeSH terms: Waste Water/chemistry*
  19. Wong YM, Show PL, Wu TY, Leong HY, Ibrahim S, Juan JC
    J Biosci Bioeng, 2019 Feb;127(2):150-159.
    PMID: 30224189 DOI: 10.1016/j.jbiosc.2018.07.012
    Bio-hydrogen production from wastewater using sludge as inoculum is a sustainable approach for energy production. This study investigated the influence of initial pH and temperature on bio-hydrogen production from dairy wastewater using pretreated landfill leachate sludge (LLS) as an inoculum. The maximum yield of 113.2 ± 2.9 mmol H2/g chemical oxygen demand (COD) (12.8 ± 0.3 mmol H2/g carbohydrates) was obtained at initial pH 6 and 37 °C. The main products of volatile fatty acids were acetate and butyrate with the ratio of acetate:butyrate was 0.4. At optimum condition, Gibb's free energy was estimated at -40 kJ/mol, whereas the activation enthalpy and entropy were 65 kJ/mol and 0.128 kJ/mol/l, respectively. These thermodynamic quantities suggest that bio-hydrogen production from dairy wastewater using pretreated LLS as inoculum was effective and efficient. In addition, genomic and bioinformatics analyses were performed in this study.
    Matched MeSH terms: Waste Water/chemistry*
  20. Abu Tawila ZM, Ismail S, Dadrasnia A, Usman MM
    Molecules, 2018 Oct 18;23(10).
    PMID: 30340415 DOI: 10.3390/molecules23102689
    The production, optimization, and characterization of the bioflocculant QZ-7 synthesized by a novel Bacillus salmalaya strain 139SI isolated from a private farm soil in Selangor, Malaysia, are reported. The flocculating activity of bioflocculant QZ-7 present in the selected strain was found to be 83.3%. The optimal culture for flocculant production was achieved after cultivation at 35.5 °C for 72 h at pH 7 ± 0.2, with an inoculum size of 5% (v/v) and sucrose and yeast extract as carbon and nitrogen sources. The maximum flocculating activity was found to be 92.6%. Chemical analysis revealed that the pure bioflocculant consisted of 79.08% carbohydrates and 15.4% proteins. The average molecular weight of the bioflocculant was calculated to be 5.13 × 10⁵ Da. Infrared spectrometric analysis showed the presence of carboxyl (COO-), hydroxyl (-OH), and amino (-NH₂) groups, polysaccharides and proteins. The bioflocculant QZ-7 exhibited a wide pH stability range from 4 to 7, with a flocculation activity of 85% at pH 7 ± 0.2. In addition, QZ-7 was thermally stable and retained more than 80% of its flocculating activity after being heated at 80 °C for 30 min. SEM analysis revealed that QZ-7 exhibited a clear crystalline brick-shaped structure. After treating wastewater, the bioflocculant QZ-7 showed significant flocculation performance with a COD removal efficiency of 93%, whereas a BOD removal efficiency of 92.4% was observed in the B. salmalaya strain 139SI. These values indicate the promising applications of the bioflocculant QZ-7 in wastewater treatment.
    Matched MeSH terms: Waste Water/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links