Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Othman I, Anuar AN, Ujang Z, Rosman NH, Harun H, Chelliapan S
    Bioresour Technol, 2013 Apr;133:630-4.
    PMID: 23453799 DOI: 10.1016/j.biortech.2013.01.149
    The present study demonstrated that aerobic granular sludge is capable of treating livestock wastewater from a cattle farm in a sequencing batch reactor (SBR) without the presence of support material. A lab scale SBR was operated for 80 d using 4 h cycle time with an organic loading rate (OLR) of 9 kg COD m(-3) d(-1). Results showed that the aerobic granules were growing from 0.1 to 4.1 mm towards the end of the experimental period. The sludge volume index (SVI) was 42 ml g(-1) while the biomass concentration in the reactor grew up to 10.3 g L(-1) represent excellent biomass separation and good settling ability of the granules. During this period, maximum COD, TN and TP removal efficiencies (74%, 73% and 70%, respectively) were observed in the SBR system, confirming high microbial activity in the SBR system.
    Matched MeSH terms: Waste Water/microbiology*
  2. Rosman NH, Nor Anuar A, Othman I, Harun H, Sulong Abdul Razak MZ, Elias SH, et al.
    Bioresour Technol, 2013 Feb;129:620-3.
    PMID: 23317554 DOI: 10.1016/j.biortech.2012.12.113
    Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater. Regular, dense and fast settling granule (average diameter, 1.5 mm; settling velocity, 33 m h(-1); and sludge volume index, 22.3 mL g(-1)) were developed in a single reactor. In addition, 96.5% COD removal efficiency was observed in the system at the end of the granulation period, while its ammonia and total nitrogen removal efficiencies were up to 94.7% and 89.4%, respectively. The study demonstrated the capabilities of AGS development in a single, high and slender column type-bioreactor for the treatment of rubber wastewater.
    Matched MeSH terms: Waste Water/microbiology*
  3. Li B, Huang W, Zhang C, Feng S, Zhang Z, Lei Z, et al.
    Bioresour Technol, 2015;187:214-220.
    PMID: 25855527 DOI: 10.1016/j.biortech.2015.03.118
    The influence of TiO2 nanoparticles (TiO2-NPs) (10-50mg/L) on aerobic granulation of algal-bacterial symbiosis system was investigated by using two identical sequencing batch reactors (SBRs). Although little adverse effect was observed on their nitritation efficiency (98-100% in both reactors), algal-bacterial granules in the control SBR (Rc) gradually lost stability mainly brought about by algae growth. TiO2-NPs addition to RT was found to enhance the granulation process achieving stable and compact algal-bacterial granules with remarkably improved nitratation thus little nitrite accumulation in RT when influent TiO2-NPs⩾30mg/L. Despite almost similar organics and phosphorus removals obtained in both reactors, the stably high nitratation efficiency in addition to much stable granular structure in RT suggests that TiO2-NPs addition might be a promising remedy for the long-term operation of algal-bacterial granular system, most probably attributable to the stimulated excretion of extracellular polymeric substances and less filamentous TM7.
    Matched MeSH terms: Waste Water/microbiology*
  4. Nasir NM, Bakar NS, Lananan F, Abdul Hamid SH, Lam SS, Jusoh A
    Bioresour Technol, 2015 Aug;190:492-8.
    PMID: 25791330 DOI: 10.1016/j.biortech.2015.03.023
    This study focuses on the evaluation of the performance of Chlorella sp. in removing nutrient in aquaculture wastewater and its correlation with the kinetic growth of Chlorella sp. The treatment was applied with various Chlorella sp. inoculation dosage ranging from 0% to 60% (v/v) of wastewater. The optimum inoculation dosage was recorded at 30% (v/v) with effluent concentration of ammonia and orthophosphate recording at 0.012mgL(-1) and 0.647mgL(-1), respectively on Day 11. The optimum dosage for bio-flocculation process was obtained at 30mgL(-1) of Aspergillus niger with a harvesting efficiency of 97%. This type of development of phytoremediation with continuous bio-harvesting could promote the use of sustainable green technology for effective wastewater treatment.
    Matched MeSH terms: Waste Water/microbiology*
  5. Nguyen TDP, Le TVA, Show PL, Nguyen TT, Tran MH, Tran TNT, et al.
    Bioresour Technol, 2019 Jan;272:34-39.
    PMID: 30308405 DOI: 10.1016/j.biortech.2018.09.146
    Microalgal bacterial flocs can be a promising approach for microalgae harvesting and wastewater treatment. The present study provides an insight on the bioflocs formation to enhance harvesting of Chlorella vulgaris and the removal of nutrients from seafood wastewater effluent. The results showed that the untreated seafood wastewater was the optimal culture medium for the cultivation and bioflocculation of C. vulgaris, with the flocculating activity of 92.0 ± 6.0%, total suspended solids removal of 93.0 ± 5.5%, and nutrient removal of 88.0 ± 2.2%. The bioflocs collected under this optimal condition contained dry matter of 107.2 ± 5.6 g·L-1 and chlorophyll content of 25.5 ± 0.2 mg·L-1. The results were promising when compared to those obtained from the auto-flocculation process that induced by the addition of calcium chloride and pH adjustment. Additionally, bacteria present in the wastewater aided to promote the formation of bioflocculation process.
    Matched MeSH terms: Waste Water/microbiology*
  6. Mohd Razaif-Mazinah MR, Mohamad Annuar MS, Sharifuddin Y
    Biotechnol Appl Biochem, 2016 Jan-Feb;63(1):92-100.
    PMID: 25643814 DOI: 10.1002/bab.1354
    The biosynthesis of medium-chain-length poly-3-hydroxyalkanoates by Pseudomonas putida Bet001 cultivated on mixed carbon sources was investigated. The mixed carbon sources consisted of heptanoic acid (HA) and oleic acid (OA). A relatively low PHA content at 1.2% (w/w) and 11.4% (w/w) was obtained when HA or OA was used as the sole carbon source. When these fatty acids were supplied as a mixture, PHA content increased threefold. Interestingly, the mixture-derived PHA composed of both odd and even monomer units, namely. 3-hydroxyheptanoate, 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate and no unsaturated monomer was detected. It is hypothesized that the even-numbered monomers were derived primarily from OA, whereas the odd-numbered monomer was derived from HA. This also points out to an efficient and yet distinct fatty acids metabolism that fed the PHA biosynthesis machinery of this particular microorganism. PHA obtained was elastomeric because melting temperature (Tm ) and crystallinity were absent. It showed good thermal stability with degradation temperature (Td ) ranging from 275.96 to 283.05 °C.
    Matched MeSH terms: Waste Water/microbiology
  7. Abbas SZ, Riaz M, Ramzan N, Zahid MT, Shakoori FR, Rafatullah M
    Braz J Microbiol, 2014;45(4):1309-15.
    PMID: 25763035
    The present study proposed the isolation of arsenic resistant bacteria from wastewater. Only three bacterial isolates (MNZ1, MNZ4 and MNZ6) were able to grow in high concentrations of arsenic. The minimum inhibitory concentrations of arsenic against MNZ1, MNZ4 and MNZ6 were 300 mg/L, 300 mg/L and 370 mg/L respectively. The isolated strains showed maximum growth at 37 °C and at 7.0 pH in control but in arsenite stress Luria Bertani broth the bacterial growth is lower than control. All strains were arsenite oxidizing. All strains were biochemically characterized and ribotyping (16S rRNA) was done for the purpose of identification which confirmed that MNZ1 was homologous to Enterobacter sp. while MNZ4 and MNZ6 showed their maximum homology with Klebsiella pneumoniae. The protein profiling of these strains showed in arsenic stressed and non stressed conditions, so no bands of induced proteins appeared in stressed conditions. The bacterial isolates can be exploited for bioremediation of arsenic containing wastes, since they seem to have the potential to oxidize the arsenite (more toxic) into arsenate (less toxic) form.
    Matched MeSH terms: Waste Water/microbiology*
  8. Sekine M, Akizuki S, Kishi M, Kurosawa N, Toda T
    Chemosphere, 2020 Apr;244:125381.
    PMID: 31805460 DOI: 10.1016/j.chemosphere.2019.125381
    Sulfide inhibition to nitrifying bacteria has prevented the integration of digestate nitrification and biogas desulfurization to simplify anaerobic digestion systems. In this study, liquid digestate with NaHS solution was treated using nitrifying sludge in a sequential-batch reactor with a long fill period, with an ammonium loading rate of 293 mg-N L-1 d-1 and a stepwise increase in the sulfide loading rate from 0 to 32, 64, 128, and 256 mg-S L-1 d-1. Batch bioassays and microbial community analysis were also conducted with reactor sludge under each sulfide loading rate to quantify the microbial acclimatization to sulfide. In the reactor, sulfide was completely removed. Complete nitrification was maintained up to a sulfide load of 128 mg-S L-1 d-1, which is higher than that in previous reports and sufficient for biogas treatment. In the batch bioassays, the sulfide tolerance of NH4+ oxidizing activity (the 50% inhibitory sulfide concentration) increased fourfold over time with the compositional shift of nitrifying bacteria to Nitrosomonas nitrosa and Nitrobacter spp. However, the sulfur removal rate of the sludge slightly decreased, although the abundance of the sulfur-oxidizing bacteria Hyphomicrobium increased by 30%. Therefore, nitrifying sludge was probably acclimatized to sulfide not by the increasing sulfide removal rate but rather by the increasing nitrifying bacteria, which have high sulfide tolerance. Successful simultaneous nitrification and desulfurization were achieved using a sequential-batch reactor with a long fill period, which was effective in facilitating the present acclimatization.
    Matched MeSH terms: Waste Water/microbiology
  9. Wen X, Mi J, Wang Y, Ma B, Zou Y, Liao X, et al.
    Ecotoxicol Environ Saf, 2019 May 30;173:96-102.
    PMID: 30769208 DOI: 10.1016/j.ecoenv.2019.02.023
    Livestock farms are commonly regarded as the main sources of antibiotic resistance genes (ARGs), emerging pollutants with potential implications for human health, in the environment. This study investigated the occurrence and contamination profiles of nine ARGs of three types from swine manure to receiving environments (soil and water) in Guangdong Province, southern China. All ARGs occurred in 100% of swine manure samples. Moreover, the absolute concentration of total ARGs varied from 3.01 × 108 to 7.18 × 1014 copies/g, which was significantly higher than that in wastewater and manured soil (p  0.05). However, the number of ARGs (ermB, qnrS, acc(6')-Ib, tetM, tetO and tetQ) decreased but were not eliminated by wastewater treatment components (p 
    Matched MeSH terms: Waste Water/microbiology*
  10. Brindha K, Paul R, Walter J, Tan ML, Singh MK
    Environ Geochem Health, 2020 Nov;42(11):3819-3839.
    PMID: 32601907 DOI: 10.1007/s10653-020-00637-9
    Monitoring the groundwater chemical composition and identifying the presence of pollutants is an integral part of any comprehensive groundwater management strategy. The present study was conducted in a part of West Tripura, northeast India, to investigate the presence and sources of trace metals in groundwater and the risk to human health due to direct ingestion of groundwater. Samples were collected from 68 locations twice a year from 2016 to 2018. Mixed Ca-Mg-HCO3, Ca-Cl and Ca-Mg-Cl were the main groundwater types. Hydrogeochemical methods showed groundwater mineralization due to (1) carbonate dissolution, (2) silicate weathering, (3) cation exchange processes and (4) anthropogenic sources. Occurrence of faecal coliforms increased in groundwater after monsoons. Nitrate and microbial contamination from wastewater infiltration were apparent. Iron, manganese, lead, cadmium and arsenic were above the drinking water limits prescribed by the Bureau of Indian Standards. Water quality index indicated 1.5% had poor, 8.7% had marginal, 16.2% had fair, 66.2% had good and 7.4% had excellent water quality. Correlation and principal component analysis reiterated the sources of major ions and trace metals identified from hydrogeochemical methods. Human exposure assessment suggests health risk due to high iron in groundwater. The presence of unsafe levels of trace metals in groundwater requires proper treatment measures before domestic use.
    Matched MeSH terms: Waste Water/microbiology
  11. Ganapathy B, Yahya A, Ibrahim N
    Environ Sci Pollut Res Int, 2019 Apr;26(11):11113-11125.
    PMID: 30788704 DOI: 10.1007/s11356-019-04334-8
    Despite being a key Malaysian economic contributor, the oil palm industry generates a large quantity of environmental pollutant known as palm oil mill effluent (POME). Therefore, the need to remediate POME has drawn a mounting interest among environmental scientists. This study has pioneered the application of Meyerozyma guilliermondii with accession number (MH 374161) that was isolated indigenously in accessing its potential to degrade POME. This strain was able to treat POME in shake flask experiments under aerobic condition by utilising POME as a sole source of carbon. However, it has also been shown that the addition of suitable carbon and nitrogen sources has significantly improved the degradation potential of M. guilliermondii. The remediation of POME using this strain resulted in a substantial reduction of chemical oxygen demand (COD) of 72%, total nitrogen of 49.2% removal, ammonical nitrogen of 45.1% removal, total organic carbon of 46.6% removal, phosphate of 60.6% removal, and 92.4% removal of oil and grease after 7 days of treatment period. The strain also exhibited an extracellular lipase activity which promotes better wastewater treatment. Additionally, Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS) analyses have specifically shown that M. guilliermondii strain can degrade hydrocarbons, fatty acids, and phenolic compounds present in the POME. Ultimately, this study has demonstrated that M. guilliermondii which was isolated indigenously exhibits an excellent degrading ability. Therefore, this strain is suitable to be employed in the remediation of POME, contributing to a safe discharge of the effluent into the environment.
    Matched MeSH terms: Waste Water/microbiology*
  12. Heng GC, Isa MH, Lim JW, Ho YC, Zinatizadeh AAL
    Environ Sci Pollut Res Int, 2017 Dec;24(35):27113-27124.
    PMID: 28963706 DOI: 10.1007/s11356-017-0287-5
    Biological treatments, such as activated sludge process, are common methods to treat municipal and industrial wastewaters. However, they produce huge amounts of waste activated sludge (WAS). The excess sludge treatment and disposal are a challenge for wastewater treatment plants due to economic, environmental, and regulatory factors. In this study, photo-Fenton pretreatment (oxidation using hydrogen peroxide and iron catalyst aided with UV light) was optimized using response surface methodology (RSM) and central composite design (CCD) to determine the effects of three operating parameters (H2O2 dosage, H2O2/Fe2+ molar ratio, and irradiation time) on disintegration and dewaterability of WAS. MLVSS removal, capillary suction time (CST) reduction, sCOD, and EPS were obtained as 70%, 25%, 12,000 mg/L, and 500 mg/L, respectively, at the optimal conditions, i.e., 725 g H2O2/kg TS, H2O2/Fe2+ molar ratio 80, and irradiation time 40 min. Two batch-fed completely mixed mesophilic anaerobic digesters were then operated at 15-day solid retention time (SRT) and 37 ± 0.5 °C to compare the digestibility of untreated and photo-Fenton pretreated sludge in terms of volatile solids (VS) reduction, COD removal, and biogas production at steady-state operations. Photo-Fenton pretreatment followed by anaerobic digestion of WAS was very effective and yielded 75.7% total VS reduction, 81.5% COD removal, and 0.29-0.31 m3/kg VSfed·d biogas production rate, compared to 40.7% total VS solid reduction, 54.7% COD removal, and 0.12-0.17 m3/kg VSfed·d biogas production rate for control. Thus, photo-Fenton can be a useful pretreatment step in sludge management.
    Matched MeSH terms: Waste Water/microbiology
  13. Hariz HB, Takriff MS
    Environ Sci Pollut Res Int, 2017 Sep;24(25):20209-20240.
    PMID: 28791508 DOI: 10.1007/s11356-017-9742-6
    In this era of globalization, various products and technologies are being developed by the industries. While resources and energy are utilized from processes, wastes are being excreted through water streams, air, and ground. Without realizing it, environmental pollutions increase as the country develops. Effective technology is desired to create green factories that are able to overcome these issues. Wastewater is classified as the water coming from domestic or industrial sources. Wastewater treatment includes physical, chemical, and biological treatment processes. Aerobic and anaerobic processes are utilized in biological treatment approach. However, the current biological approaches emit greenhouse gases (GHGs), methane, and carbon dioxide that contribute to global warming. Microalgae can be the alternative to treating wastewater as it is able to consume nutrients from wastewater loading and fix CO2 as it undergoes photosynthesis. The utilization of microalgae in the system will directly reduce GHG emissions with low operating cost within a short period of time. The aim of this review is to discuss the uses of native microalgae species in palm oil mill effluent (POME) and flue gas remediation. In addition, the discussion on the optimal microalgae cultivation parameter selection is included as this is significant for effective microalgae-based treatment operations.
    Matched MeSH terms: Waste Water/microbiology*
  14. Rahman RA, Molla AH, Fakhru'l-Razi A
    Environ Sci Pollut Res Int, 2014 Jan;21(2):1178-87.
    PMID: 23881591 DOI: 10.1007/s11356-013-1974-5
    Sustainable, environmental friendly, and safe disposal of sewage treatment plant (STP) sludge is a global expectation. Bioremediation performance was examined at different hydraulic retention times (HRT) in 3-10 days and organic loading rates (OLR) at 0.66-7.81 g chemical oxygen demand (COD) per liter per day, with mixed filamentous fungal (Aspergillus niger and Penicillium corylophilum) inoculation by liquid-state bioconversion (LSB) technique as a continuous process in large-scale bioreactor. Encouraging results were monitored in treated sludge by LSB continuous process. The highest removal of total suspended solid (TSS), turbidity, and COD were achieved at 98, 99, and 93%, respectively, at 10 days HRT compared to control. The minimum volatile suspended solid/suspended solid implies the quality of water, which was recorded 0.59 at 10 days and 0.72 at 3 days of HRT. In treated supernatant with 88% protein removal at 10 days of HRT indicates a higher magnitude of purification of treated sludge. The specific resistance to filtration (SRF) quantifies the performance of dewaterability; it was recorded minimum 0.049 × 10(12) m kg(-1) at 10 days of HRT, which was equivalent to 97% decrease of SRF. The lower OLR and higher HRT directly influenced the bioremediation and dewaterability of STP sludge in LSB process. The obtained findings imply encouraging message in continuing treatment of STP sludge, i.e., bioremediation of wastewater for environmental friendly disposal in near future.
    Matched MeSH terms: Waste Water/microbiology
  15. Lim JC, Goh KM, Shamsir MS, Ibrahim Z, Chong CS
    J Basic Microbiol, 2015 Apr;55(4):514-9.
    PMID: 25523650 DOI: 10.1002/jobm.201400621
    The Anoxybacillus sp. SK 3-4, previously isolated from a hot spring, was screened for its heavy metals resistance (Al(3+), Mn(2+), Cu(2+), Co(2+), Zn(2+), and Ni(2+)) and the strain was found to be most resistant to aluminum. Significant growth of the strain was observed when it was grown in medium containing aluminum (200 mg L(-1)-800 mg L(-1)) with relative growth rates ranging between 77% and 100%. A gene encoding the aluminum resistance protein (accession number: WP_021095658.1) was found in genome of strain SK 3-4, which revealed high sequence identity (>95%) to its homologues from Anoxybacillus species. Sequence comparisons with two functionally characterized aluminum resistance proteins, namely G2alt and ALU1-P, showed 97% and 81% of sequence identity, respectively. Four putative metal binding sites were detected in SK 3-4 aluminum resistance protein and G2alt at same amino acid residue positions of 186, 195, 198, and 201. Strain SK 3-4 was found to be able to remove aluminum from aqueous solution. This study demonstrated that Anoxybacillus sp. SK 3-4 could be applied in the treatment of aluminum contaminated wastewater.
    Matched MeSH terms: Waste Water/microbiology*
  16. Aida AA, Hatamoto M, Yamamoto M, Ono S, Nakamura A, Takahashi M, et al.
    J Biosci Bioeng, 2014 Nov;118(5):540-5.
    PMID: 24930844 DOI: 10.1016/j.jbiosc.2014.04.011
    A novel wastewater treatment system consisting of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with sulfur-redox reaction was developed for treatment of municipal sewage under low-temperature conditions. In the UASB reactor, a novel phenomenon of anaerobic sulfur oxidation occurred in the absence of oxygen, nitrite and nitrate as electron acceptors. The microorganisms involved in anaerobic sulfur oxidation have not been elucidated. Therefore, in this study, we studied the microbial communities existing in the UASB reactor that probably enhanced anaerobic sulfur oxidation. Sludge samples collected from the UASB reactor before and after sulfur oxidation were used for cloning and terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes of the bacterial and archaeal domains. The microbial community structures of bacteria and archaea indicated that the genus Smithella and uncultured bacteria within the phylum Caldiserica were the dominant bacteria groups. Methanosaeta spp. was the dominant group of the domain archaea. The T-RFLP analysis, which was consistent with the cloning results, also yielded characteristic fingerprints for bacterial communities, whereas the archaeal community structure yielded stable microbial community. From these results, it can be presumed that these major bacteria groups, genus Smithella and uncultured bacteria within the phylum Caldiserica, probably play an important role in sulfur oxidation in UASB reactors.
    Matched MeSH terms: Waste Water/microbiology
  17. Wong YM, Show PL, Wu TY, Leong HY, Ibrahim S, Juan JC
    J Biosci Bioeng, 2019 Feb;127(2):150-159.
    PMID: 30224189 DOI: 10.1016/j.jbiosc.2018.07.012
    Bio-hydrogen production from wastewater using sludge as inoculum is a sustainable approach for energy production. This study investigated the influence of initial pH and temperature on bio-hydrogen production from dairy wastewater using pretreated landfill leachate sludge (LLS) as an inoculum. The maximum yield of 113.2 ± 2.9 mmol H2/g chemical oxygen demand (COD) (12.8 ± 0.3 mmol H2/g carbohydrates) was obtained at initial pH 6 and 37 °C. The main products of volatile fatty acids were acetate and butyrate with the ratio of acetate:butyrate was 0.4. At optimum condition, Gibb's free energy was estimated at -40 kJ/mol, whereas the activation enthalpy and entropy were 65 kJ/mol and 0.128 kJ/mol/l, respectively. These thermodynamic quantities suggest that bio-hydrogen production from dairy wastewater using pretreated LLS as inoculum was effective and efficient. In addition, genomic and bioinformatics analyses were performed in this study.
    Matched MeSH terms: Waste Water/microbiology*
  18. Nguyen TDP, Tran TNT, Le TVA, Nguyen Phan TX, Show PL, Chia SR
    J Biosci Bioeng, 2019 Apr;127(4):492-498.
    PMID: 30416001 DOI: 10.1016/j.jbiosc.2018.09.004
    Nowadays, the pretreatment of wastewater prior to discharge is very important in various industries as the wastewater without any treatment contains high organic pollution loads that would pollute the receiving waterbody and potentially cause eutrophication and oxygen depletion to aquatic life. The reuse of seafood wastewater discharge in microalgae cultivation offers beneficial purposes such as reduced processing cost for wastewater treatment, replenishing ground water basin as well as financial savings for microalgae cultivation. In this paper, the cultivation of Chlorella vulgaris with an initial concentration of 0.01 ± 0.001 g⋅L-1 using seafood sewage discharge under sunlight and fluorescent illumination was investigated in laboratory-scale without adjusting mineral nutrients and pH. The ability of nutrient removal under different lighting conditions, the metabolism of C. vulgaris and new medium as well as the occurrence of auto-flocculation of microalgae biomass were evaluated for 14 days. The results showed that different illumination sources did not influence the microalgae growth, chemical oxygen demand (COD) and biochemical oxygen demand (BOD) significantly. However, the total nitrogen (total-N) and total phosphorus (total-P) contents of microalgae were sensitive to the illumination mode. The amount of COD, BOD, total-N and total-P were decreased by 88%, 81%, 95%, and 83% under sunlight mode and 81%, 74%, 79%, and 72% under fluorescent illumination, respectively. Furthermore, microalgae were auto-flocculated at the final days of cultivation with maximum biomass concentration of 0.49 ± 0.01 g⋅L-1, and the pH value had increased to pH 9.8 ± 0.1 under sunlight illumination.
    Matched MeSH terms: Waste Water/microbiology*
  19. Katayama T, Nagao N, Kasan NA, Khatoon H, Rahman NA, Takahashi K, et al.
    J Biotechnol, 2020 Nov 10;323:113-120.
    PMID: 32768414 DOI: 10.1016/j.jbiotec.2020.08.001
    We isolated fifty-two strains from the marine aquaculture ponds in Malaysia that were evaluated for their lipid production and ammonium tolerance and four isolates were selected as new ammonium tolerant microalgae with high-lipid production: TRG10-p102 Oocystis heteromucosa (Chlorophyceae); TRG10-p103 and TRG10-p105 Thalassiosira weissflogii (Bacillariophyceae); and TRG10-p201 Amphora coffeiformis (Bacillariophyceae). Eicosapentenoic acid (EPA) in three diatom strain was between 2.6 and 18.6 % of total fatty acids, which were higher than in O. heteromucosa. Only A. coffeiformi possessed arachidonic acid. Oocystis heteromucosa naturally grew at high ammonium concentrations (1.4-10 mM), whereas the growth of the other strains, T. weissflogii and A. coffeiformi, were visibly inhibited at high ammonium concentrations (>1.4 mM-NH4). However, two strains of T. weissflogii were able to grow at up to 10 mM-NH4 by gradually acclimating to higher ammonium concentrations. The ammonium tolerant strains, especially T. weissflogii which have high EPA contents, were identified as a valuable candidate for biomass production utilizing NH4-N media, such as ammonium-rich wastewater.
    Matched MeSH terms: Waste Water/microbiology*
  20. Zulkeflle SNM, Yusaimi YA, Sugiura N, Iwamoto K, Goto M, Utsumi M, et al.
    Microbiology (Reading), 2016 12;162(12):2064-2074.
    PMID: 27902427 DOI: 10.1099/mic.0.000392
    Antibiotic resistance has become a major public health problem throughout the world. The presence of antibiotic-resistant bacteria such as Staphylococcus aureus and antibiotic resistance genes (ARGs) in hospital wastewater is a cause for great concern today. In this study, 276 Staph. aureus isolates were recovered from hospital wastewater samples in Malaysia. All of the isolates were screened for susceptibility to nine different classes of antibiotics: ampicillin, ciprofloxacin, gentamicin, kanamycin, erythromycin, vancomycin, trimethoprim and sulfamethoxazole, chloramphenicol, tetracycline and nalidixic acid. Screening tests showed that 100 % of Staph.aureus isolates exhibited resistance against kanamycin, vancomycin, trimethoprim and sulfamethoxazole and nalidixic acid. Additionally, 91, 87, 50, 43, 11 and 8.7 % of isolates showed resistance against erythromycin, gentamicin, ciprofloxacin, ampicillin, chloramphenicol and tetracycline, respectively. Based on these results, 100 % of isolates demonstrated multidrug-resistant (MDR) characteristics, displaying resistance against more than three classes of antibiotics. Of 276 isolates, nine exhibited resistance to more than nine classes of tested antibiotics; these were selected for antibiotic susceptibility testing and examined for the presence of conserved ARGs. Interestingly, a high percentage of the selected MDR Staph.aureus isolates did not contain conserved ARGs. These results indicate that non-conserved MDR gene elements may have already spread into the environment in the tropics of Southeast Asia, and unique resistance mechanisms against several antibiotics may have evolved due to stable, moderate temperatures that support growth of bacteria throughout the year.
    Matched MeSH terms: Waste Water/microbiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links