Displaying publications 1 - 20 of 60 in total

Abstract:
Sort:
  1. Grill G, Lehner B, Thieme M, Geenen B, Tickner D, Antonelli F, et al.
    Nature, 2019 05;569(7755):215-221.
    PMID: 31068722 DOI: 10.1038/s41586-019-1111-9
    Free-flowing rivers (FFRs) support diverse, complex and dynamic ecosystems globally, providing important societal and economic services. Infrastructure development threatens the ecosystem processes, biodiversity and services that these rivers support. Here we assess the connectivity status of 12 million kilometres of rivers globally and identify those that remain free-flowing in their entire length. Only 37 per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire length and 23 per cent flow uninterrupted to the ocean. Very long FFRs are largely restricted to remote regions of the Arctic and of the Amazon and Congo basins. In densely populated areas only few very long rivers remain free-flowing, such as the Irrawaddy and Salween. Dams and reservoirs and their up- and downstream propagation of fragmentation and flow regulation are the leading contributors to the loss of river connectivity. By applying a new method to quantify riverine connectivity and map FFRs, we provide a foundation for concerted global and national strategies to maintain or restore them.
    Matched MeSH terms: Water Movements*
  2. Chow MF, Yusop Z
    Water Sci Technol, 2014;69(2):244-52.
    PMID: 24473291 DOI: 10.2166/wst.2013.574
    The characteristics of urban stormwater pollution in the tropics are still poorly understood. This issue is crucial to the tropical environment because its rainfall and runoff generation processes are so different from temperate regions. In this regard, a stormwater monitoring program was carried out at three urban catchments (e.g. residential, commercial and industrial) in the southern part of Peninsular Malaysia. A total of 51 storm events were collected at these three catchments. Samples were analyzed for total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand (COD), oil and grease, nitrate nitrogen, nitrite nitrogen, ammonia nitrogen (NH3-N), soluble reactive phosphorus and total phosphorus. Principal component analysis (PCA) and hierarchical cluster analysis were used to interpret the stormwater quality data for pattern recognition and identification of possible sources. The most likely sources of stormwater pollutants at the residential catchment were from surface soil and leachate of fertilizer from domestic lawns and gardens, whereas the most likely sources for the commercial catchment were from discharges of food waste and washing detergent. In the industrial catchment, the major sources of pollutants were discharges from workshops and factories. The PCA factors further revealed that COD and NH3-N were the major pollutants influencing the runoff quality in all three catchments.
    Matched MeSH terms: Water Movements*
  3. Rezaei AR, Ismail Z, Niksokhan MH, Dayarian MA, Ramli AH, Yusoff S
    Environ Monit Assess, 2021 Mar 31;193(4):241.
    PMID: 33791871 DOI: 10.1007/s10661-021-09010-4
    Stormwater runoff is a major concern in urban areas which is mostly the result of vast urbanization. To reduce urban stormwater runoff and improve water quality, low impact development (LID) is used in urban areas. Therefore, it is vital to find the optimal combination of LID controls to achieve maximum reduction in both stormwater runoff and pollutants with optimal cost. In this study, a simulation-optimization model was developed by linking the EPA Storm Water Management Model (SWMM) to the Multi-Objective Particle Swarm Optimization (MOPSO) using MATLAB. The coupled model could carry out multi-objective optimization (MOO) and find potential solutions to the optimization objectives using the SWMM simulation model outputs. The SWMM model was developed using data from the BUNUS catchment in Kuala Lumpur, Malaysia. The total suspended solids (TSS) and total nitrogen (TN) were selected as pollutants to be used in the simulation model. Vegetated swale and rain garden were selected as LID controls for the study area. The LID controls were assigned to the model using the catchment characteristics. The target objectives were to minimize peak stormwater runoff, TSS, and TN with the minimum number of LID controls applications. The LID combination scenarios were also tested in SWMM to identify the best LID types and combination to achieve maximum reduction in both peak runoff and pollutants. This study found that the peak runoff, TSS, and TN were reduced by 13%, 38%, and 24%, respectively. The optimal number of LID controls that could be used at the BUNUS catchment area was also found to be 25.
    Matched MeSH terms: Water Movements
  4. Zainal Z, Lee CY, Hussein MZ, Kassim A, Yusof NA
    J Hazard Mater, 2005 Feb 14;118(1-3):197-203.
    PMID: 15721544
    Electrochemical-assisted photodegradation of methyl orange has been investigated using TiO2 thin films. The films were prepared by sol-gel dip-coating method. Several operational parameters to achieve optimum efficiency of this electrochemical-assisted photodegradation system have been tested. Photoelectrochemical degradation was studied using different light sources and light intensity. The light sources chosen ranged from ultraviolet to visible light. The effect of agitation of the solution at different speeds has also been studied. Slight improvement of photodegradation rate was observed by applying higher agitation speed. Investigation on the electrode after repeated usages show the electrode can be reused up to 20 times with percentage of deficiency less than 15%. The study on the effect of solution temperature indicated that the activation energy of the methyl orange degradation is 18.63 kJ mol(-1).
    Matched MeSH terms: Water Movements
  5. Ngu LH, Law PL, Wong KK, Yusof AA
    Water Sci Technol, 2010;62(5):1129-35.
    PMID: 20818055 DOI: 10.2166/wst.2010.407
    This research investigated the effects of co- and counter-current flow patterns on oil-water-solid separation efficiencies of a circular separator with inclined coalescence mediums. Oil-water-solid separations were tested at different influent concentrations and flowrates. Removal efficiencies increased as influent flowrate decreased, and their correlationship can be represented by power equations. These equations were used to predict the required flowrate, Q(ss50), for a given influent suspended solids concentration C(iss) to achieve the desired effluent suspended solids concentration, C(ess) of 50 mg/L, to meet environmental discharge requirements. The circular separator with counter-current flow was found to attend removal efficiencies relatively higher as compared to the co-current flow. As compared with co-current flow, counter-current flow Q(ss50) was approximately 1.65 times higher than co-current flow. It also recorded 13.16% higher oil removal at influent oil concentration, C(io) of 100 mg/L, and approximately 5.89% higher TSS removal at all influent flowrates. Counter-current flow's better removal performances were due to its higher coalescing area and constant interval between coalescence plate layers.
    Matched MeSH terms: Water Movements
  6. Dalu T, Wasserman RJ, Magoro ML, Mwedzi T, Froneman PW, Weyl OLF
    Sci Total Environ, 2017 Dec 01;601-602:73-82.
    PMID: 28551541 DOI: 10.1016/j.scitotenv.2017.05.162
    This study explores diatom community dynamics in a highly modified semi-arid temperate region river system characterised by inconsistent river flow. Various water and sediment environmental variables were assessed using a multi-faceted analysis approach to determine the spatio-temporal drivers of benthic diatom communities in the river system. Overall, the diatom community was generally dominated by pollution tolerant species, reflecting the anthropogenic intensity and activities on the river system. Diatom community composition was found to be largely determined by water column chemistry variables particularly nutrient concentrations in comparison to sediment chemistry and physical variables. Strong seasonal diatom species composition was also observed and this was driven by strong seasonal variations in nutrient loads and metal concentrations, a result of the variable water flow across the two seasons. However, the greater temporal variation in communities was observed in the smaller systems with the mainstream river system being more homogenous over time. In addition, diatom community composition and environmental variables were found to be different and more pronounced between streams and mainstream sites, than between canals and streams. The study highlights the complex interaction between water column, sediment and physical variables in determining the diatom species composition in small river systems. It also highlights the importance of river flow inconsistency as an indirect variable that alters primary drivers such as nutrient concentrations in the water column and heavy metal levels in the sediment.
    Matched MeSH terms: Water Movements
  7. Chow MF, Yusop Z, Toriman ME
    Water Sci Technol, 2013;67(8):1822-31.
    PMID: 23579839 DOI: 10.2166/wst.2013.048
    Urbanization and frequent storms play important roles in increasing faecal bacteria pollution, especially for tropical urban catchments. However, only little information on the faecal bacteria levels from different land use types and the factors that influence bacteria concentrations is available. Thus, the objectives of this study were to quantify the levels and transport mechanism of faecal coliforms (FCs) from residential and commercial catchments. Stormwaters were sampled and the runoff flow rates were measured from both catchments during four storm events in Skudai, Malaysia. The samples were then analysed for FC, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids (TSS) and ammoniacal-nitrogen (NH3-N) concentrations. Intra-storm and inter-storm characteristics of FC bacteria were investigated in order to identify the level and transport pattern of FC. The commercial catchment showed significantly higher event mean concentration (EMC) of FC than the residential catchment. For the residential catchment, the highest bacterial concentrations occurred during the early part of stormwater runoff with peak concentrations usually preceding the peak flow. First flush effect was more prevalent at the residential catchment.
    Matched MeSH terms: Water Movements*
  8. Jani J, Lusk MG, Yang YY, Toor GS
    PLoS One, 2020;15(4):e0230908.
    PMID: 32236119 DOI: 10.1371/journal.pone.0230908
    Stormwater runoff is recognized as a cause of water quality degradation because it may carry nitrogen (N) and other pollutants to aquatic ecosystems. Stormwater ponds are a stormwater control measure often used to manage stormwater runoff by holding a permanent pool of water, which reduces the peak flow, magnitude of runoff volume, and concentrations of nutrients and pollutants. We instrumented the outlet of a stormwater pond in an urban residential neighbourhood in Florida, United States to (1) investigate the concentration and composition of N forms during the summer rainy season (May to September 2016), and (2) determine the bioavailability of organic N in the stormwater pond with a bioassay experiment. A total of 144 outflow water samples over 13 storm events were collected at the outlet of the stormwater pond that collects runoff from the residential catchment. Samples were analysed for various inorganic N [ammonium (NH4-N), nitrate (NO3-N)], and organic N forms [dissolved organic nitrogen (DON), and particulate organic nitrogen (PON)]. Flow-weighted mean concentration of total N (TN) in pond outflow for all collected storm events was 1.3±1.42 mg L-1, with DON as the dominant form (78%), followed by PON and NO3-N (each at 8%), and NH4-N (6%). In the bioassay experiment, organic N (DON+PON) was significantly decreased by 25-28% after 5 days of incubation, suggesting that a portion of the DON carried from the pond outflow to receiving water bodies may be bioavailable. These results suggest that efforts to mitigate stormwater N outflows from urban ponds should incorporate both inorganic and organic N in management plans.
    Matched MeSH terms: Water Movements
  9. Jani J, Yang YY, Lusk MG, Toor GS
    PLoS One, 2020;15(2):e0229715.
    PMID: 32109256 DOI: 10.1371/journal.pone.0229715
    Stormwater runoff is a leading cause of nitrogen (N) transport to water bodies and hence one means of water quality deterioration. Stormwater runoff was monitored in an urban residential catchment (drainage area: 3.89 hectares) in Florida, United States to investigate the concentrations, forms, and sources of N. Runoff samples were collected over 22 storm events (May to September 2016) at the end of a stormwater pipe that delivers runoff from the catchment to the stormwater pond. Various N forms such as ammonium (NH4-N), nitrate (NOx-N), dissolved organic nitrogen (DON), and particulate organic nitrogen (PON) were determined and isotopic characterization tools were used to infer sources of NO3-N and PON in collected runoff samples. The DON was the dominant N form in runoff (47%) followed by PON (22%), NOx-N (17%), and NH4-N (14%). Three N forms (NOx-N, NH4-N, and PON) were positively correlated with total rainfall and antecedent dry period, suggesting longer dry periods and higher rainfall amounts are significant drivers for transport of these N forms. Whereas DON was positively correlated to only rainfall intensity indicating that higher intensity rain may flush out DON from soils and cause leaching of DON from particulates present in the residential catchment. We discovered, using stable isotopes of NO3-, a shifting pattern of NO3- sources from atmospheric deposition to inorganic N fertilizers in events with higher and longer duration of rainfall. The stable isotopes of PON confirmed that plant material (oak detritus, grass clippings) were the primary sources of PON in stormwater runoff. Our results demonstrate that practices targeting both inorganic and organic N are needed to control N transport from residential catchments to receiving waters.
    Matched MeSH terms: Water Movements
  10. Dominic JA, Aris AZ, Sulaiman WN, Tahir WZ
    Environ Monit Assess, 2016 Mar;188(3):191.
    PMID: 26914327 DOI: 10.1007/s10661-016-5192-8
    The approach of this paper is to predict the sand mass distribution in an urban stormwater holding pond at the Stormwater Management And Road Tunnel (SMART) Control Centre, Malaysia, using simulated depth average floodwater velocity diverted into the holding during storm events. Discriminant analysis (DA) was applied to derive the classification function to spatially distinguish areas of relatively high and low sand mass compositions based on the simulated water velocity variations at corresponding locations of gravimetrically measured sand mass composition of surface sediment samples. Three inflow parameter values, 16, 40 and 80 m(3) s(-1), representing diverted floodwater discharge for three storm event conditions were fixed as input parameters of the hydrodynamic model. The sand (grain size > 0.063 mm) mass composition of the surface sediment measured at 29 sampling locations ranges from 3.7 to 45.5%. The sampling locations of the surface sediment were spatially clustered into two groups based on the sand mass composition. The sand mass composition of group 1 is relatively lower (3.69 to 12.20%) compared to group 2 (16.90 to 45.55%). Two Fisher's linear discriminant functions, F 1 and F 2, were generated to predict areas; both consist of relatively higher and lower sand mass compositions based on the relationship between the simulated flow velocity and the measured surface sand composition at corresponding sampling locations. F 1 = -9.405 + 4232.119 × A - 1795.805 × B + 281.224 × C, and F 2 = -2.842 + 2725.137 × A - 1307.688 × B + 231.353 × C. A, B and C represent the simulated flow velocity generated by inflow parameter values of 16, 40 and 80 m(3) s(-1), respectively. The model correctly predicts 88.9 and 100.0% of sampling locations consisting of relatively high and low sand mass percentages, respectively, with the cross-validated classification showing that, overall, 82.8% are correctly classified. The model predicts that 31.4% of the model domain areas consist of high-sand mass composition areas and the remaining 68.6% comprise low-sand mass composition areas.
    Matched MeSH terms: Water Movements*
  11. Koh MK, Sathiamurthy E, Suratman S, Tahir NM
    Environ Monit Assess, 2012 Dec;184(12):7653-64.
    PMID: 22302401
    Influences of river hydrodynamic behaviours on hydrochemistry (salinity, pH, dissolved oxygen saturations and dissolved phosphorus) were evaluated through high spatial and temporal resolution study of a sandbar-regulated coastal river. River hydrodynamic during sandbar-closed event was characterized by minor dependency on tidal fluctuations, very gradual increase of water level and continual low flow velocity. These hydrodynamic behaviours established a hydrochemistry equilibrium, in which water properties generally were characterized by virtual absence of horizontal gradients while vertical stratifications were significant. In addition, the river was in high trophic status as algae blooms were visible. Conversely, river hydrodynamic in sandbar-opened event was tidal-controlled and showed higher flow velocity. Horizontal gradients of water properties became significant while vertically more homogenised and with lower trophic status. In essence, this study reveals that estuarine sandbar directly regulates river hydrodynamic behaviours which in turn influences river hydrochemistry.
    Matched MeSH terms: Water Movements
  12. Romali NS, Ardzu FAB, Suzany MN
    Water Sci Technol, 2023 Mar;87(6):1515-1528.
    PMID: 37001162 DOI: 10.2166/wst.2023.060
    Urbanization is one of the leading causes of urban flooding as rapid development produces more impervious areas in cities. The application of green roofs is regarded as an effective technology to minimize the adverse effects of urban development. The stormwater management capacities of green roofs have been extensively acknowledged, and they can retain rainfall and detain runoff. Nevertheless, Malaysia has experienced few green roof applications, and only limited literature is available concerning such topics. Additionally, the incorporation of waste and recycled material in green roof designs must be considered to ensure such projects benefit the environment as well as the economy. Therefore, the construction of a green roof utilizing recycled waste materials was attempted. An extensive green roof was constructed using beach morning glory and creeping ox-eye plants as vegetation layers, along with coconut waste, i.e., coconut fiber and coconut shell, as the medium for the filter and drainage layer, respectively. According to the results, the use of recycled coconut waste materials in the green roof operations reduced the peak flow by as much as 86%, while the use of commercial materials led to a reduction of 67%.
    Matched MeSH terms: Water Movements
  13. Prasanna MV, Chidambaram S, Shahul Hameed A, Srinivasamoorthy K
    Environ Monit Assess, 2010 Sep;168(1-4):63-90.
    PMID: 19609693 DOI: 10.1007/s10661-009-1092-5
    Gadilam river basin has gained its importance due to the presence of Neyveli Lignite open cast mines and other industrial complexes. It is also due to extensive depressurization of Cuddalore aquifer, and bore wells for New Veeranam Scheme are constructed downstream of the basin. Geochemical indicators of groundwater were used to identify the chemical processes that control hydrogeochemistry. Chemical parameters of groundwater such as pH, electrical conductivity, total dissolved solids, sodium (Na(+)), potassium (K(+)), calcium (Ca(+)), magnesium (Mg(+)), bicarbonate (HCO(-)(3)), sulfate (SO(-)(4)), phosphate (PO(-)(4)), and silica (H(4)SiO(4)) were determined. Interpretation of hydrogeochemical data suggests that leaching of ions followed by weathering and anthropogenic impact controls the chemistry of the groundwater. Isotopic study reveals that recharge from meteoric source in sedimentary terrain and rock-water interaction with significant evaporation prevails in hard rock region.
    Matched MeSH terms: Water Movements
  14. Ujang Z, Soedjono E, Salim MR, Shutes RB
    Water Sci Technol, 2005;52(12):243-50.
    PMID: 16477992
    Municipal leachate was treated in an experimental unit of constructed wetlands of subsurface flow type. The parameters studied were organics (BOD and COD), solids and heavy metals (Zn, Ni, Cu, Cr and Pb). Using two types of emergent plants of Scirpus globulosus and Eriocaulon sexangulare, more than 80% removal was achieved for all the parameters. E. sexangulare removed organics and heavy metals better than Scirpus globulosus. A higher concentration of heavy metals in the influent did not change the removal efficiency.
    Matched MeSH terms: Water Movements
  15. Shutes RB
    Environ Int, 2001 May;26(5-6):441-7.
    PMID: 11392764
    This paper illustrates the role of plants to assist the treatment of water pollution in man-made wetlands in tropical and temperate climates. It also considers the potential for environmental education of these wetland systems. The management and natural treatment of pollution is described in the Mai Po Marshes, Hong Kong and a wetland in London which is also an important site for birds. The design of the Putrajaya Lake and Wetland system in Malaysia is compared with a constructed wetland and lake for the treatment of urban surface runoff in a new residential development in the United Kingdom. The benefits of these natural systems are discussed in the context of the global trend for introducing sustainable methods of environmental management and low cost pollution treatment systems.
    Matched MeSH terms: Water Movements
  16. Chow MF, Yusop Z, Shirazi SM
    Environ Monit Assess, 2013 Oct;185(10):8321-31.
    PMID: 23591675 DOI: 10.1007/s10661-013-3175-6
    Information on the pollution level and the influence of hydrologic regime on the stormwater pollutant loading in tropical urban areas are still scarce. More local data are still required because rainfall and runoff generation processes in tropical environment are very different from the temperate regions. This study investigated the extent of urban runoff pollution in residential, commercial, and industrial catchments in the south of Peninsular Malaysia. Stormwater samples and flow rate data were collected from 51 storm events. Samples were analyzed for total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand, oil and grease (O&G), nitrate nitrogen (NO3-N), nitrite nitrogen, ammonia nitrogen, soluble reactive phosphorus, total phosphorus (TP), and zinc (Zn). It was found that the event mean concentrations (EMCs) of pollutants varied greatly between storm characteristics and land uses. The results revealed that site EMCs for residential catchment were lower than the published data but higher for the commercial and industrial catchments. All rainfall variables were negatively correlated with EMCs of most pollutants except for antecedent dry days (ADD). This study reinforced the earlier findings on the importance of ADD for causing greater EMC values with exceptions for O&G, NO3-N, TP, and Zn. In contrast, the pollutant loadings are influenced primarily by rainfall depth, mean intensity, and max 5-min intensity in all the three catchments. Overall, ADD is an important variable in multiple linear regression models for predicting the EMC values in the tropical urban catchments.
    Matched MeSH terms: Water Movements
  17. Hidayu Abdul Rani, Nor Fadilah Mohamad, Sherif Abdulbari Ali, Matali, Sharmeela, Sharifah Aishah Sheikh Abdul kadir
    MyJurnal
    Mercury emission into the atmosphere is a global concern due to its detrimental effects on human health in general. The two main sources of mercury emission are natural sources and anthropogenic sources. Mercury emission from natural sources include volcanic activity, weathering of rocks, water movement and biological processes which are obviously inevitable. The anthropogenic sources of mercury emission are from coal combustion, cement production and waste incineration. Thus, in order to reduce mercury emission it is appropriate to investigate how mercury is released from the anthropogenic sources and consequently the mercury removal technology that can be implemented in order to reduce mercury emission into the atmosphere. Many alternatives have been developed to reduce mercury emission and the recent application of activated carbon showed high potential in the adsorption of elemental mercury. This paper discusses the ability of activated carbon and variable parameters that influence mercury removal efficiency in flue gas.
    Matched MeSH terms: Water Movements
  18. Rostami F, Yazdi SR, Said MA, Shahrokhi M
    Water Sci Technol, 2012;66(5):909-17.
    PMID: 22797216 DOI: 10.2166/wst.2012.213
    Undular hydraulic jumps are characterized by a smooth rise of the free surface, followed by a train of stationary waves. These jumps sometimes occur in natural waterways and rivers. Numerical difficulties are especially distinct when the flow condition is close to the critical value because of the high sensitivity of the near-critical flow field to flow and channel conditions. Furthermore, the free surface has a wavy shape, which may indicate the occurrence of several transitions from supercritical to subcritical states and vice versa (i.e., undular hydraulic jumps). In this study, a flow model is used to predict an undular hydraulic jump in a rectangular open channel. The model is based on the general two-dimensional, Reynolds-averaged, Navier-Stokes flow equations. The resulting set of partial differential equations is solved using the FLOW-3D solver. The results are compared with the experimental data to validate the model. The comparative analysis shows that the proposed model yields good results. Several types of undular hydraulic jumps occurring in different situations are then simulated to prove the potential application of the model.
    Matched MeSH terms: Water Movements*
  19. Al-Abadi AM, Pradhan B, Shahid S
    Environ Monit Assess, 2015 Oct;188(10):549.
    PMID: 27600115 DOI: 10.1007/s10661-016-5564-0
    The objective of this study is to delineate groundwater flowing well zone potential in An-Najif Province of Iraq in a data-driven evidential belief function model developed in a geographical information system (GIS) environment. An inventory map of 68 groundwater flowing wells was prepared through field survey. Seventy percent or 43 wells were used for training the evidential belief functions model and the reset 30 % or 19 wells were used for validation of the model. Seven groundwater conditioning factors mostly derived from RS were used, namely elevation, slope angle, curvature, topographic wetness index, stream power index, lithological units, and distance to the Euphrates River in this study. The relationship between training flowing well locations and the conditioning factors were investigated using evidential belief functions technique in a GIS environment. The integrated belief values were classified into five categories using natural break classification scheme to predict spatial zoning of groundwater flowing well, namely very low (0.17-0.34), low (0.34-0.46), moderate (0.46-0.58), high (0.58-0.80), and very high (0.80-0.99). The results show that very low and low zones cover 72 % (19,282 km(2)) of the study area mostly clustered in the central part, the moderate zone concentrated in the west part covers 13 % (3481 km(2)), and the high and very high zones extended over the northern part cover 15 % (3977 km(2)) of the study area. The vast spatial extension of very low and low zones indicates that groundwater flowing wells potential in the study area is low. The performance of the evidential belief functions spatial model was validated using the receiver operating characteristic curve. A success rate of 0.95 and a prediction rate of 0.94 were estimated from the area under relative operating characteristics curves, which indicate that the developed model has excellent capability to predict groundwater flowing well zones. The produced map of groundwater flowing well zones could be used to identify new wells and manage groundwater storage in a sustainable manner.
    Matched MeSH terms: Water Movements*
  20. Chai CT, Putuhena FJ, Selaman OS
    Water Sci Technol, 2017 Dec;76(11-12):2988-2999.
    PMID: 29210686 DOI: 10.2166/wst.2017.472
    The influences of climate on the retention capability of green roof have been widely discussed in existing literature. However, knowledge on how the retention capability of green roof is affected by the tropical climate is limited. This paper highlights the retention performance of the green roof situated in Kuching under hot-humid tropical climatic conditions. Using the green roof water balance modelling approach, this study simulated the hourly runoff generated from a virtual green roof from November 2012 to October 2013 based on past meteorological data. The result showed that the overall retention performance was satisfactory with a mean retention rate of 72.5% from 380 analysed rainfall events but reduced to 12.0% only for the events that potentially trigger the occurrence of flash flood. By performing the Spearman rank's correlation analysis, it was found that the rainfall depth and mean rainfall intensity, individually, had a strong negative correlation with event retention rate, suggesting that the retention rate increases with decreased rainfall depth. The expected direct relationship between retention rate and antecedent dry weather period was found to be event size dependent.
    Matched MeSH terms: Water Movements*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links