Displaying publications 1 - 20 of 60 in total

Abstract:
Sort:
  1. Salele B, Dodo YA, Sani DA, Abuhussain MA, Sayfutdinovna Abdullaeva B, Brysiewicz A
    Water Sci Technol, 2023 Oct;88(7):1893-1909.
    PMID: 37831003 DOI: 10.2166/wst.2023.304
    Using the soil and water assessment tool (SWAT), runoff in pervious and impervious urban areas was simulated in this study. In the meantime, as a novel application of machine learning, the emotional artificial neural network (EANN) model was employed to enhance the SWAT obtained for this study. As a result of the EANN model's capabilities in rainfall-runoff phenomena, the SWAT-EANN couple model has been used to assess urban flooding. The pervious, impervious, and water body areas of the study area were classified and mapped to estimate the cover change over three epochs. Land use map, precipitation data, temperature (minimum and maximum) data, wind speed, relative humidity, soil map, solar radiation, and digital elevation model were used as inputs for modelling rainfall-runoff of the study area in the ArcGIS environment. The accuracy assessment of this study was excellent (root-mean-square error 1 mm of precipitation). It also revealed that (a) a land use map illustrating changes in impervious, pervious surface, and water body for 1998, 2008, and 2018; (b) runoff modelling using a historical pattern of rainfall-runoff changes (1998-2018); and (c) descriptive statistical analysis of the runoff results of the research. This research will aid in urban planning, administration, and development. Specifically, it will prevent flooding and environmental problems.
    Matched MeSH terms: Water Movements
  2. Romali NS, Ardzu FAB, Suzany MN
    Water Sci Technol, 2023 Mar;87(6):1515-1528.
    PMID: 37001162 DOI: 10.2166/wst.2023.060
    Urbanization is one of the leading causes of urban flooding as rapid development produces more impervious areas in cities. The application of green roofs is regarded as an effective technology to minimize the adverse effects of urban development. The stormwater management capacities of green roofs have been extensively acknowledged, and they can retain rainfall and detain runoff. Nevertheless, Malaysia has experienced few green roof applications, and only limited literature is available concerning such topics. Additionally, the incorporation of waste and recycled material in green roof designs must be considered to ensure such projects benefit the environment as well as the economy. Therefore, the construction of a green roof utilizing recycled waste materials was attempted. An extensive green roof was constructed using beach morning glory and creeping ox-eye plants as vegetation layers, along with coconut waste, i.e., coconut fiber and coconut shell, as the medium for the filter and drainage layer, respectively. According to the results, the use of recycled coconut waste materials in the green roof operations reduced the peak flow by as much as 86%, while the use of commercial materials led to a reduction of 67%.
    Matched MeSH terms: Water Movements
  3. Rezaei AR, Ismail Z, Niksokhan MH, Dayarian MA, Ramli AH, Yusoff S
    Environ Monit Assess, 2021 Mar 31;193(4):241.
    PMID: 33791871 DOI: 10.1007/s10661-021-09010-4
    Stormwater runoff is a major concern in urban areas which is mostly the result of vast urbanization. To reduce urban stormwater runoff and improve water quality, low impact development (LID) is used in urban areas. Therefore, it is vital to find the optimal combination of LID controls to achieve maximum reduction in both stormwater runoff and pollutants with optimal cost. In this study, a simulation-optimization model was developed by linking the EPA Storm Water Management Model (SWMM) to the Multi-Objective Particle Swarm Optimization (MOPSO) using MATLAB. The coupled model could carry out multi-objective optimization (MOO) and find potential solutions to the optimization objectives using the SWMM simulation model outputs. The SWMM model was developed using data from the BUNUS catchment in Kuala Lumpur, Malaysia. The total suspended solids (TSS) and total nitrogen (TN) were selected as pollutants to be used in the simulation model. Vegetated swale and rain garden were selected as LID controls for the study area. The LID controls were assigned to the model using the catchment characteristics. The target objectives were to minimize peak stormwater runoff, TSS, and TN with the minimum number of LID controls applications. The LID combination scenarios were also tested in SWMM to identify the best LID types and combination to achieve maximum reduction in both peak runoff and pollutants. This study found that the peak runoff, TSS, and TN were reduced by 13%, 38%, and 24%, respectively. The optimal number of LID controls that could be used at the BUNUS catchment area was also found to be 25.
    Matched MeSH terms: Water Movements
  4. Alazaiza MYD, Ramli MH, Copty NK, Ling MC
    J Contam Hydrol, 2021 Mar;238:103769.
    PMID: 33465656 DOI: 10.1016/j.jconhyd.2021.103769
    Laboratory-scale column experiments were carried out to assess the influence of water infiltration on pooled light non-aqueous phase liquid (LNAPL) redistribution in porous media. A simplified image analysis method (SIAM) was used to evaluate the saturation distributions of the LNAPL and water in the entire domain under dynamic conditions. The experiments were conducted for high/low LNAPL volumes LNAPL volumes differentiated as low and high volumes. High resolution SIAM images of the soil column during LNAPL migration and water infiltration events were captured and analyzed. Results indicated that the capillary fringe is about 6-7 cm which was consistent with the capillary height derived from empirical equations. Moreover, SIAM provided an estimate of the field capacity (30%) of the sand. Once the LNAPL infiltration stage was started, the LNAPL was observed to rapidly migrate through the vadose zone. For the case of large LNAPL volume, the LNAPL penetrated further into capillary fringe zone. Analysis of SIAM images showed that the LNAPL redistribution was observed to vary significantly with the rate of infiltration. For higher water infiltration intensity, the injected water exerted a larger hydrodynamic force on the entrapped LNAPL forcing it move further downward into the capillary zone and the saturated zone. Overall, this study demonstrated that the SIAM technique is an accurate and cost-effective tool for the visualization of the time-dependent NAPL/water movement in laboratory-scale experiments and dynamic changes in fluid saturation in porous media.
    Matched MeSH terms: Water Movements
  5. Mustafa S, Bahar A, Aziz ZA, Darwish M
    J Contam Hydrol, 2020 Aug;233:103662.
    PMID: 32569923 DOI: 10.1016/j.jconhyd.2020.103662
    This article provides an analytical solute transport model to investigate the potential of groundwater contamination by polluted surface water in a two dimensional domain. The clogging of streambed which makes the aquifer partially penetrated by the stream, is considered in the model. The impacts of pumping process, hydraulic conductivity and clogging layer on the quality of water produced from nearby drinking water wells are evaluated. It is found that results are consistent with numerical simulation conducted by MODFLOW software. Moreover, the model is applied using data of contamination occurrence in Malaysia, where high contaminants concentrations are found close to streams. Results show that the pumping activities (rate and time period) are crucial factors when evaluating the risk of groundwater contamination from surface water. Additionally, this study illustrates that the increase in either hydraulic conductivity or leakance coefficient parameters due to the clogging layer will enlarge the area of contamination. The model is able to determine the suitable pumping rate and location of the well so that the contamination plume never reaches the extraction well, which is useful in constructing riverbank filtration sites.
    Matched MeSH terms: Water Movements
  6. Jani J, Lusk MG, Yang YY, Toor GS
    PLoS One, 2020;15(4):e0230908.
    PMID: 32236119 DOI: 10.1371/journal.pone.0230908
    Stormwater runoff is recognized as a cause of water quality degradation because it may carry nitrogen (N) and other pollutants to aquatic ecosystems. Stormwater ponds are a stormwater control measure often used to manage stormwater runoff by holding a permanent pool of water, which reduces the peak flow, magnitude of runoff volume, and concentrations of nutrients and pollutants. We instrumented the outlet of a stormwater pond in an urban residential neighbourhood in Florida, United States to (1) investigate the concentration and composition of N forms during the summer rainy season (May to September 2016), and (2) determine the bioavailability of organic N in the stormwater pond with a bioassay experiment. A total of 144 outflow water samples over 13 storm events were collected at the outlet of the stormwater pond that collects runoff from the residential catchment. Samples were analysed for various inorganic N [ammonium (NH4-N), nitrate (NO3-N)], and organic N forms [dissolved organic nitrogen (DON), and particulate organic nitrogen (PON)]. Flow-weighted mean concentration of total N (TN) in pond outflow for all collected storm events was 1.3±1.42 mg L-1, with DON as the dominant form (78%), followed by PON and NO3-N (each at 8%), and NH4-N (6%). In the bioassay experiment, organic N (DON+PON) was significantly decreased by 25-28% after 5 days of incubation, suggesting that a portion of the DON carried from the pond outflow to receiving water bodies may be bioavailable. These results suggest that efforts to mitigate stormwater N outflows from urban ponds should incorporate both inorganic and organic N in management plans.
    Matched MeSH terms: Water Movements
  7. Jani J, Yang YY, Lusk MG, Toor GS
    PLoS One, 2020;15(2):e0229715.
    PMID: 32109256 DOI: 10.1371/journal.pone.0229715
    Stormwater runoff is a leading cause of nitrogen (N) transport to water bodies and hence one means of water quality deterioration. Stormwater runoff was monitored in an urban residential catchment (drainage area: 3.89 hectares) in Florida, United States to investigate the concentrations, forms, and sources of N. Runoff samples were collected over 22 storm events (May to September 2016) at the end of a stormwater pipe that delivers runoff from the catchment to the stormwater pond. Various N forms such as ammonium (NH4-N), nitrate (NOx-N), dissolved organic nitrogen (DON), and particulate organic nitrogen (PON) were determined and isotopic characterization tools were used to infer sources of NO3-N and PON in collected runoff samples. The DON was the dominant N form in runoff (47%) followed by PON (22%), NOx-N (17%), and NH4-N (14%). Three N forms (NOx-N, NH4-N, and PON) were positively correlated with total rainfall and antecedent dry period, suggesting longer dry periods and higher rainfall amounts are significant drivers for transport of these N forms. Whereas DON was positively correlated to only rainfall intensity indicating that higher intensity rain may flush out DON from soils and cause leaching of DON from particulates present in the residential catchment. We discovered, using stable isotopes of NO3-, a shifting pattern of NO3- sources from atmospheric deposition to inorganic N fertilizers in events with higher and longer duration of rainfall. The stable isotopes of PON confirmed that plant material (oak detritus, grass clippings) were the primary sources of PON in stormwater runoff. Our results demonstrate that practices targeting both inorganic and organic N are needed to control N transport from residential catchments to receiving waters.
    Matched MeSH terms: Water Movements
  8. Vijith H, Dodge-Wan D
    Environ Monit Assess, 2019 Jul 13;191(8):494.
    PMID: 31302794 DOI: 10.1007/s10661-019-7604-z
    The upper catchment region of the Baram River in Sarawak (Malaysian Borneo) is undergoing severe land degradation due to soil erosion. Heavy rainfall with high erosive power has led to a number of soil erosion hotspots. The goal of the present study is to generate an understanding about the spatial characteristics of seasonal and annual rainfall erosivity (R), which not only control sediment delivery from the region but also determine the quantity of material potentially eroded. Mean annual rainfall and rainfall erosivity range from 2170 to 5167 mm and 1632 to 5319 MJ mm ha-1 h-1 year-1, respectively. Seasonal rainfall and rainfall erosivity range from 848 to 1872 mm and 558 to 1883 MJ mm ha-1 h-1 year-1 for the southwest (SW) monsoon, 902 to 2200 mm and 664 to 2793 MJ mm ha-1h-1year-1 for the northeast (NE) monsoon and 400 to 933 mm and 331 to 1075 MJ mm ha-1 h-1 year-1 during the inter-monsoon (IM) period. Linear regression, Spearman's Rho and Mann Kendall tests were applied. Considering the regional mean rainfall erosivity in the study area, all the methods show an overall non-significant decreasing trend (- 9.34, - 0.25 and - 0.30 MJ mm ha-1 h-1 year-1, respectively for linear regression, Spearman's Rho and Mann Kendall tests). However, during SW monsoon and IM periods, rainfall erosivity showed a non-significant decreasing trend (- 25.45, - 0.52, - 0.40, and - 8.86, - 1.07, - 0.77 MJ mm ha-1 h-1 year-1, respectively) whereas in NE, monsoon season erosivity showed a non-significant increasing trend (14.90, 1.59 and 1.60 MJ mm ha-1 h-1 year-1, respectively). The mean erosivity density ranges from 0.77 to 1.38 MJ ha-1 h-1 year-1 and shows decreasing trend. Spatial distribution pattern of erosivity density indicates significantly higher occurrence of erosive rainfall in the lower elevation portion of the study area. The spatial pattern of mean rainfall erosivity trends (linear, Spearman's Rho and Mann Kendall) suggests that the study area can be divided into two zones with increasing rainfall erosivity trends in the northern zone and decreasing trends in the southern zone. These results can be used to plan conservation measures to reduce sediment delivery from localized soil erosion hotspots.
    Matched MeSH terms: Water Movements*
  9. Grill G, Lehner B, Thieme M, Geenen B, Tickner D, Antonelli F, et al.
    Nature, 2019 05;569(7755):215-221.
    PMID: 31068722 DOI: 10.1038/s41586-019-1111-9
    Free-flowing rivers (FFRs) support diverse, complex and dynamic ecosystems globally, providing important societal and economic services. Infrastructure development threatens the ecosystem processes, biodiversity and services that these rivers support. Here we assess the connectivity status of 12 million kilometres of rivers globally and identify those that remain free-flowing in their entire length. Only 37 per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire length and 23 per cent flow uninterrupted to the ocean. Very long FFRs are largely restricted to remote regions of the Arctic and of the Amazon and Congo basins. In densely populated areas only few very long rivers remain free-flowing, such as the Irrawaddy and Salween. Dams and reservoirs and their up- and downstream propagation of fragmentation and flow regulation are the leading contributors to the loss of river connectivity. By applying a new method to quantify riverine connectivity and map FFRs, we provide a foundation for concerted global and national strategies to maintain or restore them.
    Matched MeSH terms: Water Movements*
  10. Beck MW, Losada IJ, Menéndez P, Reguero BG, Díaz-Simal P, Fernández F
    Nat Commun, 2018 06 12;9(1):2186.
    PMID: 29895942 DOI: 10.1038/s41467-018-04568-z
    Coral reefs can provide significant coastal protection benefits to people and property. Here we show that the annual expected damages from flooding would double, and costs from frequent storms would triple without reefs. For 100-year storm events, flood damages would increase by 91% to $US 272 billion without reefs. The countries with the most to gain from reef management are Indonesia, Philippines, Malaysia, Mexico, and Cuba; annual expected flood savings exceed $400 M for each of these nations. Sea-level rise will increase flood risk, but substantial impacts could happen from reef loss alone without better near-term management. We provide a global, process-based valuation of an ecosystem service across an entire marine biome at (sub)national levels. These spatially explicit benefits inform critical risk and environmental management decisions, and the expected benefits can be directly considered by governments (e.g., national accounts, recovery plans) and businesses (e.g., insurance).
    Matched MeSH terms: Water Movements*
  11. Dalu T, Wasserman RJ, Magoro ML, Mwedzi T, Froneman PW, Weyl OLF
    Sci Total Environ, 2017 Dec 01;601-602:73-82.
    PMID: 28551541 DOI: 10.1016/j.scitotenv.2017.05.162
    This study explores diatom community dynamics in a highly modified semi-arid temperate region river system characterised by inconsistent river flow. Various water and sediment environmental variables were assessed using a multi-faceted analysis approach to determine the spatio-temporal drivers of benthic diatom communities in the river system. Overall, the diatom community was generally dominated by pollution tolerant species, reflecting the anthropogenic intensity and activities on the river system. Diatom community composition was found to be largely determined by water column chemistry variables particularly nutrient concentrations in comparison to sediment chemistry and physical variables. Strong seasonal diatom species composition was also observed and this was driven by strong seasonal variations in nutrient loads and metal concentrations, a result of the variable water flow across the two seasons. However, the greater temporal variation in communities was observed in the smaller systems with the mainstream river system being more homogenous over time. In addition, diatom community composition and environmental variables were found to be different and more pronounced between streams and mainstream sites, than between canals and streams. The study highlights the complex interaction between water column, sediment and physical variables in determining the diatom species composition in small river systems. It also highlights the importance of river flow inconsistency as an indirect variable that alters primary drivers such as nutrient concentrations in the water column and heavy metal levels in the sediment.
    Matched MeSH terms: Water Movements
  12. Yap HT, Ngien SK
    Water Sci Technol, 2017 Dec;76(11-12):2918-2927.
    PMID: 29210679 DOI: 10.2166/wst.2017.463
    Inflow and infiltration are important aspects of sewerage systems that need to be considered during the design stage and constantly monitored once the sewerage system is in operation. The aim of this research is to analyse the relationship of rainfall as well as inflow infiltration with sewage flow patterns through data collected from fieldwork. Three sewer pipelines were selected at the residential areas of Taman Lepar Hilir Saujana, Bandar Putra and Kota Sas for data collection. Sewage flow data were collected in terms of flowrate, velocity and depth of flow using flowmeters with ultrasonic sensors that utilize the continuous Doppler effect in the sewer pipelines, while rainfall intensity data were collected using rain gauges installed at the study locations. Based on the result, the average infiltration rates of Qpeak and Qave for the locations were 17% and 21%, which exceeded the respective values of 5% and 10% stated in Hammer and Hammer. The flowrate of wastewater in the sewer pipelines was found to be directly proportional to rainfall. These findings indicate that the sewer pipelines in the study areas may have been affected by capacity reduction, whereas the sewerage treatment plants receiving the wastewater influent may have been overloaded.
    Matched MeSH terms: Water Movements
  13. Chai CT, Putuhena FJ, Selaman OS
    Water Sci Technol, 2017 Dec;76(11-12):2988-2999.
    PMID: 29210686 DOI: 10.2166/wst.2017.472
    The influences of climate on the retention capability of green roof have been widely discussed in existing literature. However, knowledge on how the retention capability of green roof is affected by the tropical climate is limited. This paper highlights the retention performance of the green roof situated in Kuching under hot-humid tropical climatic conditions. Using the green roof water balance modelling approach, this study simulated the hourly runoff generated from a virtual green roof from November 2012 to October 2013 based on past meteorological data. The result showed that the overall retention performance was satisfactory with a mean retention rate of 72.5% from 380 analysed rainfall events but reduced to 12.0% only for the events that potentially trigger the occurrence of flash flood. By performing the Spearman rank's correlation analysis, it was found that the rainfall depth and mean rainfall intensity, individually, had a strong negative correlation with event retention rate, suggesting that the retention rate increases with decreased rainfall depth. The expected direct relationship between retention rate and antecedent dry weather period was found to be event size dependent.
    Matched MeSH terms: Water Movements*
  14. Ghadim HB, Hin LS
    Water Environ Res, 2017 Sep 01;89(9):862-870.
    PMID: 28855022 DOI: 10.2175/106143017X14902968254764
      The Bio-Ecological Drainage System (BIOECODS) is a sustainable drainage (SUDS) to demonstrate the 'control at source' approaches for urban stormwater management in Malaysia. It is an environmentally friendly drainage system that was designed to increase infiltration, reduce peak flow at outlet, improve water quality, through different BMPs, such as grass swale, retention pond, etc. A special feature of BIOECODS is ecological swale with on-line subsurface detention. This study attempted to create a model of ecological swale with on-line subsurface conveyance system with InfoWorks SD. The new technique has been used Storm Water Management Model (SWMM) model to describe overland flow routing and Soil Conservation Service Method (SCS) used to model infiltration or subsurface flow. The modeling technique has been proven successful, as the predicted and observed closely match each other, with a mean error of 4.58 to 7.32%. The calibrated model then used to determine the ratio of the flow exchange between the surface and subsurface drainage system. Results from the model showed that the runoff ratio exchange between the surface and subsurface is 60 to 90%.
    Matched MeSH terms: Water Movements*
  15. Polgar G, Zaccara S, Babbucci M, Fonzi F, Antognazza CM, Ishak N, et al.
    J Fish Biol, 2017 May;90(5):1926-1943.
    PMID: 28239874 DOI: 10.1111/jfb.13276
    A study was conducted on the habitat distribution of four sympatric species of Periophthalmus (the silver-lined mudskipper Periophthalmus argentilineatus, the slender mudskipper Periophthalmus gracilis, the kalolo mudskipper Periophthalmus kalolo and the Malacca mudskipper Periophthalmus malaccensis) from northern Sulawesi. Molecular phylogenetic reconstructions based on one mtDNA marker (16S) were used to validate the morphological taxa, identifying five molecular clades. Periophthalmus argentilineatus includes two molecular species, which are named Periophthalmus argentilineatus clades F and K. Multivariate direct gradient analysis show that these species form three distinct ecological guilds, with the two molecular species occurring in different guilds. Periophthalmus clade F is ecologically eurytypic; Periophthalmus clade K and P. kalolo are prevalent in ecosystems isolated by strong oceanic currents and at shorter distances from the sea; P. gracilis plus P. malaccensis are prevalent in ecosystems connected by shallow coastal waters, in vegetated habitats at larger distances from the sea. This indicates for the first time that mudskipper species exhibit a range of adaptations to semiterrestrialism not only within genera, but even within morphospecies, delineating a much more complex adaptive scenario than previously assumed.
    Matched MeSH terms: Water Movements
  16. Garcia C, Gibbins CN, Pardo I, Batalla RJ
    Sci Total Environ, 2017 Feb 15;580:1453-1459.
    PMID: 28027801 DOI: 10.1016/j.scitotenv.2016.12.119
    Here we provide the first evidence of long term reductions in flow in temporary streams on the Mediterranean island of Mallorca and use a simple metric of the degree of water permanence (the number of days with water) to highlight the implications of flow change for aquatic invertebrate diversity. Analysis of a 33year data set for 13 streams on the island yielded evidence of consistent downward trends in water permanence, particularly in spring and summer. Data from 27 relatively undisturbed mountain streams indicate that the diversity of benthic invertebrates in temporary streams across the island is directly related to water permanence. Streams with lower values of water permanence support few species overall and have less abundant invertebrate assemblages; the abundance and species richness of sensitive mayfly, stonefly and caddisfly taxonomic groups is also reduced in streams with lower water permanence. Although developed using spatial data, these flow-invertebrate relationships suggest that future reductions in water permanence may lead to reduced diversity. We argue that the 'number of days with water' is a simple but ecologically-relevant metric of water permanence that can be used effectively to monitor change in threatened temporary streams worldwide.
    Matched MeSH terms: Water Movements*
  17. Zulkifli Yusop, Lloyd Ling
    MyJurnal
    The selection of curve number to represent watersheds with similar land use and land cover is often subjective and ambiguous. Watershed with several soil groups further complicates curve number selection process while wrong curve number selection often produces unrealistic runoff estimates. The 1954 simplified Soil Conservation Services (SCS) runoff model over-predicted runoff with significant amount and further magnified runoff prediction error toward higher rainfall depths in this study. The model was statistically insignificant with the rejection of two null hypotheses and paved the way for regional model calibration study. This paper proposes a new direct curve number derivation technique from the given rainfall-runoff conditions under the guide of inferential statistics. The technique offers a swift and economical solution to improve the runoff prediction ability of the SCS runoff model with statistically significant results. A new rainfall-runoff model was developed with calibration according to the regional hydrological conditions. It out-performed the runoff prediction of the simplified SCS runoff model and the asymptotic runoff model. The derived curve number = 89 at alpha = 0.01 level. The technique can be adopted to predict flash flood and forecast urban runoff.
    Matched MeSH terms: Water Movements
  18. Kok PH, Mohd Akhir MF, Tangang F, Husain ML
    PLoS One, 2017;12(2):e0171979.
    PMID: 28187215 DOI: 10.1371/journal.pone.0171979
    This study analyzes two wind-induced upwelling mechanisms, namely, Ekman transport and Ekman pumping that occur during the southwest monsoon. The results suggest that the coastline of the east coast of Peninsular Malaysia (ECPM) is affected by upwelling with spatiotemporal variations. Characterization of upwelling by using wind-induced upwelling indexes (UIW) indicate the existence of favorable upwelling conditions from May to September. Upwelling intensity increased in May and peaked in August before declining in September, decreasing intensity from the southern tip towards the northern tip along the coastline of the ECPM. The existence of upwelling along the ECPM has resulted in an important difference between the SSTs of the inshore and the oceanic regions. Nonetheless, the use of the SST gradient between the inshore and the oceanic SSTs to characterize upwelling (UISST) was found to be unsuitable because the SST along the ECPM was affected by water advection from the Java Sea and incessant changes in the SST. In order to indicate the major contributor of wind-induced upwelling along the ECPM in terms of the spatiotemporal scale, a comparison between Ekman transport and Ekman pumping was drawn by integrating Ekman pumping with respect to the distance where the positive wind stress curl existed. The estimation of Ekman transport and Ekman pumping indicated that Ekman pumping played a major role in contributing towards upwelling in any particular month during the southwest monsoon along the entire coastline of the ECPM as compared to Ekman transport, which contributed towards more than half of the total upwelling transport. By dividing the ECPM into three coastal sections, we observed that Ekman pumping was relatively predominant in the middle and northern coasts, whereas both Ekman transport and Ekman pumping were equally prevalent in the southern coast.
    Matched MeSH terms: Water Movements*
  19. Bong CH, Lau TL, Ab Ghani A, Chan NW
    Water Sci Technol, 2016 Oct;74(8):1876-1884.
    PMID: 27789888
    The understanding of how the sediment deposit thickness influences the incipient motion characteristic is still lacking in the literature. Hence, the current study aims to determine the effect of sediment deposition thickness on the critical velocity for incipient motion. An incipient motion experiment was conducted in a rigid boundary rectangular flume of 0.6 m width with varying sediment deposition thickness. Findings from the experiment revealed that the densimetric Froude number has a logarithmic relationship with both the thickness ratios ts/d and ts/y0 (ts: sediment deposit thickness; d: grain size; y0: normal flow depth). Multiple linear regression analysis was performed using the data from the current study to develop a new critical velocity equation by incorporating thickness ratios into the equation. The new equation can be used to predict critical velocity for incipient motion for both loose and rigid boundary conditions. The new critical velocity equation is an attempt toward unifying the equations for both rigid and loose boundary conditions.
    Matched MeSH terms: Water Movements*
  20. Dominic JA, Aris AZ, Sulaiman WN, Tahir WZ
    Environ Monit Assess, 2016 Mar;188(3):191.
    PMID: 26914327 DOI: 10.1007/s10661-016-5192-8
    The approach of this paper is to predict the sand mass distribution in an urban stormwater holding pond at the Stormwater Management And Road Tunnel (SMART) Control Centre, Malaysia, using simulated depth average floodwater velocity diverted into the holding during storm events. Discriminant analysis (DA) was applied to derive the classification function to spatially distinguish areas of relatively high and low sand mass compositions based on the simulated water velocity variations at corresponding locations of gravimetrically measured sand mass composition of surface sediment samples. Three inflow parameter values, 16, 40 and 80 m(3) s(-1), representing diverted floodwater discharge for three storm event conditions were fixed as input parameters of the hydrodynamic model. The sand (grain size > 0.063 mm) mass composition of the surface sediment measured at 29 sampling locations ranges from 3.7 to 45.5%. The sampling locations of the surface sediment were spatially clustered into two groups based on the sand mass composition. The sand mass composition of group 1 is relatively lower (3.69 to 12.20%) compared to group 2 (16.90 to 45.55%). Two Fisher's linear discriminant functions, F 1 and F 2, were generated to predict areas; both consist of relatively higher and lower sand mass compositions based on the relationship between the simulated flow velocity and the measured surface sand composition at corresponding sampling locations. F 1 = -9.405 + 4232.119 × A - 1795.805 × B + 281.224 × C, and F 2 = -2.842 + 2725.137 × A - 1307.688 × B + 231.353 × C. A, B and C represent the simulated flow velocity generated by inflow parameter values of 16, 40 and 80 m(3) s(-1), respectively. The model correctly predicts 88.9 and 100.0% of sampling locations consisting of relatively high and low sand mass percentages, respectively, with the cross-validated classification showing that, overall, 82.8% are correctly classified. The model predicts that 31.4% of the model domain areas consist of high-sand mass composition areas and the remaining 68.6% comprise low-sand mass composition areas.
    Matched MeSH terms: Water Movements*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links