Displaying publications 1 - 20 of 151 in total

Abstract:
Sort:
  1. Abakpa GO, Umoh VJ, Kamaruzaman S, Ibekwe M
    J Sci Food Agric, 2018 Jan;98(1):80-86.
    PMID: 28543177 DOI: 10.1002/jsfa.8441
    BACKGROUND: Some routes of transmission of Escherichia coli O157:H7 to fresh produce include contaminated irrigation water and manure polluted soils. The aim of the present study was to determine the genetic relationships of E. coli O157:H7 isolated from some produce growing region in Nigeria using enterobacterial repetitive intergenic consensus (ERIC) DNA fingerprinting analysis. A total of 440 samples comprising leafy greens, irrigation water, manure and soil were obtained from vegetable producing regions in Kano and Plateau States, Nigeria. Genes coding for the quinolone resistance-determinant (gyrA) and plasmid (pCT) coding for multidrug resistance (MDR) were determined using polymerase chain reaction (PCR) in 16 isolates that showed MDR.

    RESULTS: Cluster analysis of the ERIC-PCR profiles based on band sizes revealed six main clusters from the sixteen isolates analysed. The largest cluster (cluster 3) grouped isolates from vegetables and manure at a similarity coefficient of 0.72.

    CONCLUSION: The present study provides data that support the potential transmission of resistant strains of E. coli O157:H7 from vegetables and environmental sources to humans with potential public health implications, especially in developing countries. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Water Microbiology*
  2. Abbas SZ, Riaz M, Ramzan N, Zahid MT, Shakoori FR, Rafatullah M
    Braz J Microbiol, 2014;45(4):1309-15.
    PMID: 25763035
    The present study proposed the isolation of arsenic resistant bacteria from wastewater. Only three bacterial isolates (MNZ1, MNZ4 and MNZ6) were able to grow in high concentrations of arsenic. The minimum inhibitory concentrations of arsenic against MNZ1, MNZ4 and MNZ6 were 300 mg/L, 300 mg/L and 370 mg/L respectively. The isolated strains showed maximum growth at 37 °C and at 7.0 pH in control but in arsenite stress Luria Bertani broth the bacterial growth is lower than control. All strains were arsenite oxidizing. All strains were biochemically characterized and ribotyping (16S rRNA) was done for the purpose of identification which confirmed that MNZ1 was homologous to Enterobacter sp. while MNZ4 and MNZ6 showed their maximum homology with Klebsiella pneumoniae. The protein profiling of these strains showed in arsenic stressed and non stressed conditions, so no bands of induced proteins appeared in stressed conditions. The bacterial isolates can be exploited for bioremediation of arsenic containing wastes, since they seem to have the potential to oxidize the arsenite (more toxic) into arsenate (less toxic) form.
    Matched MeSH terms: Waste Water/microbiology*
  3. Abdul Majid MA, Mahboob T, Mong BG, Jaturas N, Richard RL, Tian-Chye T, et al.
    PLoS One, 2017;12(2):e0169448.
    PMID: 28212409 DOI: 10.1371/journal.pone.0169448
    Data on the distribution of free-living amoebae is still lacking especially in Southeast Asian region. The aquatic environment revealed a high occurrence of free-living amoebae (FLA) due to its suitable condition and availability of food source, which subsequently causes infection to humans. A total of 94 water samples consisted of both treated and untreated from Laos (31), Myanmar (42), and Singapore (21) were investigated for the presence of pathogenic FLA. Each water sample was filtered and cultured onto non-nutrient agar seeded with live suspension of Escherichia coli and incubated at room temperature. Morphological identification was conducted for both trophozoites and cysts via microscopic stains (Giemsa and immunofluorescence). The presence of Naegleria-like structures was the most frequently encountered in both treated and untreated water samples, followed by Acanthamoeba-like and Vermamoeba-like features. To identify the pathogenic isolates, species-specific primer sets were applied for molecular identification of Acanthamoeba, Naegleria, and Vermamoeba. The pathogenic species of Acanthamoeba lenticulata and A. triangularis were detected from untreated water samples, while Vermamoeba vermiformis was found in both treated and untreated water samples. Our results suggested that poor water quality as well as inadequate maintenance and treatment might be the cause of this alarming problem since chlorine disinfection is ineffective in eradicating these amoebas in treated water samples. Regular monitoring and examination of water qualities are necessary in order to control the growth, hence, further preventing the widespread of FLA infections among the public.
    Matched MeSH terms: Water Microbiology
  4. Affum AO, Osae SD, Nyarko BJ, Afful S, Fianko JR, Akiti TT, et al.
    Environ Monit Assess, 2015 Feb;187(2):1.
    PMID: 25600401 DOI: 10.1007/s10661-014-4167-x
    In recent times, surface water resource in the Western Region of Ghana has been found to be inadequate in supply and polluted by various anthropogenic activities. As a result of these problems, the demand for groundwater by the human populations in the peri-urban communities for domestic, municipal and irrigation purposes has increased without prior knowledge of its water quality. Water samples were collected from 14 public hand-dug wells during the rainy season in 2013 and investigated for total coliforms, Escherichia coli, mercury (Hg), arsenic (As), cadmium (Cd) and physicochemical parameters. Multivariate statistical analysis of the dataset and a linear stoichiometric plot of major ions were applied to group the water samples and to identify the main factors and sources of contamination. Hierarchal cluster analysis revealed four clusters from the hydrochemical variables (R-mode) and three clusters in the case of water samples (Q-mode) after z score standardization. Principal component analysis after a varimax rotation of the dataset indicated that the four factors extracted explained 93.3 % of the total variance, which highlighted salinity, toxic elements and hardness pollution as the dominant factors affecting groundwater quality. Cation exchange, mineral dissolution and silicate weathering influenced groundwater quality. The ranking order of major ions was Na(+) > Ca(2+) > K(+) > Mg(2+) and Cl(-) > SO4 (2-) > HCO3 (-). Based on piper plot and the hydrogeology of the study area, sodium chloride (86 %), sodium hydrogen carbonate and sodium carbonate (14 %) water types were identified. Although E. coli were absent in the water samples, 36 % of the wells contained total coliforms (Enterobacter species) which exceeded the WHO guidelines limit of zero colony-forming unit (CFU)/100 mL of drinking water. With the exception of Hg, the concentration of As and Cd in 79 and 43 % of the water samples exceeded the WHO guideline limits of 10 and 3 μg/L for drinking water, respectively. Reported values in some areas in Nigeria, Malaysia and USA indicated that the maximum concentration of Cd was low and As was high in this study. Health risk assessment of Cd, As and Hg based on average daily dose, hazard quotient and cancer risk was determined. In conclusion, multiple natural processes and anthropogenic activities from non-point sources contributed significantly to groundwater salinization, hardness, toxic element and microbiological contamination of the study area. The outcome of this study can be used as a baseline data to prioritize areas for future sustainable development of public wells.
    Matched MeSH terms: Drinking Water/microbiology
  5. Ahmad A, Patel I, Khan MU, Babar ZU
    Lancet Infect Dis, 2017 06;17(6):578-579.
    PMID: 28555576 DOI: 10.1016/S1473-3099(17)30268-2
    Matched MeSH terms: Water Microbiology
  6. Ahmed J, Wong LP, Chua YP, Channa N, Mahar RB, Yasmin A, et al.
    PMID: 32316585 DOI: 10.3390/ijerph17082774
    Primary-school children in low- and middle-income countries are often deprived of microbiologically safe water and sanitation, often resulting in a high prevalence of gastrointestinal diseases and poor school performance. We used Quantitative Microbial Risk Assessment (QMRA) to predict the probability of infection in schoolchildren due to consumption of unsafe school water. A multistage random-sampling technique was used to randomly select 425 primary schools from ten districts of Sindh, Pakistan, to produce a representative sample of the province. We characterized water supplies in selected schools. Microbiological testing of water resulted in inputs for the QMRA model, to estimate the risks of infections to schoolchildren. Groundwater (62%) and surface water (38%) were identified as two major sources of drinking water in the selected schools, presenting varying degrees of health risks. Around half of the drinking-water samples were contaminated with Escherichia coli (49%), Shigella spp. (63%), Salmonella spp. (53%), and Vibrio cholerae (49%). Southern Sindh was found to have the highest risk of infection and illness from Campylobacter and Rotavirus. Central and Northern Sindh had a comparatively lower risk of waterborne diseases. Schoolchildren of Karachi were estimated to have the highest probability of illness per year, due to Campylobacter (70%) and Rotavirus (22.6%). Pearson correlation was run to assess the relationship between selected pathogens. V. cholerae was correlated with Salmonella spp., Campylobacter, Rotavirus, and Salmonella spp. Overall, the risk of illness due to the bacterial infection (E. coli, Salmonella spp., V. cholerae, Shigella, and Campylobacter) was high. There is a dire need for management plans in the schools of Sindh, to halt the progression of waterborne diseases in school-going children.
    Matched MeSH terms: Water Microbiology*
  7. Aida AA, Hatamoto M, Yamamoto M, Ono S, Nakamura A, Takahashi M, et al.
    J Biosci Bioeng, 2014 Nov;118(5):540-5.
    PMID: 24930844 DOI: 10.1016/j.jbiosc.2014.04.011
    A novel wastewater treatment system consisting of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with sulfur-redox reaction was developed for treatment of municipal sewage under low-temperature conditions. In the UASB reactor, a novel phenomenon of anaerobic sulfur oxidation occurred in the absence of oxygen, nitrite and nitrate as electron acceptors. The microorganisms involved in anaerobic sulfur oxidation have not been elucidated. Therefore, in this study, we studied the microbial communities existing in the UASB reactor that probably enhanced anaerobic sulfur oxidation. Sludge samples collected from the UASB reactor before and after sulfur oxidation were used for cloning and terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes of the bacterial and archaeal domains. The microbial community structures of bacteria and archaea indicated that the genus Smithella and uncultured bacteria within the phylum Caldiserica were the dominant bacteria groups. Methanosaeta spp. was the dominant group of the domain archaea. The T-RFLP analysis, which was consistent with the cloning results, also yielded characteristic fingerprints for bacterial communities, whereas the archaeal community structure yielded stable microbial community. From these results, it can be presumed that these major bacteria groups, genus Smithella and uncultured bacteria within the phylum Caldiserica, probably play an important role in sulfur oxidation in UASB reactors.
    Matched MeSH terms: Waste Water/microbiology
  8. Al-Fendi A, Shueb RH, Ravichandran M, Yean CY
    J Basic Microbiol, 2014 Oct;54(10):1036-43.
    PMID: 24532381 DOI: 10.1002/jobm.201300458
    Water samples from a variety of sources in Kelantan, Malaysia (lakes, ponds, rivers, ditches, fish farms, and sewage) were screened for the presence of bacteriophages infecting Vibrio cholerae. Ten strains of V. cholerae that appeared to be free of inducible prophages were used as the host strains. Eleven bacteriophage isolates were obtained by plaque assay, three of which were lytic and further characterized. The morphologies of the three lytic phages were similar with each having an icosahedral head (ca. 50-60 nm in diameter), a neck, and a sheathed tail (ca. 90-100 nm in length) characteristic of the family Myoviridae. The genomes of the lytic phages were indistinguishable in length (ca. 33.5 kb), nuclease sensitivity (digestible with DNase I, but not RNase A or S1 nuclease), and restriction enzyme sensitivity (identical banding patterns with HindIII, no digestion with seven other enzymes). Testing for infection against 46 strains of V. cholerae and 16 other species of enteric bacteria revealed that all three isolates had a narrow host range and were only capable of infecting V. cholerae O1 El Tor Inaba. The similar morphologies, indistinguishable genome characteristics, and identical host ranges of these lytic isolates suggests that they represent one phage, or several very closely related phages, present in different water sources. These isolates are good candidates for further bio-phage-control studies.
    Matched MeSH terms: Water Microbiology*
  9. Al-Othrubi SM, Hanafiah A, Radu S, Neoh H, Jamal R
    Saudi Med J, 2011 Apr;32(4):400-6.
    PMID: 21484001
    To find out the prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus in seafoods and environmental sources.
    Matched MeSH terms: Water Microbiology*
  10. Alexander AD, Evans LB, Baker MF, Baker HJ, Ellison D, Marriapan M
    Appl Microbiol, 1975 Jan;29(1):30-3.
    PMID: 1110490
    Pathogenic leptospiras (1,424) isolated from natural waters and wet soils in Malaysia comprised 29 different serovars (synonym serotypes). All except two of the serovars had been found previously in Malaysia. The exceptional serovars were werrasingha, an Autumnalis serogroup member originally isolated in Ceylon, and a new serovar designated evansi. Serovar evansi had serological affinities with serovar ranarum which was isolated from the kidney of a frog in Iowa. The large variety of serovars found in jungle areas was consistent with similar previous findings of diverse serovar infections in troops who had operated in Malaysian jungles.
    Matched MeSH terms: Water Microbiology*
  11. Ali WN, Ahmad R, Nor ZM, Ismail Z, Ibrahim MN, Hadi AA, et al.
    PMID: 23413702
    Many of the most widely spread vector-borne diseases are water related, in that the mosquito vectors concerned breed or pass part of their lifecycle in or close to water. A major reason for the study of mosquito larval ecology is to gather information on environmental variables that may determine the species of mosquitoes and the distribution of larvae in the breeding habitats. Larval surveillance studies were conducted six times between May 2008 and October 2009 in Pos Lenjang, Kuala Lipis, Pahang. Twelve environmental variables were recorded for each sampling site, and samples of mosquito larvae were collected. Larval survey studies showed that anopheline and culicine larvae were collected from 79 and 67 breeding sites, respectively. All breeding sites were classified into nine habitat groups. Culicine larvae were found in all habitat groups, suggesting that they are very versatile and highly adaptable to different types of environment. Rock pools or water pockets with clear water formed on the bank of rivers and waterfalls were the most common habitats associated with An. maculatus. Environmental variables influence the suitability of aquatic habitats for anopheline and culicine larvae, but not significantly associated with the occurrence of both larvae genera (p>0.05). This study provides information on mosquito ecology in relation to breeding habitats that will be useful in designing and implementing larval control operations.
    Matched MeSH terms: Water Microbiology*
  12. Amirul AA, Yahya AR, Sudesh K, Azizan MN, Majid MI
    Bioresour Technol, 2008 Jul;99(11):4903-9.
    PMID: 17981028
    Cupriavidus sp. USMAA1020 was isolated from Malaysian environment and able to synthesize poly(3-hydroxybutyrate-co-4-hydroxybutyrate), [P(3HB-co-4HB)] when grown on gamma-butyrolactone as the sole carbon source. The polyester was purified from freeze-dried cells and analyzed by nuclear magnetic resonance (NMR) spectroscopy. 1H and 13C NMR results confirmed the presence of 3HB and 4HB monomers. In a one-step cultivation process, P(3HB-co-4HB) accumulation by Cupriavidus sp. USMAA1020 was affected by carbon to nitrogen ratio (C/N). A two-step cultivation process accumulated P(3HB-co-4HB) copolyester with a higher 4HB fraction (53 mol%) in nitrogen-free mineral medium containing gamma-butyrolactone. The biosynthesis of P(3HB-co-4HB) was also achieved by using 4-hydroxybutyric acid and alkanediol as 1,4-butanediol. The composition of copolyesters varied from 32 to 51 mol% 4HB, depending on the carbon sources supplied. The copolyester produced by Cupriavidus sp. USMAA1020 has a random sequence distribution of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) units when analyzed by nuclear magnetic resonance (NMR) spectroscopy. When gamma-butyrolactone was used as the sole carbon source, the 4HB fraction in copolyester increased from 25 to 60 mol% as the concentration of gamma-butyrolactone in the culture medium increased from 2.5 g/L to 20.0 g/L.
    Matched MeSH terms: Fresh Water/microbiology*
  13. Ariffin EY, Lee YH, Futra D, Tan LL, Karim NHA, Ibrahim NNN, et al.
    Anal Bioanal Chem, 2018 Mar;410(9):2363-2375.
    PMID: 29504083 DOI: 10.1007/s00216-018-0893-1
    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10-12-1.0×10-2 μM, with a low detection limit of 8.17×10-14 μM (R2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.
    Matched MeSH terms: Water Microbiology*
  14. Arushothy R, Ahmad N
    Trop Biomed, 2008 Dec;25(3):259-61.
    PMID: 19287368
    Legionella pneumophila are intracellular pathogens, associated with human disease, attributed to the presence and absence of certain virulent genes. In this study, virulent gene loci (lvh and rtxA regions) associated with human disease were determined. Thirty-three cooling tower water isolates, isolated between 2004 to 2006, were analyzed for the presence of these genes by PCR method. Results showed that 19 of 33 (57.5%) of the L. pneumophila serogroup 1 isolates have both the genes. Six (18.2%) of the isolates have only the lvh gene and 2 (6.1%) of the isolates have only the rtxA gene. However, both genes were absent in 6 (18.2%) of the L. pneumophila isolates. The result of our study provides some insight into the presence of the disease causing L. pneumophila serogroup 1 in the environment. Molecular epidemiological studies will provide better understanding of the prevalence of the disease in Malaysia.
    Matched MeSH terms: Water Microbiology*
  15. Azad SA, Vikineswary S, Chong VC, Ramachandran KB
    Lett Appl Microbiol, 2004;38(1):13-8.
    PMID: 14687209
    Rhodovulum sulfidophilum was grown in settled undiluted and nonsterilized sardine processing wastewater (SPW). The aims were to evaluate the effects of inoculum size and media on the biomass production with simultaneous reduction of chemical oxygen demand (COD).
    Matched MeSH terms: Water Microbiology*
  16. Azad SA, Vikineswary S, Ramachandran KB, Chong VC
    Lett Appl Microbiol, 2001 Oct;33(4):264-8.
    PMID: 11559398
    AIMS: Rhodovulum sulfidophilum was grown in sardine processing wastewater to assess growth characteristics for the production of bacterial biomass with simultaneous reduction of chemical oxygen demand.

    METHODS AND RESULTS: Growth characteristics were compared in diluted and undiluted, settled and non-settled wastewater growing in anaerobic light and aerobic dark conditions; and also at different agitation speeds. The highest biomass (8.75 g l(-1)) and a reduction in chemical oxygen demand of 71% were obtained in unsettled, undiluted wastewater after 120 h culture with 15% inoculum. In settled wastewater, highest biomass (7.64 g l(-1)) and a COD reduction of 77% was also obtained after 120 h. Total biomass was higher (4.34 g l(-1)) after 120 h culture in anaerobic light compared to (3.23 g l(-1)) in aerobic dark growth.

    CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: Better performance, mean of total biomass (6.97 g l(-1) after 96 h), total carotenoids (4.24 mg g(-1) dry cell from 24 h) and soluble protein (431 microg ml(-1) after 96 h) were obtained from aerobic dark culture at 300 rev min(-1). The COD reduction, however, was lower (69%) after 96 h culture. Thus, the benefits in the production of bacterial biomass in non-sterilized sardine processing wastewater with the reduction of chemical oxygen demand could be achieved.

    Matched MeSH terms: Water Microbiology*
  17. Aziz HA, Othman OM, Abu Amr SS
    Waste Manag, 2013 Feb;33(2):396-400.
    PMID: 23158874 DOI: 10.1016/j.wasman.2012.10.016
    Leachate pollution is one of the main problems in landfilling. Researchers have yet to find an effective solution to this problem. The technology that can be used may differ based on the type of leachate produced. Coliform bacteria were recently reported as one of the most problematic pollutants in semi-aerobic (stabilized) leachate. In the present study, the performance of the Electro-Fenton process in removing coliform from leachate was investigated. The study focused on two types of leachate: Palau Borung landfill leachate with low Coliform content (200 MPN/100 m/L) and Ampang Jajar landfill leachate with high coliform content (>24 × 10(4)MPN/100 m/L). Optimal conditions for the Electro-Fenton treatment process were applied on both types of leachate. Then, the coliform was examined before and after treatment using the Most Probable Number (MPN) technique. Accordingly, 100% removal of coliform was obtained at low initial coliform content, whereas 99.9% removal was obtained at high initial coliform content. The study revealed that Electro-Fenton is an efficient process in removing high concentrations of pathogenic microorganisms from stabilized leachate.
    Matched MeSH terms: Water Microbiology*
  18. Bahadoran M, Noorden AF, Mohajer FS, Abd Mubin MH, Chaudhary K, Jalil MA, et al.
    Artif Cells Nanomed Biotechnol, 2016;44(1):315-21.
    PMID: 25133457 DOI: 10.3109/21691401.2014.948549
    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.
    Matched MeSH terms: Drinking Water/microbiology
  19. Bahaman AR, Ibrahim AL
    Vet Res Commun, 1988;12(2-3):179-89.
    PMID: 3055663 DOI: 10.1007/BF00362799
    This paper reviews the literature on leptospirosis in Malaysia from its first description in 1928 until the present day. Most of the early reports were on investigations of leptospirosis in wildlife and man and up-to-date, thirty-seven leptospiral serovars from thirteen serogroups have been bacteriologically identified. The thirteen serogroups are: Australis, Autumnalis Bataviae, Canicola, Celledoni, Grippotyphosa, Hebdomadis, Icterohaemorrhagiae, Javanica, Pomona, Pyrogenes, Sejroe and Tarassovi. Rats have been ascribed as the principal maintenance host of leptospires in Malaysia. However, serovars from the Pomona, Pyrogenes and Sejroe serogroups have yet to be isolated from rats. It is considered that the majority of leptospirosis cases in man were due to association of man with an environment where rats were plentiful. Recent investigations on domestic animals disclosed a high prevalence of infection in cattle and pigs and they were suspected as being the maintenance host for serovar hardjo and pomona respectively. There is ample scope for research in leptospirosis, particularly in the epidemiology and control of the disease in domestic animals. The strategy to control the infection in domestic animals and man in Malaysia is bound to be different from that of the temperate countries, basically due to the presence of a large number of leptospiral serovars in wildlife, further confounded by geographical and financial constraints.
    Matched MeSH terms: Water Microbiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links