Displaying publications 1 - 20 of 3983 in total

Abstract:
Sort:
  1. Hessami MJ, Cheng SF, Ambati RR, Yin YH, Phang SM
    3 Biotech, 2019 Jan;9(1):25.
    PMID: 30622863 DOI: 10.1007/s13205-018-1549-8
    In this study, Gelidium elegans is investigated for ethanol production. A combination of factors including different temperatures, acid concentration and incubation time was evaluated to determine the suitable saccharification conditions. The combination of 2.5% (w/v) H2SO4 at 120 °C for 40 min was selected for hydrolysis of the seaweed biomass, followed by purification, and fermentation to yield ethanol. The galactose and glucose were dominant reducing sugars in the G. elegans hydrolysate and under optimum condition of dilute acid hydrolysis, 39.42% of reducing sugars was produced and fermentation resulted in ethanol concentration of 13.27 ± 0.47 g/L. A modified method was evaluated for sample preparation for gas chromatography (GC) analysis of the ethanol content. A solvent mixture of acetonitrile and iso-butanol precipitated dissolved organic residues and reduced water content in GC samples at least by 90%. Results showed that this method could be successfully used for bioethanol production from seaweed.
    Matched MeSH terms: Water
  2. Yong WK, Sim KS, Poong SW, Wei D, Phang SM, Lim PE
    3 Biotech, 2019 Aug;9(8):315.
    PMID: 31406637 DOI: 10.1007/s13205-019-1848-8
    An ecologically important tropical freshwater microalga, Scenedesmus quadricauda, was exposed to Ni toxicity under two temperature regimes, 25 and 35 °C to investigate the interactive effects of warming and different Ni concentrations (0.1, 1.0 and 10.0 ppm). The stress responses were assessed from the growth, photosynthesis, reactive oxygen species (ROS) generation and metabolomics aspects to understand the effects at both the physiological and biochemical levels. The results showed that the cell densities of the cultures were higher at 35 °C compared to 25 °C, but decreased with increasing Ni concentrations at 35 °C. In terms of photosynthetic efficiency, the maximum quantum yield of photosystem II (Fv/Fm) of S. quadricauda remained consistent across different conditions. Nickel concentration at 10.0 ppm affected the maximum rate of relative electron transport (rETRm) and saturation irradiance for electron transport (Ek) in photosynthesis. At 25 °C, the increase of non-photochemical quenching (NPQ) values in cells exposed to 10.0 ppm Ni might indicate the onset of thermal dissipation process as a self-protection mechanism against Ni toxicity. The combination of warming and Ni toxicity induced a strong oxidative stress response in the cells. The ROS level increased significantly by 40% after exposure to 10.0 ppm of Ni at 35 °C. The amount of Ni accumulated in the biomass was higher at 25 °C compared to 35 °C. Based on the metabolic profile, temperature contributed the most significant differentiation among the samples compared to Ni treatment and the interaction between the two factors. Amino acids, sugars and organic acids were significantly regulated by the combined factors to restore homeostasis. The most affected pathways include sulphur, amino acids, and nitrogen metabolisms. Overall, the results suggest that the inhibitory effect of Ni was lower at 35 °C compared to 25 °C probably due to lower metal uptake and primary metabolism restructuring. The ability of S. quadricauda to accumulate substantial amount of Ni and thrive at 35 °C suggests the potential use of this strain for phycoremediation and outdoor wastewater treatment.
    Matched MeSH terms: Waste Water
  3. Basirun AA, Ahmad SA, Sabullah MK, Yasid NA, Daud HM, Khalid A, et al.
    3 Biotech, 2019 Feb;9(2):64.
    PMID: 30729088 DOI: 10.1007/s13205-019-1592-0
    The present study is aimed to evaluate the effects of sub-acute toxicity testing of copper sulphate (CuSO4), on behavioural, histological and biochemical changes of the Oreochromis mossambicus (black tilapia) blood tissues. The effects were assessed according to the previous results on sub-acute toxicity test after exposing fish to several concentrations (0.0, 2.5, 5.0, and 10.0 mg/L). The observations of scanning electron microscope, and transmission electron microscope studies revealed severe histopathological changes on the surface and the cellular changes in blood tissues, respectively. The morphological alterations in blood involved irregular structure of red blood cell and blood clot formation. CuSO4 affected the biochemical alteration of the blood cholinesterase also known as serum cholinesterase (ChE). Blood ChE inhibited up to 80% of activity when exposed to 10.0 mg/L CuSO4. The findings from this study can further improve the quality standards of aquaculture industry and the fundamental basis in selecting suitable strains among freshwater fish species to be used as bioindicator.
    Matched MeSH terms: Fresh Water
  4. Nur Asshifa MN, Zambry NS, Salwa MS, Yahya ARM
    3 Biotech, 2017 Jul;7(3):189.
    PMID: 28664380 DOI: 10.1007/s13205-017-0828-0
    Water-immiscible substrate, diesel, was supplied as the main substrate in the fermentation of Pseudomonas aeruginosa USM-AR2 producing rhamnolipid biosurfactant, in a stirred tank bioreactor. In addition to the typical gas-aqueous system, this system includes gas-hydrocarbon-aqueous phases and the presence of surfactant (rhamnolipid) in the fermentation broth. The effect of diesel dispersion on volumetric oxygen transfer coefficient, k L a, and thus oxygen transfer, was evaluated at different agitations of 400, 500 and 600 rpm. The oxygen transfer in this oil-water-surfactant system was shown to be affected by different oil dispersion at those agitation rates. The highest diesel dispersion was obtained at 500 rpm or impeller tip speed of 1.31 m/s, compared to 400 and 600 rpm, which led to the highest k L a, growth and rhamnolipid production by P. aeruginosa USM-AR2. This showed the highest substrate mixing and homogenization at this agitation speed that led to the efficient substrate utilization by the cells. The oxygen uptake rate of P. aeruginosa USM-AR2 was 5.55 mmol/L/h, which showed that even the lowest k L a (48.21 h-1) and hence OTR (57.71 mmol/L/h) obtained at 400 rpm was sufficient to fulfill the oxygen demand of the cells. The effect of rhamnolipid concentration on k L a showed that k L a increased as rhamnolipid concentration increased to 0.6 g/L before reaching a plateau. This trend was similar for all agitation rates of 400, 500 and 600 rpm, which might be due to the increase in the resistance to oxygen transfer (k L decrease) and the increase in the specific interfacial area (a).
    Matched MeSH terms: Water
  5. Ang TF, Salleh AB, Normi YM, Leow TC
    3 Biotech, 2018 Jul;8(7):314.
    PMID: 30023146 DOI: 10.1007/s13205-018-1333-9
    Artificial metalloenzymes are unique as they combine the good features of homogeneous and enzymatic catalysts, and they can potentially improve some difficult catalytic assays. This study reports a method that can be used to create an artificial metal-binding site prior to proving it to be functional in a wet lab. Haloalkane dehalogenase was grafted into a metal-binding site to form an artificial metallo-haloalkane dehalogenase and was studied for its potential functionalities in silico. Computational protocols regarding dynamic metal docking were studied using native metalloenzymes and functional artificial metalloenzymes. Using YASARA Structure, a simulation box covering template structure was created to be filled with water molecules followed by one mutated water molecule closest to the metal-binding site to metal ion. A simple energy minimization step was subsequently run using an AMBER force field to allow the metal ion to interact with the metal-binding residues. Long molecular dynamic simulation using YASARA Structure was performed to analyze the stability of the metal-binding site and the distance between metal-binding residues. Metal ions fluctuating around 2.0 Å across a 20 ns simulation indicated a stable metal-binding site. Metal-binding energies were predicted using FoldX, with a native metalloenzyme (carbonic anhydrase) scoring 18.0 kcal/mol and the best mutant model (C1a) scoring 16.4 kcal/mol. Analysis of the metal-binding site geometry was performed using CheckMyMetal, and all scores for the metalloenzymes and mutant models were in an acceptable range. Like native metalloenzymes, the metal-binding site of C1a was supported by residues in the second coordination shell to maintain a more coordinated metal-binding site. Short-chain multihalogenated alkanes (1,2-dibromoethane and 1,2,3-trichloropropane) were able to dock in the active site of C1a. The halides of the substrate were in contact with both the metal and halide-stabilizing residues, thus indicating a better stabilization of the substrate. The simple catalytic mechanism proposed is that the metal ion interacted with halogen and polarized the carbon-halogen bond, thus making the alpha carbon susceptible to attack by nucleophilic hydroxide. The interaction between halogen in the metal ion and halide-stabilizing residues may help to improve the stabilization of the substrate-enzyme complex and reduce the activation energy. This study reports a modified dynamic metal-docking protocol and validation tests to verify the metal-binding site. These approaches can be applied to design different kinds of artificial metalloenzymes or metal-binding sites.
    Matched MeSH terms: Water
  6. Yee W, Abdul-Kadir R, Lee LM, Koh B, Lee YS, Chan HY
    3 Biotech, 2018 Aug;8(8):354.
    PMID: 30105179 DOI: 10.1007/s13205-018-1381-1
    In this work, a simple and inexpensive physical lysis method using a cordless drill fitted with a plastic pellet pestle and 150 mg of sterile sea sand was established for the extraction of DNA from six strains of freshwater microalgae. This lysis method was also tested for RNA extraction from two microalgal strains. Lysis duration between 15 and 120 s using the cetyltrimethyl ammonium bromide (CTAB) buffer significantly increased the yield of DNA from four microalgalstrains (Monoraphidium griffithii NS16, Scenedesmus sp. NS6, Scenedesmus sp. DPBC1 and Acutodesmus sp. DPBB10) compared to control. It was also found that grinding was not required to obtain DNA from two strains of microalgae (Choricystis sp. NPA14 and Chlamydomonas sp. BM3). The average DNA yield obtained using this lysis method was between 62.5 and 78.9 ng/mg for M. griffithii NS16, 42.2-247.0 ng/mg for Scenedesmus sp. NS6, 70.2-110.9 ng/mg for Scenedesmus sp. DPBC1 and 142.8-164.8 ng/mg for Acutodesmus sp. DPBB10. DNA obtained using this method was sufficiently pure for PCR amplification. Extraction of total RNA from M. griffithii NS16 and Mychonastes sp. NPD7 using this lysis method yielded high-quality RNA suitable for RT-PCR. This lysis method is simple, cheap and would enable rapid nucleic acid extraction from freshwater microalgae without requiring costly materials and equipment such as liquid nitrogen or beadbeaters, and would facilitate molecular studies on microalgae in general.
    Matched MeSH terms: Fresh Water
  7. Hassan MI, Sultana N
    3 Biotech, 2017 Aug;7(4):249.
    PMID: 28714045 DOI: 10.1007/s13205-017-0889-0
    Considering the important factor of bioactive nanohydoxyapatite (nHA) to enhance osteoconductivity or bone-bonding capacity, nHA was incorporated into an electrospun polycaprolactone (PCL) membrane using electrospinning techniques. The viscosity of the PCL and nHA/PCL with different concentrations of nHA was measured and the morphology of the electrospun membranes was compared using a field emission scanning electron microscopy. The water contact angle of the nanofiber determined the wettability of the membranes of different concentrations. The surface roughness of the electrospun nanofibers fabricated from pure PCL and nHA/PCL was determined and compared using atomic force microscopy. Attenuated total reflectance Fourier transform infrared spectroscopy was used to study the chemical bonding of the composite electrospun nanofibers. Beadless nanofibers were achieved after the incorporation of nHA with a diameter of 200-700 nm. Results showed that the fiber diameter and the surface roughness of electrospun nanofibers were significantly increased after the incorporation of nHA. In contrast, the water contact angle (132° ± 3.5°) was reduced for PCL membrane after addition of 10% (w/w) nHA (112° ± 3.0°). Ultimate tensile strengths of PCL membrane and 10% (w/w) nHA/PCL membrane were 25.02 ± 2.3 and 18.5 ± 4.4 MPa. A model drug tetracycline hydrochloride was successfully loaded in the membrane and the membrane demonstrated good antibacterial effects against the growth of bacteria by showing inhibition zone for E. coli (2.53 ± 0.06 cm) and B. cereus (2.87 ± 0.06 cm).
    Matched MeSH terms: Water
  8. Aziz HA, Tan YT, Peh KK
    AAPS PharmSciTech, 2012 Mar;13(1):35-45.
    PMID: 22101965 DOI: 10.1208/s12249-011-9707-x
    Microencapsulation of water-soluble drugs using coacervation-phase separation method is very challenging, as these drugs partitioned into the aqueous polymeric solution, resulting in poor drug entrapment. For evaluating the effect of ovalbumin on the microencapsulation of drugs with different solubility, pseudoephedrine HCl, verapamil HCl, propranolol HCl, paracetamol, and curcuminoid were used. In addition, drug mixtures comprising of paracetamol and pseudoephedrine HCl were also studied. The morphology, encapsulation efficiency, particle size, and in vitro release profile were investigated. The results showed that the solubility of the drug determined the ratio of ovalbumin to be used for successful microencapsulation. The optimum ratios of drug, ovalbumin, and gelatin for water-soluble (pseudoephedrine HCl, verapamil HCl, and propranolol HCl), sparingly water-soluble (paracetamol), and water-insoluble (curcuminoid) drugs were found to be 1:1:2, 2:3:5, and 1:3:4. As for the drug mixture, the optimum ratio of drug, ovalbumin, and gelatin was 2:3:5. Encapsulated particles prepared at the optimum ratios showed high yield, drug loading, entrapment efficiency, and sustained release profiles. The solubility of drug affected the particle size of the encapsulated particle. Highly soluble drugs resulted in smaller particle size. In conclusion, addition of ovalbumin circumvented the partitioning effect, leading to the successful microencapsulation of water-soluble drugs.
    Matched MeSH terms: Water/metabolism; Water/chemistry*
  9. Billa N, Yuen KH
    AAPS PharmSciTech, 2000;1(4):E30.
    PMID: 14727895
    The purpose of this research was to study processing variables at the laboratory and pilot scales that can affect hydration rates of xanthan gum matrices containing diclofenac sodium and the rate of drug release. Tablets from the laboratory scale and pilot scale proceedings were made by wet granulation. Swelling indices of xanthan gum formulations prepared with different amounts of water were measured in water under a magnifying lens. Granules were thermally treated in an oven at 60 degrees C, 70 degrees C, and 80 degrees C to study the effects of elevated temperatures on drug release from xanthan gum matrices. Granules from the pilot scale formulations were bulkier compared to their laboratory scale counterparts, resulting in more porous, softer tablets. Drug release was linear from xanthan gum matrices prepared at the laboratory scale and pilot scales; however, release was faster from the pilot scales. Thermal treatment of the granules did not affect the swelling index and rate of drug release from tablets in both the pilot and laboratory scale proceedings. On the other hand, the release from both proceedings was affected by the amount of water used for granulation and the speed of the impeller during granulation. The data suggest that processing variables that affect the degree of wetness during granulation, such as increase in impeller speed and increase in amount of water used for granulation, also may affect the swelling index of xanthan gum matrices and therefore the rate of drug release.
    Matched MeSH terms: Water/metabolism; Water/chemistry
  10. Meka VS, Nali SR, Songa AS, Kolapalli VR
    AAPS PharmSciTech, 2012 Dec;13(4):1451-64.
    PMID: 23090110 DOI: 10.1208/s12249-012-9873-5
    The main objective of the present study is the physicochemical characterization of naturally available Terminalia catappa gum (Badam gum [BG]) as a novel pharmaceutical excipient and its suitability in the development of gastroretentive floating drug delivery systems (GRFDDS) to retard the drug for 12 h when the dosage form is exposed to gastrointestinal fluids in the gastric environment. As BG was being explored for the first time for its pharmaceutical application, physicochemical, microbiological, rheological, and stability studies were carried out on this gum. In the present investigation, the physicochemical properties, such as micromeritic, rheological, melting point, moisture content, pH, swelling index, water absorption, and volatile acidity, were evaluated. The gum was characterized by scanning electron microscopy, differential scanning calorimetry (DSC), powder X-ray diffraction studies (PXRD), and Fourier transform infrared spectroscopy (FTIR). Gastroretentive floating tablets of BG were prepared with the model drug propranolol HCl by direct compression methods. The prepared tablets were evaluated for all their physicochemical properties, in vitro buoyancy, in vitro drug release, and rate order kinetics. PBG 04 was selected as an optimized formulation based on its 12-h drug release and good buoyancy characteristics. The optimized formulation was characterized with FTIR, DSC, and PXRD studies, and no interaction between the drug and BG was found. Thus, the study confirmed that BG might be used in the gastroretentive drug delivery system as a release-retarding polymer.
    Matched MeSH terms: Water/chemistry
  11. Tan KH, Chen YW, Van CN, Wang H, Chen JW, Lim FS, et al.
    ACS Appl Mater Interfaces, 2019 Jan 09;11(1):1655-1664.
    PMID: 30561192 DOI: 10.1021/acsami.8b17758
    The ability of band offsets at multiferroic/metal and multiferroic/electrolyte interfaces in controlling charge transfer and thus altering the photoactivity performance has sparked significant attention in solar energy conversion applications. Here, we demonstrate that the band offsets of the two interfaces play the key role in determining charge transport direction in a downward self-polarized BFO film. Electrons tend to move to BFO/electrolyte interface for water reduction. Our experimental and first-principle calculations reveal that the presence of neodymium (Nd) dopants in BFO enhances the photoelectrochemical performance by reduction of the local electron-hole pair recombination sites and modulation of the band gap to improve the visible light absorption. This opens a promising route to the heterostructure design by modulating the band gap to promote efficient charge transfer.
    Matched MeSH terms: Water
  12. Wang D, Wong SI, Sunarso J, Xu M, Wang W, Ran R, et al.
    ACS Appl Mater Interfaces, 2021 May 05;13(17):20105-20113.
    PMID: 33886260 DOI: 10.1021/acsami.1c02502
    Hydrocarbon-fueled solid oxide fuel cells (SOFCs) that can operate in the intermediate temperature range of 500-700 °C represent an attractive SOFC device for combined heat and power applications in the industrial market. One of the ways to realize such a device relies upon exploiting an in situ steam reforming process in the anode catalyzed by an anti-carbon coking catalyst. Here, we report a new Ni and Ru bimetal-doped perovskite catalyst, Ba(Zr0.1Ce0.7Y0.1Yb0.1)0.9Ni0.05Ru0.05O3-δ (BZCYYbNRu), with enhanced catalytic hydrogen production activity on n-butane (C4H10), which can resist carbon coking over extended operation durations. Ru in the perovskite lattice inhibits Ni precipitation from perovskite, and the high water adsorption capacity of proton conducting perovskite improves the coking resistance of BZCYYbNRu. When BZCYYbNRu is used as a steam reforming catalyst layer on a Ni-YSZ-supported anode, the single fuel cell not only achieves a higher power density of 1113 mW cm-2 at 700 °C under a 10 mL min-1 C4H10 continuous feed stream at a steam to carbon (H2O/C) ratio of 0.5 but also shows a much better operational stability for 100 h at 600 °C compared with those reported in the literature.
    Matched MeSH terms: Water
  13. Li M, Li W, Guan Q, Dai X, Lv J, Xia Z, et al.
    ACS Nano, 2021 12 28;15(12):19194-19201.
    PMID: 34797635 DOI: 10.1021/acsnano.1c03882
    Dry adhesives that combine strong adhesion, high transparency, and reusability are needed to support developments in emerging fields such as medical electrodes and the bonding of electronic optical devices. However, achieving all of these features in a single material remains challenging. Herein, we propose a pressure-responsive polyurethane (PU) adhesive inspired by the octopus sucker. This adhesive not only showcases reversible adhesion to both solid materials and biological tissues but also exhibits robust stability and high transparency (>90%). As the adhesive strength of the PU adhesive corresponds to the application force, adhesion could be adjusted by the preloading force and/or pressure. The adhesive exhibits high static adhesion (∼120 kPa) and 180° peeling force (∼500 N/m), which is far stronger than those of most existing artificial dry adhesives. Moreover, the adhesion strength is effectively maintained even after 100 bonding-peeling cycles. Because the adhesive tape relies on the combination of negative pressure and intermolecular forces, it overcomes the underlying problems caused by glue residue like that left by traditional glue tapes after removal. In addition, the PU adhesive also shows wet-cleaning performance; the contaminated tape can recover 90-95% of the lost adhesion strength after being cleaned with water. The results show that an adhesive with a microstructure designed to increase the contribution of negative pressure can combine high reversible adhesion and long fatigue life.
    Matched MeSH terms: Water
  14. Zaulkiflee ND, Ahmad AL, Sugumaran J, Lah NFC
    ACS Omega, 2020 Sep 22;5(37):23892-23897.
    PMID: 32984709 DOI: 10.1021/acsomega.0c03142
    The purpose of this study is to explore the emulsion liquid membrane stability for acetaminophen (ACTP) removal from aqueous solution. In this work, the membrane phase was prepared by dissolving trioctylamine (TOA) with kerosene and Span80. The stability of the emulsion in terms of emulsion size, membrane breakage, and its efficiency in removing ACTP was considered for the optimization of parameters. Investigation on the stability of emulsion was carried out by manipulating the concentration of stripping agent, agitation speed, extraction time, and treat ratio. The best condition to produce a very stable emulsion was achieved at 0.1 M of stripping agent concentration, with 300 rpm of agitation speed for 3 min of extraction time with a treat ratio of 3:1. Eighty-five percent of ACTP successfully stripped into the emulsion with minimum membrane breakage of 0.17% through this experiment.
    Matched MeSH terms: Water
  15. Khosravi V, Mahmood SM, Zivar D, Sharifigaliuk H
    ACS Omega, 2020 Sep 15;5(36):22852-22860.
    PMID: 32954134 DOI: 10.1021/acsomega.0c02133
    One of the techniques to increase oil recovery from hydrocarbon reservoirs is the injection of low salinity water. It is shown that the injection of low salinity water changes the wettability of the rock. However, there are argumentative debates concerning low salinity water effect on changing the wettability of the oil/brine/rock system in the oil reservoirs. In this regard, molecular dynamics simulation (MDS) as a tool to simulate the phenomena at the molecular level has been used for more than a decade. In this study, the Zisman plot (presented by KRUSS Company) was simulated through MDS, and then, contact angle experiments for n-decane interactions on the Bentheimer substrate in the presence of different concentrations of sodium ions were conducted. MDS was then used to simulate experiments and understand the wettability trend based on free-energy calculations. Hereafter, a new model was developed in this study to correlate free energies with contact angles. The developed model predicted the experimental results with high accuracy (R2 ∼ 0.98). A direct relation was observed between free energy and water contact angle. In contrast, an inverse relation was noticed between the ion concentration and the contact angle such that an increase in the ion concentration resulted in a decrease in the contact angle and vice versa. In other terms, increasing brine ionic concentrations in the presence of n-decane is linked to a decrease in free energies and an increase in the wetting state of a sandstone. The comparison between the developed model's predicted contact angles and experimental observations showed a maximum deviation of 14.32%, which is in satisfactory agreement to conclude that MDS can be used as a valuable and economical tool to understand the wettability alteration process.
    Matched MeSH terms: Water
  16. Quah HJ, Ahmad FH, Lim WF, Hassan Z
    ACS Omega, 2020 Oct 20;5(41):26347-26356.
    PMID: 33110962 DOI: 10.1021/acsomega.0c02120
    Nitrogen-infused wet oxidation at different temperatures (400-1000 °C) was employed to transform tantalum-hafnia to hafnium-doped tantalum oxide films. High-temperature wet oxidation at 1000 °C marked an onset of crystallization occurring in the film, accompanied with the formation of an interfacial oxide due to a reaction between the inward-diffusing hydroxide ions, which were dissociated from the water molecules during wet oxidation. The existence of nitrogen has assisted in controlling the interfacial oxide formation. However, high-temperature oxidation caused a tendency for the nitrogen to desorb and form N-H complex after reacting with the hydroxide ions. Besides, the presence of N-H complex implied a decrease in the passivation at the oxide-Si interface by hydrogen. As a consequence, defect formation would happen at the interface and influence the metal-oxide-semiconductor characteristics of the samples. In comparison, tantalum-hafnia subjected to nitrogen-infused wet oxidation at 600 °C has obtained the highest dielectric constant, the largest band gap, and the lowest slow trap density.
    Matched MeSH terms: Water
  17. Akbari A, Mohammadian E, Alavi Fazel SA, Shanbedi M, Bahreini M, Heidari M, et al.
    ACS Omega, 2019 Apr 30;4(4):7038-7046.
    PMID: 31459815 DOI: 10.1021/acsomega.9b00176
    Many studies have investigated natural convection heat transfer from the outside surface of horizontal and vertical cylinders in both constant heat flux and temperature conditions. However, there are poor studies in natural convection from inclined cylinders. In this study, free convection heat transfer was examined experimentally from the outside surface of a cylinder for glycerol and water at various heat fluxes. The tests were performed at 10 different inclination angles of the cylinder, namely, φ = 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, and 90°, measured from the horizon. Our results indicated that the average Nusselt number reduces with the growth in the inclination of the cylinder to the horizon at the same heat flux, and the average Nusselt number enhanced with the growth in heat flux at the same angle. Also, the average Nusselt number of water is greater than that of glycerol. A new experimental model for predicting the average Nusselt number is suggested, which has a satisfactory accuracy for experimental data.
    Matched MeSH terms: Water
  18. Ong CC, Sundera Murthe S, Mohamed NM, Perumal V, Mohamed Saheed MS
    ACS Omega, 2018 Nov 30;3(11):15907-15915.
    PMID: 31458235 DOI: 10.1021/acsomega.8b01566
    This article demonstrates a novel nanoscale surface modification method to enhance the selectivity of porous poly(dimethylsiloxane) (PDMS) in removing oil from water. The surface modification method is simple and low cost by using sugar as a sacrificial template for temporal adhering of carbon nanotubes (CNT) before addition of PDMS prepolymer to encapsulate the CNT on its surface once polymerized. The PDMS-CNT demonstrated a tremendous increase in absorption capacity up to 3-fold compared to previously reported absorbents composed solely of PDMS. Besides showcasing excellent absorption capacity, the PDMS-CNT also shows a faster absorption rate (25 s) as compared to that of pure PDMS (40 s). The enhanced absorption rate is due to the incorporation of CNT, which roughens the surface of the polymer at the nanoscale and lowers the surface energy of porous PDMS while at the same time increasing the absorbent hydrophobicity and oleophilicity. This property makes the absorbent unique in absorbing only oil but repelling water at the same time. The PDMS-CNT is an excellent absorbent material with outstanding recyclability and selectivity for removing oil from water.
    Matched MeSH terms: Water
  19. Ragunathan T, Xu X, Shuhili JA, Wood CD
    ACS Omega, 2019 Oct 01;4(14):15789-15797.
    PMID: 31592451 DOI: 10.1021/acsomega.9b01232
    Hydrate formation is a common challenge in the oil and gas industry when natural gas is transported under cold conditions in the presence of water. Coatings are one of the solutions that have shown to be a promising approach to address this challenge. However, this strategy suffers from the intrinsic existence of a solid-liquid interface causing a high rate of hydrate nucleation and high hydrate adhesion strength. This proof-of-concept study highlights the performance of a magnetic slippery surface to prevent hydrate adhesion at atmospheric pressure using tetrahydrofuran hydrates. The coating consisted of a hydrocarbon-based magnetic fluid, which was applied to a metal surface to create an interface that lowered the hydrate adhesion strength on the surface. The performance of these new surfaces under static and dynamic (under fluid flow) conditions shows that the magnetic coating gel can be a potential inhibitor for hydrate adhesion as it reduced the torque value after the formation of hydrates.
    Matched MeSH terms: Water
  20. Mohd Ramli MR, Ahmad AL, Leo CP
    ACS Omega, 2021 Feb 23;6(7):4609-4618.
    PMID: 33644568 DOI: 10.1021/acsomega.0c05107
    Membrane distillation (MD) is an attractive technology for the separation of highly saline water used with a polytetrafluoroethylene (PTFE) hollow fiber (HF) membrane. A hydrophobic coating of low-density polyethylene (LDPE) coats the outer surface of the PTFE membrane to resolve membrane wetting as well as increase membrane permeability flux and salt rejection, a critical problem regarding the MD process. LDPE concentrations in coating solution have been studied and optimized. Consequently, the LDPE layer altered membrane morphology by forming a fine nanostructure on the membrane surface that created a hydrophobic layer, a high roughness of membrane, and a uniform LDPE network. The membrane coated with different concentrations of LDPE exhibited high water contact angles of 135.14 ± 0.24 and 138.08 ± 0.01° for membranes M-3 and M-4, respectively, compared to the pristine membrane. In addition, the liquid entry pressure values of LDPE-incorporated PTFE HF membranes (M-1 to M-5) were higher than that of the uncoated membrane (M-0) with a small decrease in the percentage of porosity. The M-3 and M-4 membranes demonstrated higher flux values of 4.12 and 3.3 L m-2 h-1 at 70 °C, respectively. On the other hand, the water permeation flux of 1.95 L m-2 h-1 for M-5 further decreased when LDPE concentration is increased.
    Matched MeSH terms: Saline Waters; Water
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links