Displaying publications 1 - 20 of 109 in total

Abstract:
Sort:
  1. Rahman ME, Bin Halmi MIE, Bin Abd Samad MY, Uddin MK, Mahmud K, Abd Shukor MY, et al.
    PMID: 33187288 DOI: 10.3390/ijerph17228339
    Constructed wetlands (CWs) are affordable and reliable green technologies for the treatment of various types of wastewater. Compared to conventional treatment systems, CWs offer an environmentally friendly approach, are low cost, have fewer operational and maintenance requirements, and have a high potential for being applied in developing countries, particularly in small rural communities. However, the sustainable management and successful application of these systems remain a challenge. Therefore, after briefly providing basic information on wetlands and summarizing the classification and use of current CWs, this study aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs' application and the recent development of their sustainable design, operation, and optimization for wastewater treatment. To accomplish this objective, thee design and management parameters of CWs, including macrophyte species, media types, water level, hydraulic retention time (HRT), and hydraulic loading rate (HLR), are discussed. Besides these, future research on improving the stability and sustainability of CWs are highlighted. This article provides a tool for researchers and decision-makers for using CWs to treat wastewater in a particular area. This paper presents an aid for informed analysis, decision-making, and communication. The review indicates that major advances in the design, operation, and optimization of CWs have greatly increased contaminant removal efficiencies, and the sustainable application of this treatment system has also been improved.
    Matched MeSH terms: Waste Water/analysis
  2. Kazem HA, Chaichan MT, Al-Waeli AHA
    Environ Sci Pollut Res Int, 2022 Dec;29(59):88788-88802.
    PMID: 35836053 DOI: 10.1007/s11356-022-21958-5
    Solar cells are considered one of the most important and widespread solar applications in the world. However, the performance of the PV modules is significantly affected by the dust in the air. This paper, therefore, presents a comparison of an outdoor experimental study of dust effect on monocrystalline, and polycrystalline photovoltaic (PV) modules. For analysis, four 100 W PVs were installed horizontally in Sohar, Oman. For each pair of PV modules, one was left dusty due to environmental impact, and the second was cleaned daily. PV performance and environmental parameter measurements were conducted every 30 min for 35 days. The effects of dust on current, voltage, power, and energy were discussed in terms of time and normalized values. Also, cleaning methods were tested to determine the optimum one. It is found that power degradation of monocrystalline (20%) is higher compared with polycrystalline (12%) due to dust accumulation. For monocrystalline, the current, voltage, and power losses ranged between 10.0-24.0%, 2.0-3.5%, and 14.0-31.0%, respectively. However, for polycrystalline, the degradation rates were 16.88-27.92%, 0.455-0.455%, and 17.14-28.1% for current, voltage, and power losses after exposure to outdoor conditions for the same period, respectively. The dust accumulation on the PV surface found after 5 weeks is 0.493 mg/cm2, which can be considered the lowest accumulation rate compared to other Gulf countries, but which, however, leads to less energy degradation as well. It is found that water is sufficient to clean PV in the study area. However, sodium detergent as a cleaner introduced better results compared to water, especially when there is high pollution in the location.
    Matched MeSH terms: Water/analysis
  3. Hamid N, Junaid M, Manzoor R, Sultan M, Chuan OM, Wang J
    Sci Total Environ, 2023 Dec 20;905:167213.
    PMID: 37730032 DOI: 10.1016/j.scitotenv.2023.167213
    Per- and polyfluoroalkyl substances (PFAS) are also known as "forever chemicals" due to their persistence and ubiquitous environmental distribution. This review aims to summarize the global PFAS distribution in surface water and identify its ecological and human risks through integrated assessment. Moreover, it provides a holistic insight into the studies highlighting the human biomonitoring and toxicological screening of PFAS in freshwater and marine species using quantitative structure-activity relationship (QSAR) based models. Literature showed that PFOA and PFOS were the most prevalent chemicals found in surface water. The highest PFAS levels were reported in the US, China, and Australia. The TEST model showed relatively low LC50 of PFDA and PFOS for Pimephales promelas (0.36 and 0.91 mg/L) and high bioaccumulation factors (518 and 921), revealing an elevated associated toxicity. The risk quotients (RQs) values for P. promelas and Daphnia magna were found to be 269 and 23.7 for PFOS. Studies confirmed that long-chain PFAS such as PFOS and PFOA undergo bioaccumulation in aquatic organisms and induce toxicological effects such as oxidative stress, transgenerational epigenetic effects, disturbed genetic and enzymatic responses, perturbed immune system, hepatotoxicity, neurobehavioral toxicity, altered genetic and enzymatic responses, and metabolism abnormalities. Human biomonitoring studies found the highest PFOS, PFOA, and PFHxS levels in urine, cerebrospinal fluid, and serum samples. Further, long-chain PFOA and PFOS exposure create severe health implications such as hyperuricemia, reduced birth weight, and immunotoxicity in humans. Molecular docking analysis revealed that short-chain PFBS (-11.84 Kcal/mol) and long-chain PFUnDA (-10.53 Kcal/mol) displayed the strongest binding interactions with human serum albumin protein. Lastly, research challenges and future perspectives for PFAS toxicological implications were also discussed, which helps to mitigate associated pollution and ecological risks.
    Matched MeSH terms: Water/analysis
  4. Ahmad-Kamil EI, Ramli R, Jaaman SA, Bali J, Al-Obaidi JR
    ScientificWorldJournal, 2013;2013:892746.
    PMID: 24163635 DOI: 10.1155/2013/892746
    Seagrass is a valuable marine ecosystem engineer. However, seagrass population is declining worldwide. The lack of seagrass research in Malaysia raises questions about the status of seagrasses in the country. The seagrasses in Lawas, which is part of the coral-mangrove-seagrass complex, have never been studied in detail. In this study, we examine whether monthly changes of seagrass population in Lawas occurred. Data on estimates of seagrass percentage cover and water physicochemical parameters (pH, turbidity, salinity, temperature, and dissolved oxygen) were measured at 84 sampling stations established within the study area from June 2009 to May 2010. Meteorological data such as total rainfall, air temperature, and Southern Oscillation Index were also investigated. Our results showed that (i) the monthly changes of seagrass percentage cover are significant, (ii) the changes correlated significantly with turbidity measurements, and (iii) weather changes affected the seagrass populations. Our study indicates seagrass percentage increased during the El-Nino period. These results suggest that natural disturbances such as weather changes affect seagrass populations. Evaluation of land usage and measurements of other water physicochemical parameters (such as heavy metal, pesticides, and nutrients) should be considered to assess the health of seagrass ecosystem at the study area.
    Matched MeSH terms: Seawater/analysis; Water/analysis*
  5. Razak MR, Aris AZ, Sukatis FF, Zaki MRM, Zainuddin AH, Haron DEM, et al.
    J Sep Sci, 2023 Jan;46(1):e2200282.
    PMID: 36337037 DOI: 10.1002/jssc.202200282
    In toxicological analysis, the analytical validation method is important to assess the exact risk of contaminants of emerging concern in the environment. Syringe filters are mainly used to remove impurities from sample solutions. However, the loss of analyte to the syringe filter could be considerable, causing an underestimate of the analyte concentrations. The current study develops and validates simultaneous liquid chromatography-mass spectrometry analysis using a direct filtration method to detect four groups of contaminants of emerging concern. The adsorption of the analyte onto three different matrices and six types of syringe filters is reported. The lowest adsorption of analytes was observed in methanol (16.72%), followed by deionized water (48.19%) and filtered surface lake water (48.94%). Irrespective of the type of the matrices, the lowest average adsorption by the syringe filter was observed in the 0.45 μm polypropylene membrane (15.15%), followed by the 0.20 μm polypropylene membrane (16.10%), the 0.20 μm regenerated cellulose (16.15%), the 0.20 μm polytetrafluoroethylene membrane (47.38%), the 0.45 μm nylon membrane (64.87%) and the 0.20 μm nylon membrane (71.30%). In conclusion, the recommended syringe filter membranes for contaminants of emerging concern analysis are polypropylene membranes and regenerated cellulose, regardless of the matrix used.
    Matched MeSH terms: Water/analysis
  6. Subramaniam MN, Goh PS, Kanakaraju D, Lim JW, Lau WJ, Ismail AF
    Environ Sci Pollut Res Int, 2022 Feb;29(9):12506-12530.
    PMID: 34101123 DOI: 10.1007/s11356-021-14676-x
    The presence of conventional and emerging pollutants infiltrating into our water bodies is a course of concern as they have seriously threatened water security. Established techniques such as photocatalysis and membrane technology have proven to be promising in removing various persistent organic pollutants (POP) from wastewaters. The emergence of hybrid photocatalytic membrane which incorporates both photocatalysis and membrane technology has shown greater potential in treating POP laden wastewater based on their synergistic effects. This article provides an in-depth review on the roles of both photocatalysis and membrane technology in hybrid photocatalytic membranes for the treatment of POP containing wastewaters. A concise introduction on POP's in terms of examples, their origins and their effect on a multitude of organisms are critically reviewed. The fundamentals of photocatalytic mechanism, current directions in photocatalyst design and their employment to treat POP's are also discussed. Finally, the challenges and future direction in this field are presented.
    Matched MeSH terms: Waste Water/analysis
  7. Ismanto A, Hadibarata T, Sugianto DN, Zainuri M, Kristanti RA, Wisha UJ, et al.
    Mar Pollut Bull, 2023 Nov;196:115677.
    PMID: 37862842 DOI: 10.1016/j.marpolbul.2023.115677
    The main aim of this study was to assess the presence of microplastics in the water and sediments of the Surakarta city river basin in Indonesia. In order to accurately reflect the river basin, a deliberate selection process was employed to choose three separate sampling locations and twelve sampling points. The results of the study revealed that fragments and fibers were the primary types of microplastics seen in both water and sediment samples. Furthermore, a considerable percentage of microplastics, comprising 53.8 % of the total, had dimensions below 1 mm. Moreover, the prevailing hues identified in the water samples were blue and black, comprising 45.1 % of the overall composition. In contrast, same color categories accounted for 23.3 % of the microplastics found in the soil samples. The analysis of microplastic polymers was carried out utilizing ATR-FTIR spectroscopy, which yielded the identification of various types including polystyrene, silicone polymer, polyester, and polyamide.
    Matched MeSH terms: Water/analysis
  8. Rozaini MNH, Khoo KS, Abdah MAAM, Ethiraj B, Alam MM, Anwar AF, et al.
    Environ Geochem Health, 2024 Mar 11;46(3):111.
    PMID: 38466501 DOI: 10.1007/s10653-024-01917-4
    With the advancement of technologies and growth of the economy, it is inevitable that more complex processes are deployed, producing more heterogeneous wastewater that comes from biomedical, biochemical and various biotechnological industries. While the conventional way of wastewater treatment could effectively reduce the chemical oxygen demand, pH and turbidity of wastewater, trace pollutants, specifically the endocrine disruptor compounds (EDCs) that exist in µg L-1 or ng L-1 have further hardened the detection and removal of these biochemical pollutants. Even in small amounts, EDC could interfere human's hormone, causing severe implications on human body. Hence, this review elucidates the recent insights regarding the effectiveness of an advanced 2D material based on titanium carbide (Ti3C2Tx), also known as MXene, in detecting and removing EDCs. MXene's highly tunable feature also allows its surface chemistry to be adjusted by adding chemicals with different functional groups to adsorb different kinds of EDCs for biochemical pollution mitigation. At the same time, the incorporation of MXene into sample matrices also further eases the analysis of trace pollutants down to ng L-1 levels, thereby making way for a more cleaner and comprehensive wastewater treatment. In that sense, this review also highlights the progress in synthesizing MXene from the conventional method to the more modern approaches, together with their respective key parameters. To further understand and attest to the efficacy of MXene, the limitations and current gaps of this potential agent are also accentuated, targeting to seek resolutions for a more sustainable application.
    Matched MeSH terms: Water/analysis
  9. Mukhlisin M, Saputra A
    ScientificWorldJournal, 2013;2013:421762.
    PMID: 24282382 DOI: 10.1155/2013/421762
    In recent years many models have been proposed for measuring soil water content (θ) based on the permittivity (ε) value. Permittivity is one of the properties used to determine θ in measurements using the electromagnetic method. This method is widely used due to quite substantial differences in values of ε for air, soil, and water, as it allows the θ value to be measured accurately. The performance of six proposed models with one parameter (i.e., permittivity) and five proposed models with two or more parameters (i.e., permittivity, porosity, and dry bulk density of soil) is discussed and evaluated. Secondary data obtained from previous studies are used for comparison to calibrate and evaluate the models. The results show that the models with one parameter proposed by Roth et al. (1992) and Topp et al. (1980) have the greatest R² data errors, while for the model with two parameters, the model proposed by Malicki et al. (1996) agrees very well with the data compared with other models.
    Matched MeSH terms: Water/analysis*
  10. Yee LK, Abbas Z, Jusoh MA, Yeow YK, Meng CE
    Sensors (Basel), 2011;11(4):4073-85.
    PMID: 22163837 DOI: 10.3390/s110404073
    This paper presents the development of a PC-based microwave five-port reflectometer for the determination of moisture content in oil palm fruits. The reflectometer was designed to measure both the magnitude and phase of the reflection coefficient of any passive microwave device. The stand-alone reflectometer consists of a PC, a microwave source, diode detectors and an analog to digital converter. All the measurement and data acquisition were done using Agilent VEE graphical programming software. The relectometer can be used with any reflection based microwave sensor. In this work, the application of the reflectometer as a useful instrument to determine the moisture content in oil palm fruits using monopole and coaxial sensors was demonstrated. Calibration equations between reflection coefficients and moisture content have been established for both sensors. The equation based on phase measurement of monopole sensor was found to be accurate within 5% in predicting moisture content in the fruits when compared to the conventional oven drying method.
    Matched MeSH terms: Water/analysis*
  11. Najafpour GD, Shan CP
    Bioresour Technol, 2003 Jan;86(1):91-4.
    PMID: 12421015
    Kinetic studies of the enzymatic hydrolysis of molasses were conducted using glucoamylase. Central Sugar Refinery SDN BHD contains 13-20% glucose. The molasses was diluted and the kinetic experiments were conducted at 67 degrees C with 100-1000 mg/l of glucoamylase. The glucose contents of the molasses were enhanced after hydrolysis of molasses solution with 1000 mg/l glucoamylase. A Lineweaver-Burk plot was obtained based on enzyme kinetic data. The rate constant, Km and maximum reaction rate, Vmax for 500 mg/l of glucoamylase were 100 mmol/l (18 g/l) and 5 mmol/l min (0.9 g/l min), respectively. The maximum reaction rate, Vmax for 1000 mg/l of glucoamylase was doubled, to 100 mmol/l (18 g/l) and the rate constant, Km was the same for 500 mg/l of glucoamylase. The substrate inhibition model was noncompetitive based on the resulting Lineweaver-Burk plot for enzyme concentration of 500 and 1000 mg/l.
    Matched MeSH terms: Water/analysis
  12. Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, et al.
    J Hazard Mater, 2021 08 15;416:125912.
    PMID: 34492846 DOI: 10.1016/j.jhazmat.2021.125912
    Emerging contaminants (ECs) in wastewater have recently attracted the attention of researchers as they pose significant risks to human health and wildlife. This paper presents the state-of-art technologies used to remove ECs from wastewater through a comprehensive review. It also highlights the challenges faced by existing EC removal technologies in wastewater treatment plants and provides future research directions. Many treatment technologies like biological, chemical, and physical approaches have been advanced for removing various ECs. However, currently, no individual technology can effectively remove ECs, whereas hybrid systems have often been found to be more efficient. A hybrid technique of ozonation accompanied by activated carbon was found significantly effective in removing some ECs, particularly pharmaceuticals and pesticides. Despite the lack of extensive research, nanotechnology may be a promising approach as nanomaterial incorporated technologies have shown potential in removing different contaminants from wastewater. Nevertheless, most existing technologies are highly energy and resource-intensive as well as costly to maintain and operate. Besides, most proposed advanced treatment technologies are yet to be evaluated for large-scale practicality. Complemented with techno-economic feasibility studies of the treatment techniques, comprehensive research and development are therefore necessary to achieve a full and effective removal of ECs by wastewater treatment plants.
    Matched MeSH terms: Waste Water/analysis
  13. Wurochekke AA, Mohamed RM, Al-Gheethi AA, Atiku H, Amir HM, Matias-Peralta HM
    J Water Health, 2016 Dec;14(6):914-928.
    PMID: 27959870
    Discharge of household greywater into water bodies can lead to an increase in contamination levels in terms of the reduction in dissolved oxygen resources and rapid bacterial growth. Therefore, the quality of greywater has to be improved before the disposal process. The present review aimed to present a hybrid treatment system for the greywater generated from households. The hybrid system comprised a primary stage (a natural filtration unit) with a bioreactor system as the secondary treatment combined with microalgae for greywater treatment, as well as the natural flocculation process. The review discussed the efficiency of each stage in the removal of elements and nutrients. The hybrid system reviewed here represented an effective solution for the remediation of household greywater.
    Matched MeSH terms: Waste Water/analysis*
  14. Rendana M, Idris WMR, Rahim SA
    Environ Monit Assess, 2022 Dec 17;195(1):205.
    PMID: 36527450 DOI: 10.1007/s10661-022-10833-y
    Mining activities in the Chini Lake catchment area have been extensive for several years, contributing to acid mine drainage (AMD) events with high concentrations of iron (Fe) and other heavy metals impacting the surface water. However, during the restriction period due to the COVID-19 outbreak, anthropogenic activities have been suspended, which clearly shows a good opportunity for a better environment. Therefore, we aimed to analyze the variation of AMD-associated water pollution in three main zones of the Chini Lake catchment area using Sentinel-2 data for the periods pre-movement control order (MCO), during MCO, and post-MCO from 2019 to 2021. These three zones were chosen due to their proximity to mining areas: zone 1 in the northeastern part, zone 2 in the southeastern part, and zone 3 in the southern part of the Chini Lake area. The acid mine water index (AMWI) was a specific index used to estimate acid mine water. The AMWI values from Sentinel-2 images exhibited that the mean AMWI values in all zones during the MCO period decreased by 14% compared with the pre-MCO period. The spatiotemporal analysis found that the highest polluted zones were recorded in zone 1, followed by zone 3 and zone 2. As compared with during the MCO period, the maximum percentage of increment during post-MCO in all zones was up to 25%. The loosened restriction policy has resulted in more AMD flowing into surface water and increased pollution in Chini Lake. As a whole, our outputs revealed that Sentinel-2 data had a major potential for assessing the AMD-associated pollution of water.
    Matched MeSH terms: Water/analysis
  15. Ahmad A, Abdullah SRS, Hasan HA, Othman AR, Ismail N'
    Environ Sci Pollut Res Int, 2022 Jan;29(2):2579-2587.
    PMID: 34374006 DOI: 10.1007/s11356-021-15541-7
    The performance of local plants was tested using synthetic turbid water resembling real wastewater by measuring their ability to remove turbidity. The selected plants were A. indica, S. palustris, D. linearis, S. polyanthum, M. esculenta, P. sarmentosum, and M. malabathricum which can easily be found locally. The experiment was run based on coagulant dosages varied from 0 to 10 g/L for each plant with a rapid mixing speed at 180 rpm for 3 min, slow mixing speed at 10 rpm for 20 min, and settling time for 30 min. The results demonstrated that each plant has been capable of reducing turbidity by different amounts, with an increase in the coagulant dosage. The optimum coagulant dosages achieved for A. indica, S. palustris, S. polyanthum, and D. linearis were 10 g/L with turbidity removal at 26.9%, 24.9%, 24.9%, and 17.5%, respectively. P. sarmentosum and M. esculenta attained optimum coagulant dosages at 5 g/L with turbidity removal at 24.2% and 22.2%, and lastly M. malabathricum at 0.1 g/L (12.2%). P. sarmentosum was suggested to the best natural coagulant which achieved the highest removal of turbidity with a low dosage used.
    Matched MeSH terms: Water/analysis
  16. Sharuddin SS, Ramli N, Yusoff MZM, Muhammad NAN, Ho LS, Maeda T
    J Appl Microbiol, 2023 Oct 04;134(10).
    PMID: 37757470 DOI: 10.1093/jambio/lxad219
    AIMS: This study aimed to investigate the effect of palm oil mill effluent (POME) final discharge on the active bacterial composition, gene expression, and metabolite profiles in the receiving rivers to establish a foundation for identifying potential biomarkers for monitoring POME pollution in rivers.

    METHODS AND RESULTS: The POME final discharge, upstream (unpolluted by POME), and downstream (effluent receiving point) parts of the rivers from two sites were physicochemically characterized. The taxonomic and gene profiles were then evaluated using de novo metatranscriptomics, while the metabolites were detected using qualitative metabolomics. A similar bacterial community structure in the POME final discharge samples from both sites was recorded, but their composition varied. Redundancy analysis showed that several families, particularly Comamonadaceae and Burkholderiaceae [Pr(>F) = 0.028], were positively correlated with biochemical oxygen demand (BOD5) and chemical oxygen demand (COD). The results also showed significant enrichment of genes regulating various metabolisms in the POME-receiving rivers, with methane, carbon fixation pathway, and amino acids among the predominant metabolisms identified (FDR  4, and PPDE > 0.95). This was further validated through qualitative metabolomics, whereby amino acids were detected as the predominant metabolites.

    CONCLUSIONS: The results suggest that genes regulating amino acid metabolism have significant potential for developing effective biomonitoring and bioremediation strategies in river water influenced by POME final discharge, fostering a sustainable palm oil industry.

    Matched MeSH terms: Water/analysis
  17. Haron DEM, Yoneda M, Hod R, Ramli MR, Aziz MY
    Environ Sci Pollut Res Int, 2023 Nov;30(51):111062-111075.
    PMID: 37801249 DOI: 10.1007/s11356-023-30022-9
    Multiclass of endocrine disrupting chemicals (EDCs) such as nine perfluoroalkyl and polyfluoroalkyl substances (PFAS), five bisphenols, and four parabens were analysed in tap water samples from Malaysia's Klang Valley region. All samples were analysed using liquid chromatography mass tandem spectrometry (LC-MS/MS) with limit of quantitation (LOQ) ranged between 0.015 and 5 ng/mL. Fifteen of the 18 EDCs were tested positive in tap water samples, with total EDC concentrations ranging from 0.28 to 5516 ng/L for all 61 sampling point locations. In a specific area of the Klang Valley, the total concentration of EDCs was found to be highest in Hulu Langat, followed by Sepang, Putrajaya, Petaling, Kuala Lumpur, Seremban, and Gombak/Klang. PFAS and paraben were the most found EDCs in all tap water samples. Meanwhile, ethyl paraben (EtP) exhibited the highest detection rate, with 90.2% of all locations showing its presence. Over 60% of the regions showed the presence of perfluoro-n-butanoic acid (PFBA), perfluoro-n-hexanoic acid (PFHXA), perfluoro-n-octanoic acid (PFOA), perfluoro-n-nonanoic acid (PFNA), and perfluoro-1-octanesulfonate (PFOS), whereas the frequency of detection for other compounds was less than 40%. The spatial distribution and mean concentrations of EDCs in the Klang Valley regions revealed that Hulu Langat, Petaling Jaya, and Putrajaya exhibited higher levels of bisphenol A (BPA). On the other hand, Kuala Lumpur and Sepang displayed the highest mean concentrations of PFBA. In the worst scenario, the estimated daily intake (EDI) and risk quotient of some EDCs in this study exceeded the acceptable daily limits recommended by international standards, particularly for BPA, PFOA, PFOS, and PFNA, where the risk quotient (RQ) was found to be greater than 1, indicating a high risk to human health. The increasing presence of EDCs in tap water is undoubtedly a cause for concern as these substances can have adverse health consequences. This highlights the necessity for a standardised approach to evaluating EDC exposure and its direct impact on human populations' health.
    Matched MeSH terms: Water/analysis
  18. Zakaria MH, Ramaiya SD, Bidin N, Syed NNF, Bujang JS
    PeerJ, 2023;11:e15496.
    PMID: 37456903 DOI: 10.7717/peerj.15496
    BACKGROUND: The social acceptability of wild freshwater macrophytes as locally consumed vegetables is widespread. Freshwater macrophytes have several uses; for example, they can be used as food for humans. This study determined the proximate composition and mineral content of three freshwater macrophyte species, i.e., Eichhornia crassipes, Limnocharis flava, and Neptunia oleracea.

    METHODS: Young shoots of E. crassipes, L. flava, and N. oleracea were collected from shallow channels of Puchong (3°00'11.89″N, 101°42'43.12″E), Ladang 10, Universiti Putra Malaysia (2°58'44.41″N, 101°42'44.45″E), and Kampung Alur Selibong, Langgar (06°5'50.9″N, 100°26'49.8″E), Kedah, Peninsular Malaysia. The nutritional values of these macrophytes were analysed by using a standard protocol from the Association of Official Analytical Chemists. Eight replicates of E. crassipes and L. flava and four replicates of N. oleracea were used for the subsequent analyses.

    RESULTS: In the proximate analysis, N. oleracea possessed the highest percentage of crude protein (29.61%) and energy content (4,269.65 cal g-1), whereas L. flava had the highest percentage of crude fat (5.75%) and ash (18.31%). The proximate composition trend for each species was different; specifically, all of the species possessed more carbohydrates and fewer crude lipids. All of the species demonstrated a similar mineral trend, with high nitrogen and potassium and lower copper contents. Nitrogen and potassium levels ranged from 12,380-40,380 mg kg-1 and from 11,212-33,276 mg kg-1, respectively, and copper levels ranged from 16-27 mg kg-1. The results showed that all three plant species, i.e., E. crassipes, N. oleracea, and L. flava are plant-based sources of macro- and micronutrient beneficial supplements for human consumption.

    Matched MeSH terms: Fresh Water/analysis
  19. Hossain S, Ahmad Shukri ZN, Waiho K, Ibrahim YS, Minhaz TM, Kamaruzzan AS, et al.
    Environ Pollut, 2023 Jul 15;329:121697.
    PMID: 37088255 DOI: 10.1016/j.envpol.2023.121697
    Microplastics (MPs) occurrence in farmed aquatic organisms has already been the prime priority of researchers due to the food security concerns for human consumption. A number of commercially important aquaculture systems have already been investigated for MPs pollution but the mud crab (Scylla sp.) aquaculture system has not been investigated yet even though it is a highly demanded commercial species globally. This study reported the MPs pollution in the mud crab (Scylla sp.) aquaculture system for the first time. Three different stations of the selected aquafarm were sampled for water and sediment samples and MPs particles in the samples were isolated by the gravimetric analysis (0.9% w/v NaCl solution). MP abundance was visualized under a microscope along with their size, shape, and color. A subset of the isolated MPs was analyzed by scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) for the surface and chemical characterization respectively. The average MPs concentration was 47.5 ± 11.875 particles/g in sediment and 127.92 ± 14.99 particles/100 L in the water sample. Fibrous-shaped (72.17%) and transparent-colored (59.37%) MPs were dominant in all the collected samples. However, smaller MPs (>0.05-0.5 mm) were more common in the water samples (47.69%) and the larger (>1-5 mm) MPs were in the sediment samples (47.83%). SEM analysis found cracks and roughness on the surface of the MPs and nylon, polyethylene, polypropylene, and polystyrene MPs were identified by FTIR analysis. PLI value showed hazard level I in water and level II in sediment. The existence of deleterious MPs particles in the mud crab aquaculture system was well evident. The other commercial mud crab aquafarms must therefore be thoroughly investigated in order to include farmed mud crabs as an environmentally vulnerable food security concern.
    Matched MeSH terms: Water/analysis
  20. Panda BP, Mohanta YK, Parida SP, Pradhan A, Mohanta TK, Patowary K, et al.
    Environ Pollut, 2023 Aug 01;330:121796.
    PMID: 37169242 DOI: 10.1016/j.envpol.2023.121796
    Metals are micropollutants that cannot be degraded by microorganisms and are infiltrated into various environmental media, including both freshwater and marine water. Metals from polluted water are absorbed by many aquatic species, especially fish. Fish is a staple food in the diets of many regions in the world; hence, both the type and concentration of metals accumulated and transferred from contaminated water sources to fish must be determined and assessed. In this study, the heavy metal concentration was determined and assessed in fish collected from freshwater sources via published literature and Estimated Daily Intake (EDI), Target hazard quotient (THQ), and Carcinogenic Risk (CR) analyses, aiming to examine the metal pollution in freshwater fish. The fish was used as a bioindicator, and Geographic information system (GIS) was sued to map the polluted regions. The results confirmed that Pb was detected in fish sampled at 28 locations, Cr at 24 locations, Cu and Zn at 30 locations, with values Pb detected ranging from 0.0016 mg kg-1 to 44.3 mg kg-1, Cr detected ranging from 0.07 mg kg-1 to 27 mg kg-1, Cu detected ranging from 0.031 mg kg-1 to 35.54 mg kg-1, and Zn detected ranging from 0.242 mg kg-1 to 103.2 mg kg-1. The strongest positive associations were discovered between Cu-Zn (r = 0.74, p 
    Matched MeSH terms: Fresh Water/analysis; Water/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links