Displaying publications 1 - 20 of 152 in total

Abstract:
Sort:
  1. Zabed H, Suely A, Faruq G, Sahu JN
    Sci Total Environ, 2014 Feb 15;472:363-9.
    PMID: 24295752 DOI: 10.1016/j.scitotenv.2013.11.051
    A sacred ritual well with continuously discharging of methane gas through its water body was studied for physicochemical and microbiological quality in three seasons and during ritual mass bathing. Most of the physicochemical parameters showed significant seasonal variations (P<0.05) and a sharp fluctuation during mass bathing. Dissolved oxygen (DO) was found negatively correlated with temperature (r=-0.384, P<0.05), biochemical oxygen demand (BOD) (r=-0.58, P<0.001) and ammonia (r=-0.738, P<0.001), while BOD showed positive correlation with chemical oxygen demand (COD) (r=0.762, P<0.001) and ammonia (r=0.83, P<0.001). Simple regression analysis also yielded significant linear relationship in DO vs. temperature (r(2)=0.147, P<0.05), DO vs. ammonia (r(2)=0.544, P<0.001) and BOD vs. DO (r(2)=0.336, P<0.001). A total of eight microbial indicators were studied and found that all of them increased unusually during mass bathing comparing with their respective seasonal values. Total coliforms (TC) were found positively correlated with fecal coliforms (FC) (r=0.971), FC with Escherichia coli (EC) (r=0.952), EC with intestinal enterococci (IE) (r=0.921), fecal streptococci (FS) with IE (r=0.953) and Staphylococcus aureus (SA) with Pseudomonas aeruginosa (PA) (r=0.946), which were significant at P<0.001. Some regression models showed significant linear relationship at P<0.001 with r(2) value of 0.943 for FC vs. TC, 0.907 for EC vs. FC, 0.869 for FS vs. FC, 0.848 for IE vs. EC and 0.909 for IE vs. FS. The overall results found in this study revealed that well water is suitable for bathing purpose but the religious activity considerably worsen its quality.
    Matched MeSH terms: Water Microbiology*
  2. Nasir NM, Bakar NS, Lananan F, Abdul Hamid SH, Lam SS, Jusoh A
    Bioresour Technol, 2015 Aug;190:492-8.
    PMID: 25791330 DOI: 10.1016/j.biortech.2015.03.023
    This study focuses on the evaluation of the performance of Chlorella sp. in removing nutrient in aquaculture wastewater and its correlation with the kinetic growth of Chlorella sp. The treatment was applied with various Chlorella sp. inoculation dosage ranging from 0% to 60% (v/v) of wastewater. The optimum inoculation dosage was recorded at 30% (v/v) with effluent concentration of ammonia and orthophosphate recording at 0.012mgL(-1) and 0.647mgL(-1), respectively on Day 11. The optimum dosage for bio-flocculation process was obtained at 30mgL(-1) of Aspergillus niger with a harvesting efficiency of 97%. This type of development of phytoremediation with continuous bio-harvesting could promote the use of sustainable green technology for effective wastewater treatment.
    Matched MeSH terms: Waste Water/microbiology*
  3. Oulghazi S, Cigna J, Lau YY, Moumni M, Chan KG, Faure D
    Int J Syst Evol Microbiol, 2019 Feb;69(2):470-475.
    PMID: 30601112 DOI: 10.1099/ijsem.0.003180
    Pectobacterium carotovorum M022T has been isolated from a waterfall source in Selangor district (Malaysia). Using genomic and phenotypic tests, we re-examined the taxonomical position of this strain. Based on 14 concatenated housekeeping genes (fusA, rpoD, rpoS, acnA, purA, gyrB, recA, mdh, mtlD, groEL, secY, glyA, gapA and rplB), multi-locus sequence analysis revealed that strain M022T falls into a novel clade separated from the other Pectobacterium species. The in silico DNA-DNA hybridization and average nucleotide identity values were lower than the 70 and 95 % threshold values, respectively. In addition, by combining genomic and phenotypic tests, strain M022T may be distinguished from the other Pectobacterium isolates by its incapacity to grow on d(+)-xylose, l-rhamnose, cellobiose and lactose. Strain M022T (=CFBP 8629T=LMG 30744T) is proposed as the type strain of the Pectobacteriumfontis sp. nov.
    Matched MeSH terms: Water Microbiology*
  4. Brindha K, Paul R, Walter J, Tan ML, Singh MK
    Environ Geochem Health, 2020 Nov;42(11):3819-3839.
    PMID: 32601907 DOI: 10.1007/s10653-020-00637-9
    Monitoring the groundwater chemical composition and identifying the presence of pollutants is an integral part of any comprehensive groundwater management strategy. The present study was conducted in a part of West Tripura, northeast India, to investigate the presence and sources of trace metals in groundwater and the risk to human health due to direct ingestion of groundwater. Samples were collected from 68 locations twice a year from 2016 to 2018. Mixed Ca-Mg-HCO3, Ca-Cl and Ca-Mg-Cl were the main groundwater types. Hydrogeochemical methods showed groundwater mineralization due to (1) carbonate dissolution, (2) silicate weathering, (3) cation exchange processes and (4) anthropogenic sources. Occurrence of faecal coliforms increased in groundwater after monsoons. Nitrate and microbial contamination from wastewater infiltration were apparent. Iron, manganese, lead, cadmium and arsenic were above the drinking water limits prescribed by the Bureau of Indian Standards. Water quality index indicated 1.5% had poor, 8.7% had marginal, 16.2% had fair, 66.2% had good and 7.4% had excellent water quality. Correlation and principal component analysis reiterated the sources of major ions and trace metals identified from hydrogeochemical methods. Human exposure assessment suggests health risk due to high iron in groundwater. The presence of unsafe levels of trace metals in groundwater requires proper treatment measures before domestic use.
    Matched MeSH terms: Water Microbiology; Waste Water/microbiology
  5. Affum AO, Osae SD, Nyarko BJ, Afful S, Fianko JR, Akiti TT, et al.
    Environ Monit Assess, 2015 Feb;187(2):1.
    PMID: 25600401 DOI: 10.1007/s10661-014-4167-x
    In recent times, surface water resource in the Western Region of Ghana has been found to be inadequate in supply and polluted by various anthropogenic activities. As a result of these problems, the demand for groundwater by the human populations in the peri-urban communities for domestic, municipal and irrigation purposes has increased without prior knowledge of its water quality. Water samples were collected from 14 public hand-dug wells during the rainy season in 2013 and investigated for total coliforms, Escherichia coli, mercury (Hg), arsenic (As), cadmium (Cd) and physicochemical parameters. Multivariate statistical analysis of the dataset and a linear stoichiometric plot of major ions were applied to group the water samples and to identify the main factors and sources of contamination. Hierarchal cluster analysis revealed four clusters from the hydrochemical variables (R-mode) and three clusters in the case of water samples (Q-mode) after z score standardization. Principal component analysis after a varimax rotation of the dataset indicated that the four factors extracted explained 93.3 % of the total variance, which highlighted salinity, toxic elements and hardness pollution as the dominant factors affecting groundwater quality. Cation exchange, mineral dissolution and silicate weathering influenced groundwater quality. The ranking order of major ions was Na(+) > Ca(2+) > K(+) > Mg(2+) and Cl(-) > SO4 (2-) > HCO3 (-). Based on piper plot and the hydrogeology of the study area, sodium chloride (86 %), sodium hydrogen carbonate and sodium carbonate (14 %) water types were identified. Although E. coli were absent in the water samples, 36 % of the wells contained total coliforms (Enterobacter species) which exceeded the WHO guidelines limit of zero colony-forming unit (CFU)/100 mL of drinking water. With the exception of Hg, the concentration of As and Cd in 79 and 43 % of the water samples exceeded the WHO guideline limits of 10 and 3 μg/L for drinking water, respectively. Reported values in some areas in Nigeria, Malaysia and USA indicated that the maximum concentration of Cd was low and As was high in this study. Health risk assessment of Cd, As and Hg based on average daily dose, hazard quotient and cancer risk was determined. In conclusion, multiple natural processes and anthropogenic activities from non-point sources contributed significantly to groundwater salinization, hardness, toxic element and microbiological contamination of the study area. The outcome of this study can be used as a baseline data to prioritize areas for future sustainable development of public wells.
    Matched MeSH terms: Drinking Water/microbiology
  6. Iskandar NL, Zainudin NA, Tan SG
    J Environ Sci (China), 2011;23(5):824-30.
    PMID: 21790056
    Filamentous fungi are able to accumulate significant amount of metals from their environment. The potential of fungal biomass as agents for biosorption of heavy metals from contaminated sediments is currently receiving attention. In the present study, a total of 41 isolates of filamentous fungi obtained from the sediment of the Langat River, Selangor, Malaysia were screened for their tolerance and uptake capability of copper (Cu) and lead (Pb). The isolates were identified as Aspergillus niger, A. fumigatus, Trichoderma asperellum, Penicillium simplicissimum and P. janthinellum. A. niger and P. simplicissimum, were able to survive at 1000 mg/L of Cu(II) concentration on Potato Dextrose Agar (PDA) while for Pb, only A. niger survived at 5000 mg/L concentration. The results showed that A. niger, P. simplicissimum and T. asperellum have a better uptake capacity for Pb compared to Cu and the findings indicated promising biosorption of Cu and Pb by these filamentous fungi from aqueous solution. The present study was also determined the maximum removal of Cu(II) and Pb(II) that was performed by A. niger. The metal removal which occurred at Cu(II) 200 mg/L was (20.910 +/- 0.581) mg/g and at 250 mg/L of Pb(II) was (54.046 +/- 0.328) mg/g.
    Matched MeSH terms: Fresh Water/microbiology*
  7. Hena S, Fatihah N, Tabassum S, Ismail N
    Water Res, 2015 Sep 1;80:346-56.
    PMID: 26043271 DOI: 10.1016/j.watres.2015.05.001
    Reserve lipids of microalgae are promising for biodiesel production. However, economically feasible and sustainable energy production from microalgae requires optimization of cultivation conditions for both biomass yield and lipid production of microalgae. Biomass yield and lipid production in microalgae are a contradictory problem because required conditions for both targets are different. Simultaneously, the mass cultivation of microalgae for biofuel production also depends extremely on the performance of the microalgae strains used. In this study a green unicellular microalgae Chlorella sorokiniana (DS6) isolated from the holding tanks of farm wastewater treatment plant using multi-step screening and acclimation procedures was found high-lipid producing facultative heterotrophic microalgae strain capable of growing on dairy farm effluent (DFE) for biodiesel feedstock and wastewater treatment. Morphological features and the phylogenetic analysis for the 18S rRNA identified the isolated strains. A novel three stage cultivation process of facultative strain of C. sorokiniana was examined for lipid production.
    Matched MeSH terms: Waste Water/microbiology*
  8. Lim EW, Meers PD
    Ann Acad Med Singap, 1989 Jul;18(4):348-51.
    PMID: 2679337
    A rapid method of assay, using a monoclonal antibody linked to alkaline phosphatase, was used for the detection of the Pontiac subgroup of Legionella pneumophila serogroup 1. It was tested for its specificity against 53 strains of Legionella recently isolated from the environment in Singapore and Malaysia. The specificity and sensitivity of this method of assay was confirmed, though there is some concern that the specificity was too narrow, and there are reservations about the criteria suggested for interpreting the results.
    Matched MeSH terms: Water Microbiology*
  9. Aziz HA, Othman OM, Abu Amr SS
    Waste Manag, 2013 Feb;33(2):396-400.
    PMID: 23158874 DOI: 10.1016/j.wasman.2012.10.016
    Leachate pollution is one of the main problems in landfilling. Researchers have yet to find an effective solution to this problem. The technology that can be used may differ based on the type of leachate produced. Coliform bacteria were recently reported as one of the most problematic pollutants in semi-aerobic (stabilized) leachate. In the present study, the performance of the Electro-Fenton process in removing coliform from leachate was investigated. The study focused on two types of leachate: Palau Borung landfill leachate with low Coliform content (200 MPN/100 m/L) and Ampang Jajar landfill leachate with high coliform content (>24 × 10(4)MPN/100 m/L). Optimal conditions for the Electro-Fenton treatment process were applied on both types of leachate. Then, the coliform was examined before and after treatment using the Most Probable Number (MPN) technique. Accordingly, 100% removal of coliform was obtained at low initial coliform content, whereas 99.9% removal was obtained at high initial coliform content. The study revealed that Electro-Fenton is an efficient process in removing high concentrations of pathogenic microorganisms from stabilized leachate.
    Matched MeSH terms: Water Microbiology*
  10. Thiruventhiran T, Tan SY
    Nephrol Dial Transplant, 2000 May;15(5):727-8.
    PMID: 10809822
    Matched MeSH terms: Water Microbiology
  11. Mahyudin NA, Blunt JW, Cole AL, Munro MH
    J Biomed Biotechnol, 2012;2012:894708.
    PMID: 22291452 DOI: 10.1155/2012/894708
    The application of an HPLC bioactivity profiling/microtiter plate technique in conjunction with microprobe NMR instrumentation and access to the AntiMarin database has led to the isolation of a new 1. In this example, 1 was isolated from a cytotoxic fraction of an extract obtained from marine-derived Streptomyces sp. cultured on Starch Casein Agar (SCA) medium. The 1D and 2D (1)H NMR and ESIMS data obtained from 20 μg of compound 1 fully defined the structure. The known 2 was also isolated and readily dereplicated using this approach.
    Matched MeSH terms: Water Microbiology*
  12. Jaal Z, Macdonald WW
    PMID: 8160063
    Collections of anopheline mosquitos were made twice monthly for 13 months from a cow-baited trap in two villages, Kampung Permatang Rawa and Sungai Udang Kecil, on mainland coastal Penang, Malaysia. Each collection period was six hours from sunset. Unquantified larval collections were made regularly in each area. Although the villages were only about 50km apart, and each had extensive, irrigated rice-fields in its vicinity, the species abundance and the seasonal fluctuations differed significantly. In Kampung Permatang Rawa Anopheles sinensis and An. peditaeniatus were dominant in prevalence, whereas in Sungai Udang Kecil An. indefinitus and An. lesteri paraliae were most common and An. peditaeniatus was relatively rare. The rice growing schedules in the two areas differed, but there was a moderate correlation between the abundance of several species and the rice-growing pattern. There was no correlation at either site with rainfall.
    Matched MeSH terms: Water Microbiology*
  13. Liew WS, Leisner JJ, Rusul G, Radu S, Rassip A
    Int J Food Microbiol, 1998 Jul 21;42(3):167-73.
    PMID: 9728687
    The effect of heat-treatment on the internal temperature of raw cockles (Anadara granosa) and survival of their intrinsic flora of Vibrio spp. as well as of inoculated V. cholerae 0139 was examined. The cockles were purchased from markets in Malaysia and had an average weight including shells of 8.90+/-2.45 g. In one experiment heatpenetration of individual cockles was examined. Cockles weighing < 8 g (including shell) exhibited maximum internal temperatures of between 50 and 75 degrees C when heated in water at 99 degrees C for 10 s and 71-93 degrees C when heated for 30 s. Cockles weighing > 12 g exhibited maximum internal temperatures between 42 and 58 degrees C when heated in water at 99 degrees C for 10 s and 56-69 degrees C when heated for 30 s. In another experiment, heat-treatment of 10 cockles treated as a group at 99 degrees C for 10 or 30 s resulted in reduction of levels of intrinsic Vibrio spp. (enumerated directly on thiosulphate-citrate-bile salt sucrose agar; TCBS) from 5.73 to 3.15 log cfu g(-1) or below 1 log cfu g(-1), respectively. The levels of Vibrio spp. after heat-treatment decreased with an increase in numbers of cockles grouped together during treatment. In a third experiment V. cholerae 0139 was inoculated into cockles and subjected to heat-treatment at 99 degrees C for 0, 10, 15, 20, 25 or 30 s. The levels of Vibrio spp. in uninoculated, non-heat-treated cockles was 4.89 log cfu g(-1) on TCBS, and the predominant species were V. parahaemolyticus and V. alginolyticus. V. cholerae 0139 inoculated into cockles with an average weight of 13.5+/-1.90 g (including shell) decreased for samples examined immediately after heat-treatment from 6 log cfu g(-1) initially to 3.5 log cfu g(-1) after 25 s and < 1 log cfu g(-1) (TCBS) after 30 s of heat-treatment. The most probable number method by enrichment in alkaline peptone water gave in general within 1 log unit higher counts than TCBS direct enumeration. TCBS direct enumeration and MPN counts were up to 2.38 or 1.30 log units higher, respectively, for samples heat-treated for 20 s or longer and stored for 6 h at 30 degrees C before examination, than for samples heat-treated for same periods of time and examined immediately. This study shows that a mild heat-treatment of cockles for up to 25 s is inadequate to ensure a large reduction in numbers of Vibrio spp., including V. cholerae 0139.
    Matched MeSH terms: Water Microbiology*
  14. Jalal KC, Faizul HN, Naim MA, John BA, Kamaruzzaman BY
    J Environ Biol, 2012 Jul;33(4):831-5.
    PMID: 23360015
    A study on physico-chemical parameters and pathogenic bacterial community was carried out at the coastal waters of Pulau Tuba island, Langkawi. The physico-chemical parameters such as temperature (27.43-28.88 degrees C), dissolved oxygen (3.79-6.49 mg l(-1)), pH (7.72-8.20), salinity (33.10-33.96 ppt), total dissolved solids (32.27-32.77 g l(-1)) and specific conductivity (49.83-51.63 mS cm(-1)) were observed. Station 3 and station 4 showed highest amount of nitrates (26.93 and 14.61 microg at N l(-1)) than station 1 (2.04 microg at N l(-1)) and station 2 (4.18 microg at N l(-1)). The highest concentration (12.4 +/- microg l(-1)) of chlorophyll a was observed in station 4 in October 2005. High phosphorus content (561 microg P l(-1)) was found in the station 2. Thirteen bacterial isolates were successfully identified using API 20E system. The highest amount of bacteria was observed at Station 4 (3400 CFU ml(-1)) and the lowest numberwas at Station 2 (890 CFU ml(-1)). Out of identified 13 Gram-negative bacterial isolates dominant species were Aeromonas hydrophila, Klebsiella oxytoca, Pseudomonas baumannii, Vibrio vulnificus, Proteus mirabilis, Providencia alcalifaciens and Serratia liquefaciens. Apart from this, oil biodegrading Pseudomonas putida were also identified. The study reveals the existing status of water quality is still conducive and the reasonably diverse with Gram-negative bacteria along the Pulau Tuba Langkawi.
    Matched MeSH terms: Water Microbiology*
  15. Dada AC, Ahmad A, Usup G, Heng LY
    Environ Monit Assess, 2013 Feb;185(2):1583-99.
    PMID: 22592782 DOI: 10.1007/s10661-012-2653-6
    We report the first study on the occurrence of antibiotic-resistant enterococci in coastal bathing waters in Malaysia. One hundred and sixty-five enterococci isolates recovered from two popular recreational beaches in Malaysia were speciated and screened for antibiotic resistance to a total of eight antibiotics. Prevalence of Enterococcus faecalis and Enterococcus faecium was highest in both beaches. E. faecalis/E. faecium ratio was 0.384:1 and 0.375:1, respectively, for isolates from Port Dickson (PD) and Bagan Lalang (BL). Analysis of Fisher's exact test showed that association of prevalence of E. faecalis and E. faecium with considered locations was not statistically significant (p < 0.05). Chi-square test revealed significant differences (χ(2) = 82.630, df = 20, p < 0.001) in the frequency of occurrence of enterococci isolates from the considered sites. Resistance was highest to nalidixic acid (94.84 %) and least for chloramphenicol (8.38 %). One-way ANOVA using Tukey-Kramer multiple comparison test showed that resistance to ampicillin was higher in PD beach isolates than BL isolates and the difference was extremely statistically significant (p < 0.0001). Frequency of occurrence of multiple antibiotic resistance (MAR) isolates were higher for PD beach water (64.29 %) as compared to BL beach water (13.51 %), while MAR indices ranged between 0.198 and 0.48. The results suggest that samples from Port Dickson may contain MAR bacteria and that this could be due to high-risk faecal contamination from sewage discharge pipes that drain into the sea water.
    Matched MeSH terms: Water Microbiology*
  16. Teramoto M, Queck SY, Ohnishi K
    PLoS One, 2013;8(6):e66594.
    PMID: 23824553 DOI: 10.1371/journal.pone.0066594
    Major degraders of petroleum hydrocarbons in tropical seas have been indicated only by laboratory culturing and never through observing the bacterial community structure in actual environments. To demonstrate the major degraders of petroleum hydrocarbons spilt in actual tropical seas, indigenous bacterial community in seawater at Sentosa (close to a port) and East Coast Park (far from a port) in Singapore was analyzed. Bacterial species was more diverse at Sentosa than at the Park, and the composition was different: γ-Proteobacteria (57.3%) dominated at Sentosa, while they did not at the Park. Specialized hydrocarbonoclastic bacteria (SHCB), which use limited carbon sources with a preference for petroleum hydrocarbons, were found as abundant species at Sentosa, indicating petroleum contamination. On the other hand, SHCB were not the abundant species at the Park. The abundant species of SHCB at Sentosa were Oleibacter marinus and Alcanivorax species (strain 2A75 type), which have previously been indicated by laboratory culturing as important petroleum-aliphatic-hydrocarbon degraders in tropical seas. Together with the fact that SHCB have been identified as major degraders of petroleum hydrocarbons in marine environments, these results demonstrate that the O. marinus and Alcanivorax species (strain 2A75 type) would be major degraders of petroleum aliphatic hydrocarbons spilt in actual tropical seas.
    Matched MeSH terms: Water Microbiology*
  17. Sekine M, Akizuki S, Kishi M, Kurosawa N, Toda T
    Chemosphere, 2020 Apr;244:125381.
    PMID: 31805460 DOI: 10.1016/j.chemosphere.2019.125381
    Sulfide inhibition to nitrifying bacteria has prevented the integration of digestate nitrification and biogas desulfurization to simplify anaerobic digestion systems. In this study, liquid digestate with NaHS solution was treated using nitrifying sludge in a sequential-batch reactor with a long fill period, with an ammonium loading rate of 293 mg-N L-1 d-1 and a stepwise increase in the sulfide loading rate from 0 to 32, 64, 128, and 256 mg-S L-1 d-1. Batch bioassays and microbial community analysis were also conducted with reactor sludge under each sulfide loading rate to quantify the microbial acclimatization to sulfide. In the reactor, sulfide was completely removed. Complete nitrification was maintained up to a sulfide load of 128 mg-S L-1 d-1, which is higher than that in previous reports and sufficient for biogas treatment. In the batch bioassays, the sulfide tolerance of NH4+ oxidizing activity (the 50% inhibitory sulfide concentration) increased fourfold over time with the compositional shift of nitrifying bacteria to Nitrosomonas nitrosa and Nitrobacter spp. However, the sulfur removal rate of the sludge slightly decreased, although the abundance of the sulfur-oxidizing bacteria Hyphomicrobium increased by 30%. Therefore, nitrifying sludge was probably acclimatized to sulfide not by the increasing sulfide removal rate but rather by the increasing nitrifying bacteria, which have high sulfide tolerance. Successful simultaneous nitrification and desulfurization were achieved using a sequential-batch reactor with a long fill period, which was effective in facilitating the present acclimatization.
    Matched MeSH terms: Waste Water/microbiology
  18. Lim PE, Ong SA, Seng CE
    Water Res, 2002 Feb;36(3):667-75.
    PMID: 11827329
    The application of simultaneous adsorption and biodegradation processes in the same reactor is known to be effective in the removal of both biodegradable and non-biodegradable contaminants in various kinds of wastewater. The objective of this study is to evaluate the efficacy of the two processes under sequencing batch reactor (SBR) operation in treating copper and cadmium-containing synthetic wastewater with powdered activated carbon (PAC) as the adsorbent. The SBR systems were operated with FILL, REACT, SETTLE, DRAW and IDLE periods in the ratio of 0.5: 3.5: 1.0: 0.75 :0.25 for a cycle time of 6 h. In the presence of 10 mg/L Cu(II) and 30 mg/L Cd(II), respectively, the average COD removal efficiencies were above 85% with the PAC dosage in the influent solution at 143 mg/L compared to around 60% without PAC addition. Copper(II) was found to exert a more pronounced inhibitory effect on the bioactivity of the microorganisms compared to Cd(II). It was observed that the combined presence of Cu(II) and Cd(II) did not exert synergistic effects on the microorganisms. Kinetic study conducted for the REACT period showed that the addition of PAC had minimized the inhibitory effect of the heavy metals on the bioactivity of microorganisms.
    Matched MeSH terms: Water Microbiology
  19. Binti Ibnu Rasid EN, Mohamad SE, Jamaluddin H, Salleh MM
    Appl Biochem Biotechnol, 2014 Feb;172(4):2160-74.
    PMID: 24338298 DOI: 10.1007/s12010-013-0644-x
    Astaxanthin, a carotenoid pigment found in several aquatic organisms, is responsible for the red colour of salmon, trout and crustaceans. In this study, astaxanthin production from freshwater microalga Chlorella sorokiniana and marine microalga Tetraselmis sp. was investigated. Cell growth and astaxanthin production were determined spectrophotometrically at 620 and 480 nm, respectively. Astaxanthin was extracted using acetone and measured subsequent to biomass removal. Aerated conditions favoured astaxanthin production in C. sorokiniana, whereas Tetraselmis sp. was best cultured under unaerated conditions. C. sorokiniana produced more astaxanthin with the highest yield reached at 7.83 mg/l in 6.0 mM in nitrate containing medium compared to Tetraselmis sp. which recorded the highest yield of only 1.96 mg/l in 1.5 mM nitrate containing medium. Production in C. sorokiniana started at the early exponential phase, indicating that astaxanthin may be a growth-associated product in this microalga. Further optimization of astaxanthin production was performed using C. sorokiniana through a 2(3) full factorial experimental design, and a yield of 8.39 mg/l was achieved. Overall, the study has shown that both microalgae are capable of producing astaxanthin. Additionally, this research has highlighted C. sorokiniana as a potential astaxanthin producer that could serve as a natural astaxanthin source in the current market.
    Matched MeSH terms: Fresh Water/microbiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links